EQUIP: Research Challenges and Goals

Andrew M Stuart1

¹ Mathematics Institute Warwick University Funded by EPSRC

Enabling Quantification of

- BAYESIAN INVERSION: PDE INVERSE PROBLEMS
- 2 PRIORS
- 3 LIKELIHOOD
- POSTERIOR
- **5** CONCLUSIONS

- BAYESIAN INVERSION: PDE INVERSE PROBLEMS
- PRIORS
- 3 LIKELIHOOD
- 4 POSTERIOR
- **5** CONCLUSIONS

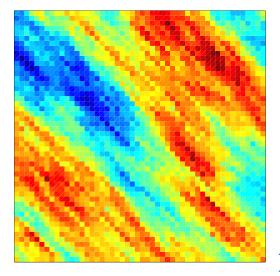
- Aim: to solve $y = \mathcal{G}(u) + \text{noise}$ for u given y.
- PDEs: $\mathcal{G}(\cdot)$ defined through solution of complex PDE.
- Probability/Statistics: data y and model G are uncertain.
- LSQ: minimize (regularized) $\Phi(u; y) := \frac{1}{2} ||y \mathcal{G}(u)||^2$.
- Bayesian: (u, y) a jointly varying random variable; find u|y.

Bayesian Inversion

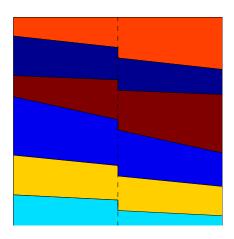
- Unknown $u \in X$.
- Data $v \in \mathbb{R}^J$.
- Prior $u \sim \mathbb{P}(u)$.
- Likelihood $\mathbb{P}(y|u)$: $y|u \sim N(\mathcal{G}(u), \Gamma)$.
- Bayes' Theorem: $\mathbb{P}(u|y) \propto \mathbb{P}(y|u) \times \mathbb{P}(u)$.
- Posterior: $\mathbb{P}(u|y) \propto \exp(-\Phi(u;y))\mathbb{P}(u)$.
- Potential: $\Phi(u; y) := \frac{1}{2} \| \Gamma^{-\frac{1}{2}} (y \mathcal{G}(u)) \|^2$.

- BAYESIAN INVERSION: PDE INVERSE PROBLEMS
- PRIORS
- 3 LIKELIHOOD
- 4 POSTERIOR
- **5** CONCLUSIONS

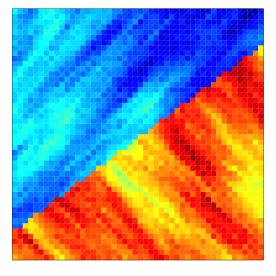
Gaussian Priors



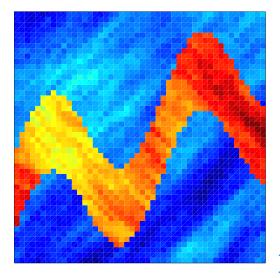
IC Fault Model



Fault/Gaussian



Channel/Gaussian



Random Functions

- $\{\phi_i\}_{i=0}^{\infty}$ an infinite sequence of functions in X.
- Construct function u by, for sequence $u_i = \gamma_i \xi_i$,

$$u = \phi_0 + \sum_{j=1}^{\infty} u_j \phi_j.$$

- The deterministic sequence $\gamma = {\{\gamma_i\}_{i=1}^{\infty}}$.
- The i.i.d. centred random sequence $\xi = \{\xi_i\}_{i=1}^{\infty}$.
- Permeability $\kappa = \exp(u)$.

Random Geometry

Consider permeability defined on a domain D with

$$\bigcup_{i} D_{i} = D, \quad D_{i} \cap D_{j} = \varnothing, \forall i \neq j.$$

Set

$$\kappa(\mathbf{x}) = \sum_{i=1}^{n} \kappa^{(i)} \chi_{D_i}(\mathbf{x}).$$

- Parameterize the $\{D_i\}$ by a finite set of random geometric parameters $a \in \mathbb{R}^{\hat{N}}$.
- Parameterize $\kappa^{(i)}$ as on previous slide through an infinite set of random parameters.

- BAYESIAN INVERSION: PDF INVERSE PROBLEMS
- 2 PRIORS
- 3 LIKELIHOOD
- 4 POSTERIOR
- **5** CONCLUSIONS

Groundwater Flow Inversion

• Let $f \in H^{-1}(D)$. Find log permeability $u \in X = L^{\infty}(D)$:

$$-\nabla \cdot \left(e^{u}\nabla p\right) = f, \quad x \in D$$
$$p = 0, \quad x \in \partial D.$$

• Given, for $j = 1, \ldots, J$,

$$y_j = \ell_j(p) + \eta_j, \ \ell_j \in H^{-1}(D), \ \eta_j$$
 noise.

• Abstractly: for $\mathcal{G}: X \mapsto Y = \mathbb{R}^J$ find u given

$$y = \mathcal{G}(u) + \eta$$
, noise.

Two Phase Flow

• Find log permeability $u \in X = L^{\infty}(D)$:

$$\begin{split} &-\nabla\cdot\left[\lambda(\boldsymbol{s})\boldsymbol{e}^{\boldsymbol{u}}\nabla\boldsymbol{p}\right] &= \mathit{f}_{P} + \mathit{f}_{I}(\boldsymbol{s},\boldsymbol{p}) & \text{in } D\times[0,T],\\ \phi\frac{\partial \boldsymbol{s}}{\partial t} - \nabla\cdot\left[\lambda_{W}(\boldsymbol{s})\boldsymbol{e}^{\boldsymbol{u}}\nabla\boldsymbol{p}\right] &= \mathit{g}_{P} + \mathit{g}_{I}(\boldsymbol{s},\boldsymbol{p}) & \text{in } D\times[0,T]. \end{split}$$

• Given, for $(j, k) = (1, 1) \dots (J, K)$,

$$y_{j,k} = f_{\mathrm{I}}ig(s(x_j,t_k),p(x_j,t_k)ig) + \eta_j, \ \eta_j \, ext{noise}.$$

• Abstractly: for $\mathcal{G}: X \mapsto Y = \mathbb{R}^J$ find u given

$$y = \mathcal{G}(u) + \eta$$
, noise.

Black Box Software

• Find log permeability $u \in X = L^{\infty}(D)$:

ECLIPSE(U)

• Given, for $j = 1, \ldots, J$,

$$y_i = FIELD DATA$$
.

• Abstractly: for $\mathcal{G}: X \mapsto Y = \mathbb{R}^J$ find u given

$$y = \mathcal{G}(u) + \eta$$
, noise.

- BAYESIAN INVERSION: PDE INVERSE PROBLEMS
- PRIORS
- 3 LIKELIHOOD
- POSTERIOR
- **5** CONCLUSIONS

High Dimensional Probability Measures

- There is a prior probability measure μ_0 on X.
- The posterior measure of interest is μ^{y} , also on X.
- μ^{y} is related to μ_{0} by

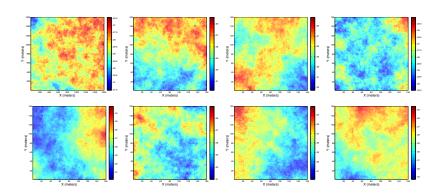
$$\frac{d\mu^{y}}{d\mu_{0}}(u) = \frac{1}{Z} \exp(-\Phi(u)).$$

• Since $\mu^y(du) = Z^{-1} \exp(-\Phi(u)) \mu_0(du)$ we have

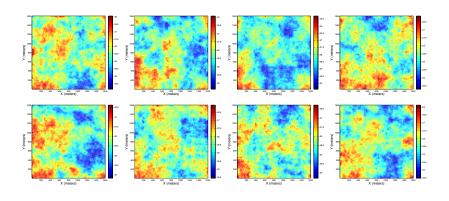
$$\mathbb{E}^{\mu^{y}}f(u) = \frac{1}{Z}\mathbb{E}^{\mu_{0}}\Big(\exp(-\Phi(u))f(u)\Big).$$

• We want to extract information from μ^y : most likely u, confidence bands on predictions, rare events \cdots

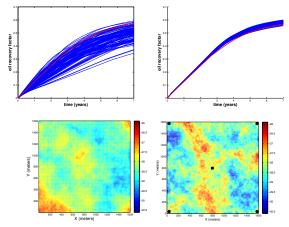
Prior Geology



Posterior Geology (include production data)



Geology with data ⇒ smaller uncertainty in prediction. Geology without data \Rightarrow larger uncertainty in prediction.



Model Error

- What is forward model G?
- Computational forward model \mathcal{G}_{comp} .
- True forward model $\mathcal{G}_{\text{true}}$.
- Model error = model mis-specification.
- Try to learn about model error from data.

Ad Hoc Algorithms

- Many algorithms used in practice are not well-founded from statistical point of view.
- The primary example is the ensemble Kalman filter.
- Need to develop theory for existing such algorithms, as they are currently used.
- Need to develop modifications of such algorithms to ensure statistical realibility.

- BAYESIAN INVERSION: PDE INVERSE PROBLEMS
- PRIORS
- 3 LIKELIHOOD
- 4 POSTERIOR
- **5** CONCLUSIONS

Fundamental Research Challenges

The three challenges:

- High Dimensional Probability Measures
- Model Error
- Ad Hoc Algorithms

all interact. Progress requires:

- confronting each individual challenge;
- appreciation for the interaction between challenges.

