Risk and Uncertainty in Reservoir Modelling

> Mike Christie Heriot-Watt University

Outline

• Oil Fields

– What are they, what do they look like?

- Mathematics of Reservoir Simulation

 Equations, getting it right
- Uncertainty in Reservoir Modelling
 - Where does it come from?
- Examples

Need for advanced computational techniques

Developing Oil Fields

Oil Fields

What Does an OilField Look Like?

Oil Reservoir

With Wytch Farm Oil Market Contraction of the Contr

0 Bournemouth

.

R

- Poole Harbou Brownsea Island

Image © Google Maps

Wytch Farm from the Sea

The Wytch Farm Reservoir

Wytch Farm Geology

Cliffs of Triassic red beds at Ladram Bay, High Peak and towards Sidmouth, Devon, seen from Smallstones Point, looking northeast. The sequence is of the Otter Sandstone Formation (Ladram Bay cliffs and the various stacks), part of the Sherwood Sandstone Group, and the finer-grained Mercia Mudstone (upper part of the High Peak cliff). Sidmouth is at the right margin of the photograph. Photo: 26th September 2009, about 3 pm, ebbing tide. Ian West (c) 2009.

Close up of Sherwood Sandstone Outcrop

Cross-stratified Otter Sandstone Formation, Sherwood Sandstone Group, Trias, in the centre of Ladram Bay, near Sidmouth. The cross stratification is of fluvial origin in a semi-arid to arid environment and is probably, at least in part of flash-flood origin. The scale is a one metre rule. Photograph: 26th September 2009. Ian West (c) 2009.

Wytch Farm Reservoir Model

Outline

• Oil Fields

- What are they, what do they look like?
- Mathematics of Reservoir Simulation

 Equations, getting it right
- Uncertainty in Reservoir Modelling
 Where does it come from?
- Examples
 - Need for advanced computational techniques

Mathematics of Flow in Porous Media

- Conservation of Mass
- Conservation of Momentum
 - replaced by Darcy's law

$$\mathbf{v} = -\frac{k(\mathbf{x})}{\mu} \nabla p$$

- Conservation of Energy

 most processes isothermal
- Equation of State

Equations governing flow

• Parabolic equation for pressure

$$c\frac{\partial p}{\partial t} = \nabla \cdot \left(k(\mathbf{x})\left(\frac{k_{ro}(S)}{\mu_o} + \frac{k_{rw}(S)}{\mu_w}\right)\nabla p\right)$$

Hyperbolic equation for saturation

$$\phi(\mathbf{x}) \frac{\partial \left(\rho_o x_i S_o + \rho_g y_i S_g\right)}{\partial t} + \nabla \left(\rho_o x_i \mathbf{v}_o + \rho_g y_i \mathbf{v}_g\right) = 0$$

Low Rate Bead Pack Experiment

CT Scanned Rock Slab Experiment

Image from Davies, Muggeridge, Jones, "Miscible Displacements in a Heterogeneous Rock: Detailed Measurements and Accurate Predictive Simulation" SPE 22615 (1991)

Outline

• Oil Fields

– What are they, what do they look like?

- Mathematics of Reservoir Simulation

 Equations, getting it right
- Uncertainty in Reservoir Modelling
 - Where does it come from?
- Examples

Need for advanced computational techniques

Uncertainty in Reservoir Description

Uncertainty in Reservoir Description

Equations governing flow

• Parabolic equation for pressure

$$c\frac{\partial p}{\partial t} = \nabla \cdot \left(\frac{k(\mathbf{x})}{\mu_o} \left(\frac{k_{ro}(S)}{\mu_o} + \frac{k_{rw}(S)}{\mu_w} \right) \nabla p \right)$$

Hyperbolic equation for saturation

$$\boldsymbol{\phi}(\mathbf{x}) \frac{\partial \left(\rho_o x_i S_o + \rho_g y_i S_g\right)}{\partial t} + \nabla \cdot \left(\rho_o x_i \mathbf{v}_o + \rho_g y_i \mathbf{v}_g\right) = 0$$

Data Collection

Model Calibration: Teal South

Calibrated Models are Non-Unique

Range of Possible Values for Unknown Parameters

Uncertainty Quantification

Generate multiple models that agree with known data Use models to predict future behaviour

Outline

• Oil Fields

– What are they, what do they look like?

- Mathematics of Reservoir Simulation

 Equations, getting it right
- Uncertainty in Reservoir Modelling
 - Where does it come from?
- Examples

Need for advanced computational techniques

What kind of problems?

- History matching
 - Generate multiple models consistent with data
- Forecasting
 - Predicting likely production (including range)
- Optimisation
 - Decision making, under uncertainty

IC Fault Model Injector

Producer

Z. Tavassoli, J. N. Carter, and P. R. King, Imperial College, London

Multi-Objective PSO: Pareto Dominance obj₂

 A is not worse than B in all objectives

2) A is strictly better than B in at least one objective

dominated solutions

non-dominated solutions

 \bigcirc

Convergence Speed – 20 Runs

Diversity of Models

SOPSO

Optimisation

Scapa field Used for student projects

Field Level History Match

Match to first 10 years of history

 Remaining data used to check forecast

Optimisation

- Multi-Objective
 - Maximise cumulative oil (FOPT)
 - Minimise maximum water rate (FWPR)
- Optimisation variables
 - Well locations (16 variables i, j for each well)
 - Injection well rates
 - Injection well status ('open' vs 'shut')

Optimise Well Locations and Injection Rates

Vary injection well rates and locations of wells
 – Well rates in [0,15] MBD

Oil Saturation Comparison

Comparison with Original MSc Plan

Where Does EQUIP come in?

3 factors

- Data input is uncertain
- Models take time to run
- Decisions are costly
- Need
 - Fast, effective model calibration techniques
 - Combine maths, stats, computer science, engineering