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A bsrract: 
We consider polynomials orthogonal with respect to some measure on the real line. A basic problem in the 

constructive theory of such polynomials is the determination of their three-term recurrence relation, given the measure 
in question. Depending on what is known about this measure, there are different ways to proceed. If, as is typical in 
applications in the physical sciences, one knows the measure only through moment information, the appropriate 
procedure is an algorithm that goes back to Chebyshev. The algorithm in effect implements the nonlinear map from 
the given moments (or modified moments) to the desired recursion coefficients. The numerical effectiveness of this 
procedure is determined in an essential way by the numerical condition of this map. It is known that the map is 
ill-conditioned in the case of ordinary moments. For modified moments, it may or may not be well-conditioned, the 
matter depending on certain properties of the given measure and the additional measure defining modified moments. 
A theorem to this effect will be given and illustrated on some typical examples. 

If more is known about the given measure, for example, if it is absolutely continuous and can be evaluated 
pointwise, then a procedure can be employed which is based on an observation of Stieltjes. Stieltjes remarked that the 
desired recursion coefficients can be successively built up by alternating between known inner product formulae for 
these coefficients and the initial sections of the recurrence relation already obtained. An effective implementation of 
this idea requires a suitable discretization of the inner product. This requirement, while possibly a weakness of the 
method, also accounts for its beauty, since it leaves room for imagination and ingenuity. Used skillfully, the discretized 

Stieltjes procedure is among the most widely applicable and effective methods for generating orthogonal polynomials. 
Some examples will be given to illustrate its use. 

Finally, we show how our newly acquired capability of generating nonstandard orthogonal polynomials can be used 
to solve some special problems in approximation theory and in the summation of slowly convergent series. A novel set 
of polynomials orthogonal on the semicircle will also be mentioned briefly in connection with Cauchy principal value 
integrals. 

1. Introduction 

Classical orthogonal polynomials are being widely used in many branches of science: theoreti- 
cal physics, chemistry, applied mathematics, probability, approximation theory, numerical analy- 
sis, and others. They are easily generated by recursion, and their use is supported by a highly 
developed analytical theory. Orthogonal polynomials relative to general, nonclassical weight 
functions, in contrast, have not found the same widespread use, partly because they are more 
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difficult to generate numerically, and also, undoubtedly, because they do not enjoy the close ties 
with the fundamental differential equations of mathematical physics, as do their classical fellow 
polynomials. It is nevertheless our belief that, once the constructive problems related to general 
orthogonal polynomials are solved, nonstandard applications of orthogonal polynomials will be 
greatly encouraged and the use of nonclassical orthogonal polynomials will become more 
pervasive than is presently the case. 

In the following we give a survey of recent work on the constructive theory of (general) 
orthogonal polynomials and also indicate some new applications. We begin in Section 2 with 
formulating what we consider to be the central problem: the generation of the three-term 
recurrence relation. An important algorithm for this purpose, due essentially to Chebyshev, will 
be discussed in Section 3. The numerical properties of this algorithm depend largely on the 
conditioning of the underlying nonlinear map, which is the subject of Section 4. An alternative 
(and often more effective) constructive approach, which in its key ideas goes back to Stieltjes, will 
be discussed in Section 5. The final Section 6 contains new applications, all involving, in one 
form or another, Gauss-Christoffel quadrature. 

Our interest here is with polynomials orthogonal on the real line. Polynomials orthogonal on 
the circle (Szegii’s polynomials), or on more general curves or domains in the complex plane, as 
well as orthogonal polynomials in several variables, are beyond the scope of this survey. They 
present their own numerical problems which are still largely unexplored. In one of our applica- 
tions of Section 6, however, we briefly mention certain polynomials orthogonal (but not positive 
definite) on the semicircle. 

2. A basic problem 

We are given a positive measure da(t) on the real line R, where a(t) is assumed to have at 
least n + 1 points of increase and the first 2n moments 

pk= (r”da(t), k=O,l,2 ,..., 2n-1, (2.1) 
‘R 

are finite, with p,, > 0. There exists, then, a unique set of (manic) orthogonal polynomials 
~~(.)=7r~(.; da), k=O, l,..., n, defined by 

v~( t) = rk + lower degree terms, 

/- TkITk(fh(t) do(t){ ;; if k + 1, O<k,l,cn. 
R if k = 1, (2.2) 

They satisfy, as is well-known, a three-term recurrence relation 

~k+,(t)=(t--(rk)~k(t)-Pk?Tk-l(t), k=O, l,...,n-1, 

Cl(f) = 0, ?r,(t) = 1, (2.3) 

where ak = cu,(du) are real COrMantS, and Pk = Pk(do) > 0. 
A fundamental problem in the constructive theory of orthogonal polynomials is the following: 

Given da ( t ) on R , and n , compute 

ak(du),Pk(du)fork=O,l ,..., n-l. (2.4) 
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(While &, is unimportant in (2.3), it is convenient in other contexts to define, as we do here, 
& = j,da(t).) A no th er problem is to compute the zeros of 7~,(. ; da) and additional quantities 
related to 7r,. such as the Christoffel numbers. We will see in section 6.1, however, that this 
problem can easily be solved, once we have dealt with the problem (2.4). Knowledge of the 
coefficients ak(du), P,(da) (not only for k < n, but also for k sufficiently beyond n) also 
permits us to compute the functions 

p,(z) =/, r’(:;d,“)du(r), r=O,l,..., n, (2.5) 

where z is complex outside the support of da, in particular Stieltjes’ integral pO( z), as minimal 
solution of the recurrence relation (2.3) (where I is to be replaced by z), using the starting value 
p_ i(z) = 1 (see Gautschi [ll]). This in turn has applications in error analysis of Gaussian 
quadrature for analytic functions (Gautschi and Varga [23]). Equally important, but more 
difficult, is the inverse problem of (2.4): Given the coefficients (Ye, ,Bkr for all k 2 0, and additional 
asymptotic information for k --, 00, determine the measure da, including the structure of its 
spectrum. There seems to be little numerical experience on this problem, and we shall not 
consider it here any further. For important analytical techniques, however, see Askey and Ismail 

VI. 
Introducing the vector of recurrence coefficients 

P=[a 0 ,..., a,-19 Bo1...,P”-I]T~~2n, (2.6) 
Problem (2.4), in effect, requires us to carry out the map Z(R) --) R2” defined by da + p, where 
Z(R) is some appropriate measure space on R. Such a map, of course, cannot be handled on a 
computer, since Z(R) in general is infinite-dimensional. To make the problem manageable, we 

must reduce it to finite dimension. This can be done, for 
from its first 2n moments (2.1). We are assuming, more 
modified moments of da, 

example, by departing.not from da, but 
generally, that we are given the first 2n 

mk= Rpk(t) da(t), 
/ 

k=O, 1, 2 ,..., 2n-1, 

where { pk } is a given system of polynomials satisfying 

Pk+i(f) = (t - a,)&) - bkPk-i(tL I_ _ n 

P-l(t) = 0, POW = 19 
~=o,l,2 ,.,., 2n-2, 

(2.7) 

(2.8) 

and the constants ak, b, are known. The problem (2.4) then becomes: 

Given thefirst 2n modified moments (2.7) of do, 

compute ak(du), Pk(du) fork = 0, 1,. . . , n - 1. (2.4’) 

With m denoting the vector of modified moments, 

m= [m,, m1,.-.,m2,_J TE R2”, (2.9) 

and p being as in (2.6), we now have the finite-dimensional (nonlinear) map 

K,:R2”-,iR2” m+p. (2.10) 

The map K,, is classical in the case where ak = b, = 0 in (2.8), i.e., pk( t) = t“, hence mk = F~; 
it can be expressed explicitly in determinantal form. Unfortunately, this map becomes highly 
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ill-conditioned, when n is large, and is therefore of little practical use; see, however, Gautschi [14] 
for an application to the validation of Gaussian quadrature rules. In the next section we present 
an algorithmic implementation of the map K,, and in Section 4 report on some results 
concerning the conditioning of K,, in the case where the polynomials { pk } in (2.8) are themselves 
orthogonal. 

3. Modified Chebyshev algorithm 

Chebyshev [5] in 1859 already considered and implemented the map K, in the special case of 
ordinary moments, m = EL, and in the case of discrete point measures da. The use of modified 
moments was first proposed by Sack and Donovan [34] and taken up, among others, by Wheeler 
[39] to deal effectively with a number of problems in theoretical chemistry involving unknown 
densities. The algorithm to be presented below is due to Wheeler and generalizes directly the 
original algorithm of Chebyshev. Since it departs from modified moments, we call it the modified 
Chebysheo algorithm. 

The algorithm, basically, obtains the desired recursion coefficients cy,(da), P,(da) in terms of 
the ‘mixed moments’ 

Ok.1 = 
J 

rk(f)p,(f) da(t), k < 1, (3.1) 
R 

which are continually updated as the process unfolds. Note, first of all, that ck,, = 0 if k > 1, by 
orthogonality. Next we have the obvious relations 

(J-1.1 = 0, l=l,2 ,..., 2n-2, 
(3.2”) 

uk-l.f+l -bk--I -a,)uk-,,,--k-,uk-2,,+ bluk-l.l-l~ 

l=k,k+l,..., 2n-k-l, 
‘k k+l 

ak 
=a,+d- 

uk-l,k 
, 

‘k,k uk-l,k-l 

pk = uk.k . 

uk--l,k-l 

i 
k=l,2 ,..., n-l. 

These can easily be derived from the facts uk+iVk_i = 0, bk+i,k = 0, and from the two recurrence 
relations (2.3) and (2.8). (For details, see, e.g., [16, Section 5.41). The complexity of the algorithm 
(3.2) is clearly O(n’). A schematic representation of the algorithm is given in Fig. 3.1, where the 
‘Star’ indicates which CpaIItitieS ok,, (represented by black dots) are involved in the recursion of 
(3.2), the one computed at each step being circled. The entries in boxes are used to compute 
ak(du), P,(du). Those on the diagonal also furnish the normalization constants (Tk,k = 

ln&)de(t). 
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Star: 

n-l ---______---•__@ 

mm. 0 

iEll3l.0.. * 

pJ~~00.0. 

uo,l=ml - +I 

u_1J=o - 0 0 0 0 0 0 0 0 I 
0 2n-1 

Fig. 3.1. The modified Chebyshev algorithm (schematically for n = 5) 

The major difficulty with the modified Chebyshev algorithm is the accurate calculation of the 
modified moments (2.7). In many cases, however, they can be computed explicitly, or by 
recursion, or can be approximated by a suitable discretization; see Gautschi (16, Section 5.41 for 
references, and Gautschi [13, Section 41 for a number of examples. 

4. Condition of the problem 

We have already observed that the map K,, is ill-conditioned in the case of ordinary moments. 
For measures da supported on the interval [O,l], for example, the condition of K, will typically 
grow like (3 + fi)2”/64 n2 as n + co, which, incidentally, is the same exponential growth as the 
one exhibited by the (Turing) condition number of the n x n Hilbert matrix (Gautschi [8]). On 
the other hand, experience with the modified Chebyshev algorithm has shown that the use of 
modified moments does significantly enhance the stability of the algorithm in some cases, but 
remains ineffective in others. In this section we explore the various factors that are responsible 
for the conditioning of the map K,, and hence for the stability properties of the modified 
Chebyshev algorithm. 

The basic assumption in this section is that the polynomials pk defining the modified moments 
are themselves orthogonal, relative to some measure ds that can be chosen arbitrarily, as 
appropriate or convenient, 

[ P&)P,(~) d.dd = 0, k + 1. (4.1) 
JR 

What will be interesting to observe is the interplay of the two measures da and ds in their 
contribution to the condition of the map K,. 

We first need a convenient representation of the map K,. It turns out that the Gauss-Christof- 
fel n-point quadrature rule is a-good intermediate link; this is the quadrature formula 

J Rf(t) da(t) = L OAT,) + R,(f) (4.2) 
v-1 

uniquely determined by the requirement that R,(f) = 0 for all f E P,,_ 1. The nodes rP = 7,(n), 
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(n) indeed, are the zeros of rr,,( - ;da), and the weights a, = a, the so-called Christoffel numbers for 
da; see also section 6.1. We introduce the Gauss-Christoffel vector 

y=[u, )...) on,71 )...) 7n]TaR2n, (4.3) 

and represent the map K, : m + p as a composition of two maps, 

K, =H,,oG,,, (4.4) 

where 

G,,:m+y, H,,:y-,p. (4.5) 

It has been our experience that the map H,, is usually quite well-conditioned, though on rare 
occasions it, too, may become ill-conditioned; see, e.g., [13, Section 3.1 and 3.41. We restrict 
ourselves here to considering the more critical map G,, : m + y, or, what is technically more 
satisfying, the map 

G:,:t@+R*n $l+y (4.6) 

from the vector fi of normalized modified moments 

rTz, = dkl/*mk, d, =jRP:(f) ds(t), k=O,l,..., 2n-1, (4.7) 

to the Gauss-Christoffel vector y. For simplicity, we take the Frechet derivative of e,, at &, 

G;(fi)EL(R*“+R*“) (4-g) 

-a linear bounded operator from R *” onto itself-or rather a norm of it, as a measure of the 
sensitivity of the map Gn at iit. The condition number of 6” at fi (suitably defined) in fact 
satisfies 

(4.9) 

where ]] - II2 is the Euclidean vector norm, and ]I - IIF the Frobenius norm [13, Section 31. 
The Frobenius norm of 6,( fi) can be expressed exactly in terms of the elementary Hermite 

interpolation polynomials h, and k, associated with the Gaussian nodes ri, r2,. . . , T,, in (4.2). h, 
is the polynomial in lP2,_ 1 vanishing at all the nodes, except 7,, where it has the value 1, and 
having zero derivative at all n nodes. Similarly, k, E lPZn_l vanishes at all n nodes and has zero 
derivative there, except at r,, where it has slope 1. The basic result then is [13, Theorem 3.11 

where a, are the Christoffel numbers in (4.2). 
The critical function in (4.10) is obviously the polynomial 

g,(r) = t [h;(t) + a,-2k,2(t)] 
v-1 

(of degree 4n - 2). It is positive for all real t, and satisfies, as is easily seen, 

g,(rJ = I, g;(rJ = 0, v=l,2 ,..., n. 

(4.10) 

(4.11) 

(4.12) 
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(These relations, of course, do not yet determine g,.) It is important to recognize that g, depends 
solely on the measure da (through the Gaussian nodes and Christoffel numbers of da). The 
influence of da upon the condition of G,, is therefore largely determined by the properties of the 
polynomial g,. The second measure ds acts as an integration measure in (4.10) and contributes 
to the condition of G,, in just that way. To illustrate the interplay of these two measures and their 
effects on the condition of G,,, we give three examples here; more can be found in [16, Section 
5.51. 

Example 4.1. da(t) = [(l - k*t*)(l - t*)]-‘/*dt on [ - l,l], 0 < k -c 1; ds(t) = (1 - t*)-‘/*dt on 
I- Lll. 

The orthogonal polynomials 7r,( - ;du) in this example are not known explicitly; they have 
already been used as an example by Christoffel [6]. The polynomials p,( - ;ds) are Chebyshev 
polynomials, the modified moments therefore Chebyshev moments. These can be computed 
accurately by recursion [13, Example 4.41. The polynomial g,, for many values of k, even close to 
1, was found by computation to be ( 1 on [ - l,l], without exception. Assuming this to be true, 
one obtains from (4.10) 

i.e., the Frechet derivative of e,, is bounded in norm, uniformly for all n. As a consequence, the 
map c,, is extremely well-conditioned, even for large values of n. This has been impressively 
confirmed by numerical experiments. 

Example 4.2. du( t) = ta ln(l/t)dt on [O,l],a > - l;ds(t) = dt on [O,l]. 
Here we have a branch point (unless (Y is an integer) and a logarithmic singularity both at the 

origin. The polynomials pk( .;ds) are the shifted (manic) Legendre polynomials and the associ- 
ated modified moments are known in closed form. If (Y is not an integer, for example, one finds 
(Gautschi [9]) 

The polynomial g,, here has a rather peculiar, but not atypical behavior, which we describe for 
the case (r = - 4. On about two-thirds through the interval [OJ], g, wiggles around, always 
staying < 1; after that, it starts developing spikes of increasing magnitude, reaching a global 
maximum at t = 1 after a final upward surge. For n = 40, for example, the largest spike has 
magnitude 2 x 104, while g,,(l) = 4 x 10’. Fortunately, integration in (4.10) has a smoothing 
effect, and in spite of the violent oscillations, the condition number of G,,( rTz), as estimated by 
(4.9), turns out to be relatively small (as condition numbers go). For example, (cond e,,)(G) is 
less than 3 X 102, 7 X lo*, 2 X lo3 for n = 20, 40, 80, respectively (always for (Y = - 4). The 
modified Chebyshev algorithm indeed furnishes results very close to machine precision. 

Example 4.3. 

du(t)= (~+(t-fl{t(l -t)(j--)(f--t)}+* dt, tE [O, ;] u[$, 11, 
’ ’ 10 elsewhere. 
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This is a measure of interest in the diatomic linear chain (Wheeler [40]). It is interesting because 
of its support consisting of two separate intervals. We consider two choices of ds. 

(a) ds( t) = IT-‘{ t(l - t)} -‘/* dt on [O,l]. Thus, pk(. ;ds) are the shifted (manic) Chebyshev 
polynomials, and mk Chebyshev moments. For their accurate calculation, we refer to the cited 
reference. The Gaussian nodes 7, of da are known to congregate on the two separate support 
intervals, except for one node (if n is odd) at the midpoint r = i. As a result, the polynomial g, 
is found to wiggle rapidly on the two support intervals, remaining < 1 there, but shoots up to a 
huge peak (double peak, if n is odd) on the central interval [$, {I. For n = 40, for example, the 
peak value is of the order 10 *‘I Since the support of ds is the whole interval [O,l], integration in . 

(4.10) goes right through the peak and produces a large value for the norm of the Frechet 
derivative of G,,. For example, 

]]6~(6~)]]r={~~g,,(~)ds(~))~‘*=2.0~10~ if n=40. 

Clearly, the ‘hole’ [f, $1 is to be avoided at all cost. This motivates the second choice of ds. 

(b) 
ds(+ 1871-1~t-~~-1{t(l-r)(r-f)(r-~)}“2dr, fE[O,f]U[$,1], 

1 0 elsewhere. 

By a stroke of luck, the corresponding modified moments are explicitly computable (Wheeler 
[40]). The polynomial g,,, of course, being the same as before, we now have 

IIGIIF = 
i 

i/* 

J 
[O.~lU[f,ll 

g,(t) ds(t) 
i 

< 1, all n, 

i.e., the Frtchet derivative is bounded uniformly in n, in striking contrast to the first choice of ds 
in (a). 

It so happens that the recursion coefficients cu,(da), Pk(d ) (J can be computed in closed form; 
see Gautschi [18]. This somewhat lessens the practical significance of Example 4.3; nevertheless, 
the example clearly shows the importance of a proper choice of the measure ds and may provide 
guidance in similar, but more complicated situations. 

5. Discretized Stieltjes procedure 

The measure da, in view of (2.1), defines an inner product 

(5.1) 

on the space P,, _ i, or more precisely, for polynomials p and q whose degrees add up to less than 
2n. Stieltjes [37] already observed how the recurrence relation 

~~+,(~)=(t-aak)~~(t)-~Pk~~_l(f), k=O,l,...,n-1, 

Q(f) = 0, r&J = I, (5.2) 
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can be combined with the inner product formulae 

(5.3) 

k= l,...,n - 1, 

to gradually build up the recurrence coefficients (Ye = a,(da), Pk = Pk(dcr), k = 0, 1,. .., n - 1. 
Indeed, since r,, = 1, we can use (5.3) to obtain (Y,,, &. Applying (5.2) with k = 0 then gives 7~,, 
which together with 7r0 allows us to compute a,, p, from (5.3). Knowing (Y,, &, we can use again 
(5.2) with k = 1 to find 7rZ, which together with n, gives (Ye, & from (5.3), etc. We call this 
procedure, alternating between (5.2) and (5.3), the Stieltjes procedure. Its main weakness is the 
necessity of computing the inner products in (5.3). If one tries to do this analytically, by 
expressing them in terms of the moments (2.1) and the coefficients of the rk, one in effect 
implements the ill-conditioned map K,: p --) p and must expect severe instability; see Section 4. 
For this reason, we proposed in 1968 (Gautschi [8]) to compute the required integrals by 
numerical quadrature, ignoring essentially the possible presence of singularities in da(~). This is 
equivalent to replacing da by a discrete N-point measure da, (usually with N B n) and then 
applying Stieltjes’ procedure to the inner product defined by da,. We therefore call this the 
discretized Stieltjes procedure. In [S] we proposed Fejer’s quadrature rule (the interpolatory 
quadrature rule associated with Chebyshev nodes) as a vehicle of discretization, and in [13] the 
composite Fejer rule. We pointed out, however, that these should be considered merely “discreti- 
zations for all seasons”, and that it is usually far better to adapt the discretization to prevailing 
special circumstances. In this sense, the discretized Stieltjes procedure requires a good deal of 
imagination and skill on the part of the user, but when used properly, can be extremely effective. 
Two examples follow, to illustrate its use. 

Example 5.1. du( t) = [t/(e’ - l)]‘dt on [0, co], r E IV. 
Integration with this measure (involving Einstein’s function) is of potential use in solid state 

physics calculations and has also found application in the summation of slowly convergent series 
(Gautschi and Milovanovic [20]); see also section 6.4. 

Since for large t the measure behaves like du( t) - t’e-“, it seems natural to do the integration 
by Gauss-Laguerre quadrature, after substituting a new variable for rt. This leads to the 
following discretization ( p is a polynomial), 

iwp(t) da(t) =+lmp( f)( 1 ‘;!,,+-‘dr 

1 N 
3- 

= r k-l 

(5 -4) 

where a:, rkL are the weights and nodes of the N-point Gauss-Laguerre quadrature rule. The 
accuracy obtainable in this way, in spite of the poles at + 2Ti, is rather satisfactory. For example, 
the value of N required to obtain the first n recursion coefficients cr,(du), Pk(du), k = 0, 
1 ,.-*, n - 1, to 25 correct decimal digits, is N = 127 for n = 12 and N = 281 for n = 40, when 
r = 1, and N = 85, N = 201, respectively, when r = 2. 
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Example 5.2. da(t) = t”K,( t) dt on [0, cc], (r > - 1, where K, is the modified Bessel function. 
This measure arises in the asymptotic evaluation of Bessel transforms (Wong [41]). To arrive at 

a natural discretization, it is useful to recall the behavior of K,, 

K,(t) = 
i 

R(t) +1,(t)ln(l/t), 0 < t < 1, 

t-1/2e-‘S( t), l<t-=cc, 

where R, S, I, are smooth functions. The last one is the regular modified Bessel function. For all 
of them, high accuracy rational approximations are available (Russon and Blair [33]). We write 

lmp(t)taK,,(t) dt=~‘[R(t)p(t)]t”dt+~l[l,(t)p(t)]taln(l/t) dt 

+ e-‘(1 t) 
0 

“-“‘S(1 + t)p(l + t)]e-‘dt, 

where in the last integral we have shifted the variable so it runs from 0 to cc. This now suggests 
the discretization 

~*lP(tb”K,(r) d-&dt) d@(t) +L’p(t) da:‘(t) +l=p(‘) da:‘, 

where dot’ involves Gauss-Jacobi quadrature with parameters 0 and (Y, do?’ Gauss-Christoffel 
quadrature with measure t*ln(l/t)dt, and da, (3) Gauss-Laguerre quadrature. The first and last 
are easily generated, as needed, using the method of section 6.1. The second can be generated by 
the modified Chebyshev algorithm, which we have seen to be quite stable in this case; see 
Example 4.2. In this way it is possible, for example, when a = 0, or a = - $, to obtain 15 decimal 
accuracy in the first n recursion coefficients by taking 1L’ = 100 for n = 20, and X = 160, for 
n = 40. 

6. Applications 

There are a number of areas in which orthogonal polynomials have been used extensively. 
Among the traditional applications we mention orthogonal expansions, least squares approxima- 
tion, interpolation, and numerical quadrature. Somewhat less known are the connections of 
orthogonal polynomials with Pad& approximation, when the underlying power series has mo- 
ments as coefficients; see, e.g., Gautschi [15]. More recent applications include those in probabil- 
ity theory, e.g., birth and death processes, Karlin and McGregor [27,28,29,30], Askey and Ismail 
[l], coding theory, Sloane [35], Sloane and MacWilliams [36], Bannai and Ito [2], Delsarte [7], 
scattering theory, Case [4], relaxation methods in numerical linear algebra, Stiefel [38], Gautschi 
and Lynch [19], and in prediction theory and Toeplitz matrix inversion, where Szego’s polynomi- 
als on the unit circle are prominently involved, Kailath [26]. Szego’s theorem on the asymptotic 
behavior of Toeplitz determinants also has important applications in statistical mechanics, 
McCoy [32]. 

Here we consider only some recent simple applications to approximation and summation and 
some (as yet untested) ideas on Cauchy principal value integrals. Since all of these involve 
Gauss-Christoffel quadrature, we begin with a modern technique of generating the Gaussian 
nodes and Christoffel numbers from the recursion coefficients of the appropriate orthogonal 
polynomials. 
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6. I Gauss-Christoffel quadrature rules 

As is well-known, the n-point Gauss-Christoffel quadrature rule, relative to a positive measure 
da, 

J Rf(t) da(t) = i o?f( r,!‘“‘) + R,(f ). W&n-I) = 0, (6.1) 
v=l 

is the interpolatory quadrature rule having as nodes the zeros T,(“) of the n-th degree orthogonal 
polynomial r,,( .;da). Assume that the first n recursion coefficients ak = cr,(da), Pk = P,(da), 
k=O, l,..., n - 1, for the orthogonal polynomials ( T~( - ;du)} have already been obtained, for 
example by the methods of Section 3 and 5, if do is nonclassical, or from explicit formulae, 
otherwise. Then we can form the n X n Jacobi matrix, 

a0 v’pl 0 

J,= @ 
1 ff1 

. GL’ 

0 ti s-1 _ 

(6.2) 

whose characteristic polynomial is precisely r,,( - ;du), 

det(tZ,, -J,,) = r,,(t;du). (6.3) 
Therefore, the nodes r,!“) in (6.1) are just the eigenvalues of J,. The Christoffel numbers a,“‘), in 
turn, can be expressed in terms of the associated normalized eigenvectors u,, 

J u = r(=)u “” Y uTu = 1 “3 YY 7 v=l,2 ,..., n. (6.4) 
Indeed, 

a(“) = m,u,2,, , Y v=l,2 ,..., n, 65) 
where u, 1 is the first component of u, and m, = j,du(t) the first moment. Since the 
eigensystem problem for symmetric tridiagonal matrices can be solved very efficiently by the QR 
(or QL) algorithm with appropriate shifts, we have in (6.4), (6.5) a convenient and effective 
method for generating Gauss-Christoffel formulae; see, in this connection, Golub and Welsch 
1241, Gautschi [lo]. 

6.2 Approximation by step junctions 

Spherically symmetric functions in Iw ’ that arise in physics as distributions are sometimes 
approximated by physicists in terms of piecewise constant functions, matching as many moments 
as possible. Calder, Laframboise and Stauffer [3], for example, apply this approach to the 
Maxwell velocity distribution in R ‘, d < 3. More precisely, let j be a function of the radial 
distance r = II x II z in IWd, and assume that 

(i) jE C’(R +), j’(r) < 0 on R +, 
(ii) j,“f(r)r’dr, /,“f’(r)rjdr exist for j = 0, 1, 2,. . . . 

The problem then is to determine an approximation 

f(r) =f(r>, f(r) = i a,H(r, - r), (6.6) 
v-l 
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with H the Heaviside step function H(t) = 0, if t < 0, H(f) = 1 if t > 0, in such a way that 

m,(f)=m,(f), j=O,l,..., 2n-1, (6.7) 

where 

(6.8) 

dV= [2~ d/2/I’(+d)]rd-‘dr being the volume element of the spherical shell in R“, d > 1, and 
dV=dr if d= 1. 

A solution is easily obtained in terms of the Gauss-Christoffel formula (6.1) for the (positive) 
measure 

da(t) = -tdf’(t) dt on R, (6.9) 

(Gau tschi [ 171). Indeed, 

r, = T,(~), a, = r,-‘a,‘“), v=l,2 )...) n, (6.10) 

where 7:“) are the Gaussian nodes and (n) u, the corresponding Christoffel numbers for the 
measure (6.9). For Maxwell’s distribution, f(r) = Tmdi2exp( - r2), for example, one finds 

da(t) = (2/71 d/2)td+1e-‘2dt on R,, (6.11) 

wtile for the Bose-Einstein distribution, f(r) = (e’ - 1)-l, 

do(t) = tde2[t/(l - e-‘)]2e-fdt on W,, da 2. (6.12) 

The powers of t appearing as a factor in both these measures suggest interesting computational 
problems: How are the recursion coefficients ak, Pk for a given measure to be modified if the 
measure is multiplied by a polynomial [a monomial in thr case of (6.11) and (6.12)]? Appropriate 
algorithms for the solution of this problem are developed in Gautschi [12], Golub and Kautsky 
[25], Kautsky and Golub [31]. In the first reference, the corresponding problem for division by a 
polynomial is also considered. 

6.3 Approximation by splines 

Generalizing the problem in (6.6), we now seek a spline of degree m, 

r’(r)= i %(V-r)m,, 
v-1 

(6.13) 

approximating f in the same sense (6.7) as before. Under appropriate assumptions on f, 
analogous to those in (i), (ii) above, one is led to the measure 

da(t)= [(-l)m+l/m!]td+“f(m+l)(f) dt onR+, (6.14) 

in terms of which the approximant (6.13) is obtained by 
(n) r”=T , a =r -d-m&) v= 1, 2,...,n (6.15) 

(Gautschi and LilovadoviL[22]).‘In’contrast to (6.9), the measure (6.14) is no longer necessarily 
positive. For Maxwell’s distribution, e.g., one finds 

da(t) = (~-~‘~/rn!)t “+“‘H,,,(t)e-‘2dt on R,, (6.16) 
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where H, is the Hermite polynomial of degree m. Note, however, that da in (6.14) is positive for 
every m, if f is totally monotone. 

6.4 Summation of series 

Infinite series whose terms involve a Laplace transform, or its derivative, at integer values can 
be expressed as weighted integrals over the original function. This suggests applying 
Gauss-Christoffel quadrature to these integrals in order to sum the series. For simplicity, we 
consider only one type of such series and refer to Gautschi and Milovanovic [20] for others. 

Let F be the Laplace transform of f, 

F(z) =iwe-‘lf(r) dt, Re z 2 1. 

Then 

(6.17) 

~=~~,(-l)“-‘F(k)=/u~f(r)~. (6.18) 

Since by Watson’s lemma the Laplace transform F(k) behaves like a (usually small) power of 
k-’ as k --, co, the series in (6.18) is slowly convergent. Gauss-Christoffel quadrature applied to 
the integral on the right, with da(t) = (e’ + l)-‘dt, on the other hand, will converge quite 
satisfactorily, if f is a smooth function, giving rise to an effective summation procedure. To 
construct the necessary orthogonal polynomials, one could apply the discretized Stieltjes proce- 
dure, using a discretization analogous to the one in (5.4). Because of the poles in (6.18) at &in, 
which are twice as close to the real axis as the poles in (5.4), it is better, however, to employ 
composite FejCr quadrature to do the discretization. Once the recursion coefficients cu,(da), 
P,(da) are obtained, the procedure in section 6.1 then quickly yields the desired Gauss-Christof- 
fel formulae. In cases where f is not smooth 
must be modified if satisfactory convergence 
tained. 

Example 6.1. F(z) = z-le-l/r, f(t) = J,(2fi). 
Here, 

00 / 1 \k-1 

and has integrable singularities, the measure da 
of Gauss-Christoffel quadrature is to be main- 

s=c ‘-;: e-‘lk = 0.1971079.. . , 

k=l 

and f-a Bessel function of order zero-is an entire function. Gauss-Christoffel quadrature in 
(6.18) should therefore converge rapidly. The n-point formula indeed gives relative errors of 
1.8 x 10m2, 9.7 x lo-‘, 1.1 x 10-l’ for n = 2, 4, 8, respectively. Direct summation of S, on the 
other hand, is plainly unfeasible. 

Example 6.2. F(z) = z-‘( z + 1)-112, f(t) = erf fi. 
This example is to illustrate the case of a nonsmooth function f; since the error function is an 

odd function, f has a square root singularity at the origin. We therefore write 

k-l 

O” erf fi J; = _._ 
fi e’+ld* 
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and use Gauss-Christoffel quadrature with da(t) = t’/*(e’ + l)-‘dt. This again results in satis- 
factory convergence, the relative errors of the n-point formula now being 9.2 X lO-‘j, 1.6 X lo-“, 
4.6 X 10e2’ for n = 5, 10, 20, respectively. The numerical value of S is 0.5197632.. . . 

6.5 Cauchy principal value integrals 

Let C,, 0 < E < 1, be the contour in the complex plane formed by the upper unit semicircle, the 
line segment from - 1 to -E, the upper semicircle of radius E and center at 0, and the line 
segment from E to 1. By Cauchy’s theorem we then have 

for any function f analytic on the closed upper unit half disc. Consequently, 

/ 
’ 

-1 
qdr = i( nf (0) -/; (e”)dB), 

0 
(6.19) 

where the integral on the left is a Cauchy principal value integral. For the integral on the right we 
propose a (complex) Gauss-Christoffel quadrature rule, 

J ovf(eie) dB= 2 oJ”)f(l!“))+R,(f), 
v-1 

(6.20) 

derived in the usual way from orthogonal polynomials { rk( z)}, here those orthogonal on the 
semicircle, 

[vrk(eie)rt(eie) de = 0, k # 1. (6.21) 
JO 

In particular, the nodes {i”) are the (complex) zeros of V,,(Z). 
Although the inner product in (6.21) is not positive definite (the second factor is not 

conjugated!), one can still show that a unique system of manic (complex) orthogonal polynomials 
exists. They can be expressed, in fact, as a two-term linear (complex) combination of Legendre 
polynomials (Gautschi and Milovanovic [21]). Moreover, the zeros lj”) are located symmetrically 
with respect to the imaginary axis, and are all contained in the (open) upper unit half disc ([21]). 
As of the time of writing, numerical experience with (6.20) is not yet available. 
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