
Automatica 45 (2009) 1291–1298
Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

A quadrature-based method of moments for nonlinear filteringI

Yunjun Xu a,∗, Prakash Vedula b
a The Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
b School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA

a r t i c l e i n f o

Article history:
Received 26 October 2007
Received in revised form
11 August 2008
Accepted 2 January 2009
Available online 4 March 2009

Keywords:
Nonlinear filtering
Estimation
Fokker–Planck equation
Stochastic differential equation
Filtering algorithms

a b s t r a c t

According to the nonlinear filtering theory, optimal estimates of a general continuous-discrete nonlinear
filtering problem can be obtained by solving the Fokker–Planck equation, coupled with a Bayesian
update rule. This procedure does not rely on linearizations of the dynamical and/or measurement
models. However, the lack of fast and efficient methods for solving the Fokker–Planck equation presents
challenges in real time nonlinear filtering problems. In this paper, a direct quadraturemethod ofmoments
is introduced to solve the Fokker–Planck equation efficiently and accurately. This approach involves
representation of the state conditional probability density function in terms of a finite collection of Dirac
delta functions. The weights and locations (abscissas) in this representation are determined by moment
constraints and modified using the Bayes’ rule according to measurement updates. As demonstrated by
numerical examples, this approach appears to be promising in the field of nonlinear filtering.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Our interest in filtering and prediction problems, in which the
dynamics are continuous and observations are discrete, stems
from our interest in orbit determination. Jazwinski (1966, 1970),
Kushner (1967), Kushner and Budhiraja (2000) and Stratonovich
(1959) are some of the early pioneers who studied the recursive
Bayesian type nonlinear filtering technique where the probability
density function (PDF) associated with states is updated and
estimated using the incoming measurements.
In a classical nonlinear filtering problem, the system ismodeled

as an n-dimensional continuous Itô stochastic differential equation
(SDE)

ẋ (t) = F (x (t) , t)+ G (x (t) , t)w (t) t ≥ t0 (1)

where x = [xi]i=1,...,Ns ∈ RNs×1, F = [Fi]i=1,...,Ns ∈ RNs×1,
and G (x (t) , t) ∈ RNs×Nw are the state vector, state function,
and diffusion matrix respectively. w (t) ∈ RNw×1 is the vector
of the zero-mean Gaussian process with an autocorrelation of
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E[w (t)w (τ )T] = Q (t) δ (t − τ). The measurement y (tk) taken
at discrete time instants tk is defined as
y (tk) = h (x (tk) , tk)+ ν (tk) k = 1, 2, . . . (2)
where h(x (tk) , tk) ∈ RNy×1 is a measurement function (either
linear or nonlinear). The measurement noise ν (tk) is assumed
to be a Gaussian white noise with a covariance matrix of R and
independent of x (0),w (t), and h.
The basic procedure of the nonlinear filtering technique is

illustrated in Fig. 1. If the process described by the SDE is a
Markovian diffusion process, the probability density function
characterizing this process betweenmeasurements (tk < t < tk+1)
is governed by the Fokker–Planck Equation (FPE) (Fokker, 1940;
Jazwinski, 1966, 1970; Planck, 1917) as

∂p
∂t
= −

Ns∑
i=1

∂ [pFi]
∂xi
+
1
2

Ns∑
i=1

Ns∑
j=1

∂2
[
p
(
GQGT

)
ij

]
∂xi∂xj

(3)

where p = p (x(t)| Y(tk)) is the state conditional PDF and the
measurement observation history is defined as Y (t) , {yk, tk ≤
t}. The first term on the right hand side (RHS) of the FPE is the drift
term whereas the second one is the diffusion term. The process
becomes a deterministic one if the diffusion term is neglected.
Once the PDF function is found from Eq. (3), the measurement

y (tk+1) made at the time instant tk+1 and the Bayes’ formula are
used together to update the conditional PDF p

(
x(tk+1)

∣∣yk+1 ) as
p (x(tk+1)| Y(tk+1))

=
p (x(tk+1)| Y (tk)) p (y(tk+1)| x(tk+1))∫
p (ξ(tk+1)| Y (tk)) p (y(tk+1)| ξ(tk+1)) dξ

. (4)
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Fig. 1. FPE based nonlinear/linear filtering.

Hence, using the updated conditional PDF, theminimummean-
square estimate (MMSE) of any state variables or functions of state
variables φ(x) can be obtained.
Since nonlinearities can be associated with either the process

model or the measurement model, or both, the advantage of the
nonlinear filtering technique as compared with the widely-used
Kalman Filter (KF) or Extended Kalman Filter (EKF) methods is:
no linearization is required. In results, the propagation of the
state and error covariance matrix can be more accurate and the
measurement update can be less frequent.
However, the central issue associated with the FPE and Bayes’

based nonlinear filtering technique is the high computational cost,
which explains the reason of why this type of nonlinear filtering
method has not been used until recent years (Challa & Bar-Shalom,
2000; Kanchanavally, Zhang, Ordonez, & Layne, 2004; Kastella,
2000; Kastella & Kreucher, 2005; Tang & Ozguner, 2003).
Since it is difficult to obtain the exact solution of the FPE with

the exception of some special cases, numerical approximations,
such as the finite difference method (Spencer & Bergman,
1993; Zhou & Chirikjian, 2003), path integral method (Naess &
Johnson, 1992), and cell-mapping method (Sun & Hsu, 1990), are
typically used to evaluate the FPE between measurements. These
methods are developed for systems with low dimensions and may
not be appropriate for real-time applications. In Daum’s paper
(2005), the characteristics of nonlinear filtering with a numerical
approximation of the FPE are discussed. This work points out that
the accuracy of the state estimation by this algorithm is optimal if
designed carefully but the computational cost will be prohibitive
for high dimensional problems. It was also mentioned that the
high computational cost may be mitigated with adaptive grids
such as the ones been used by Challa and Bar-Shalom (2000),
Musick, Greenswald, Kreucher, and Kastella (2001) and Yoon and
Xu (2007). However, as shown in these papers, even with adaptive
grids, the computational cost is still high even for low-dimension
problems and the accuracy is very sensitive to the moving domain
selection.
On the other hand, in order to solve the FPE efficiently, an

approximation approach, called the moment or the Gaussian
approximation method, was introduced (Kushner, 1967; Kushner
& Budhiraja, 2000). In this method, the PDF is assumed to have a
particular form and then associated parameters are calculated. In
this paper, the direct quadrature method of moments (DQMOM),
along with Bayesian update of the conditional state PDF, is
formulated for solving the FPE based nonlinear filtering problems.
This approach involves representation of the state conditional
PDF in terms of a finite summation of Dirac delta functions,
whose weights and locations (abscissas) are determined based
on constraints due to evolution of moments and modified using
Bayes’ rule for measurement update. Using a small number of
scalars (in the Dirac delta function), the method is able to
efficiently and accurately model stochastic processes described
by the multivariable FPE through a set of ordinary differential
equations (ODEs).
This paper is organized as follows: The Section 2 begins with

descriptions of the DQMOM in solving the FPE. Then the procedure
to obtain estimates through the Bayes’ formula using weights and
abscissas is discussed. Following this, the overall structure of the
algorithm is outlined and two numerical examples are shown.
Conclusions are summarized in the final section.

2. Direct quadrature method of moments (DQMOM)

To clarify the derivation, the FPE of the state conditional PDF
(Eq. (3)) between measurements is rewritten here

∂p
∂t
= −

Ns∑
i=1

∂ [pFi]
∂xi
+
1
2

Ns∑
i=1

Ns∑
j=1

∂2
[
p
(
GQGT

)
ij

]
∂xi∂xj

,

tk < t < tk+1. (5)

The DQMOMmethod, originally investigated byMarchisio and Fox
for the population balance problem (Marchisio & Fox, 2005), is
illustrated in terms of the nonlinear filtering. In DQMOM, the state
conditional PDF is written as a summation of a multi-dimensional
Dirac delta function

p (x (t)| Y (tk)) =
N∑
α=1

wα(t, Y(tk))
Ns∏
j=1

δ[xj −
〈
xj
〉
α
(t, Y(tk))] (6)

where N is the number of nodes, wα = wα(t, Y(tk)), α =
1, . . . ,N is the corresponding weight for node α, and

〈
xj
〉
α
=〈

xj
〉
α
(tk, Y(tk)), α = 1, . . . ,N; j = 1, . . . ,Ns is the property vector

of node α (called ‘‘abscissas’’). The weights and abscissas will be
computed next.
Substituting Eq. (6) into Eq. (5), then the left-hand side (LHS) of

Eq. (5) becomes

∂p
∂t
=

∂

∂t

{
N∑
α=1

wα

Ns∏
j=1

δ[xj −
〈
xj
〉
α
]

}
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∂t
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j=1
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〉
α
]

−
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∂δjα

∂
〈
xj
〉
α

∂
〈
xj
〉
α

∂t

=

N∑
α=1

Ns∏
j=1

δjα

(
∂wα
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)
−

N∑
α=1
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j=1
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wαδkαδ
′

jα

∂
〈
xj
〉
α

∂t
(7)

where δjα , δ[xj −
〈
xj
〉
α
] and δ′jα , ∂δjα/∂

〈
xj
〉
α
.

If the weighted abscissas ςjα , wα
〈
xj
〉
α
are introduced, after

some manipulations, Eq. (7) can be rewritten as

∂p
∂t
=

N∑
α=1

[
Ns∏
j=1

δjα

(
∂wα

∂t

)
+

Ns∑
j=1

Ns∏
k=1,k6=j

〈
xj
〉
α
δkαδ

′

jα
∂wα

∂t

]

−

N∑
α=1

Ns∑
j=1

Ns∏
k=1,k6=j

δkαδ
′

jα
∂ςjα

∂t
. (8)

Notice that wα , ςjα , and δjα are functions of time, thus the partial
derivatives of the functions can be written as total derivatives.

∂p
∂t
=

N∑
α=1

[
Ns∏
j=1

δjα

(
dwα
dt

)
+

Ns∑
j=1

Ns∏
k=1,k6=j

〈
xj
〉
α
δkαδ

′

jα
dwα
dt

]

−

N∑
α=1

Ns∑
j=1

Ns∏
k=1,k6=j

δkαδ
′

jα
dςjα
dt

. (9)

With the definitions

dwα/dt , aα, α = 1, . . . ,N (10)
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and

dςjα/dt , bjα, j = 1, . . . ,Ns;α = 1, . . . ,N. (11)

Eq. (9) (LHS of Eq. (5)) can be further simplified as

∂p
∂t
=

N∑
α=1

[
Ns∏
j=1

δjα +

Ns∑
j=1

Ns∏
k=1,k6=j

〈
xj
〉
α
δkαδ

′

jα

]
aα

−

N∑
α=1

[
Ns∑
j=1

Ns∏
k=1,k6=j

δkαδ
′

jα

]
bjα. (12)

The right-hand side (RHS) of Eq. (5) is now given by the
expression

Sx(x) = −
Ns∑
i=1

∂pFi
∂xi
+

Ns∑
i=1

Ns∑
j=1

∂2[1/2p(GQGT)ij]
∂xi∂xj

. (13)

The FPE can be written in terms of the multi-variable Dirac delta
function as
N∑
α=1

(
Ns∏
j=1

δjα

)
aα +

N∑
α=1

Ns∑
j=1

Ns∏
k=1,k6=j

〈
xj
〉
α
δkαδ

′

jαaα

−

N∑
α=1

[
Ns∑
j=1

Ns∏
k=1,k6=j

δkαδ
′

jα

]
bjα = Sx(x). (14)

There are in total N(1 + Ns) parameters (in Eq. (14)) which
need to be found in order to construct the conditional PDF
p (x (t)| Y (t)): aα and bjα, j = 1, . . . ,Ns, α = 1, . . . ,N .
The DQMOM method applies an independent set of user-defined
moment constraints to construct N(1 + Ns) ordinary differential
equations (ODEs).
Given the following three Dirac delta function properties∫
+∞

−∞

xkδ(x− 〈x〉α)dx = 〈x〉
k
α (15)∫

+∞

−∞

xkδ′(x− 〈x〉α)dx = −k 〈x〉
k−1
α (16)

and∫
+∞

−∞

xkδ
′′

(x− 〈x〉α)dx = k(k− 1) 〈x〉
k−2
α . (17)

The k1, k2, . . . , kNs moments of Eq. (14) can bewritten as followed∫
+∞

−∞

· · ·

∫
+∞

−∞

xk11 · · · x
kNs
Ns

(
N∑
α=1

Ns∏
j=1

δjαaα

)
Ns∏
l=1

dxl

+

∫
+∞

−∞

· · ·

∫
+∞

−∞

xk11 · · · x
kNs
Ns

(
N∑
α=1

Ns∑
j=1

Ns∏
k=1,k6=j

〈
xj
〉
α
δkαδ

′

jαaα

)
Ns∏
l=1

dxl

−

∫
+∞

−∞

· · ·

∫
+∞

−∞

xk11 · · · x
kNs
Ns

(
N∑
α=1

[
Ns∑
j=1

Ns∏
k=1,k6=j

δkαδ
′

jα

]
bjα

)
Ns∏
l=1

dxl

=

∫
+∞

−∞

· · ·

∫
+∞

−∞

xk11 · · · x
kNs
Ns [Sx(x)]

Ns∏
l=1

dxl. (18)

After rearranging and simplifying Eq. (18), the N(1 + Ns)
unknown parameters can be found in
N∑
α=1

[(
1−

Ns∑
j=1

kj

)
Ns∏
k=1

〈xk〉kkα

]
aα

+

N∑
α=1

Ns∑
j=1

kj
〈
xj
〉kj−1
α

Ns∏
k=1,k6=j

〈xk〉kkα bjα = S̄k1,...,kNs (19)
where S̄k1,...,kNs , S̄1k1,...,kNs + S̄
2
k1,...,kNs

. The detailed derivation and

expressions of S̄1k1,...,kNs and S̄
2
k1,...,kNs

can be found in Appendix.
For example, if the number of states isNs = 2 and the number of

nodes used in themulti-dimensional Dirac delta function isN = 2,
there will be N(1 + Ns) = 6 unknown parameters in Eq. (19). In
order to solve these six DAEs, the following sixmoment constraints

(k1, k2) = (0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2) (20)

can be applied such that there are enough equations for solving
aα, α = 1, 2 and bjα, j = 1, 2; α = 1, 2 explicitly.
In general, it may be expected that the accuracy of estimation

and the computational cost will be higher when the number of
nodes increases. The selected moment constraint k1, k2, . . . , kNs
will guarantee the PDF approximated by the Eq. (6) has an exact
value for thismoment of the PDF. For a typical estimation problem,
the accuracy of the first moment (e.g. minimum mean-square
estimate (MMSE) estimates of any state variables or functions of
state variables φ(x) can be obtained) is automatically guaranteed.
For simplicity, Eq. (19) can be rewritten in a matrix form as

Aµ = s (21)

where the unknown parameters are

µ , [a1, a2, . . . , aN , b11, b12, . . .

b1N , . . . , bNs1, bNs2, . . . , bNsN ]
T
∈ RN(1+Ns)×1 (22)

and matrix A can be derived from Eq. (19) as a nonlinear function
of the abscissas. The moment constraints are

s = [S̄0,...,0, S̄1,...,0, . . .]T ∈ RN(Ns+1)×1. (23)

As compared with the widely used finite difference methods
(Challa & Bar-Shalom, 2000; Daum, 2005; Naess & Johnson, 1992;
Yoon & Xu, 2007), with the help of the DQMOM scheme, the partial
differential equation is reduced to a set of ordinary differential
equations and the computational cost is expected to be reduced.

3. Bayes’ formula and nonlinear estimation by DQMOM

Once the weights and abscissas in the ‘‘predictor’’ PDF are
found through the DQMOM Eq. (21) propagation, the ‘‘updated’’
conditional PDF can be found using the newmeasurement y (tk+1)
made at the time instant tk+1 and the Bayes’ formula (Eq. (4)).
Substituting Eq. (6) into Eq. (4), the DQMOMbased Bayes’ equation
can be derived as

p ( xk+1| Y (tk+1))

=

p ( y (tk+1)| x(tk+1))
N∑
α=1

wα(tk+1, Y(tk))
Ns∏
j=1
δ[xj −

〈
xj
〉
α
(tk+1, Yk(tk))]

∫
p ( y (tk+1)| ξ(tk+1))

N∑
α=1

wα(tk+1, Y(tk))
Ns∏
j=1
δ[ξj −

〈
xj
〉
α
(tk+1, Y(tk))]dξ

=

N∑
α=1

wα(tk+1, Y(tk))p ( y (tk+1)| x(tk+1))
Ns∏
j=1
δ[xj −

〈
xj
〉
α
(tk+1, Y(tk))]

N∑
α=1

wα (tk+1, Y(tk)) p
(
y (tk+1)| 〈x1〉α , . . . ,

〈
xNs
〉
α

) .

(24)

The new weights in the update step (i.e. after accounting for
measurements at t = tk+1) for the DQMOM are obtained by
renormalizing the old weights as

wα(tk+1, Y(tk+1))

=
wα(tk+1, Y(tk))p

(
y (tk+1)| 〈x1〉α , . . . ,

〈
xNs
〉
α

)
N∑
α=1

wα(tk+1, Y(tk))p
(
y (tk+1)| 〈x1〉α , . . . ,

〈
xNs
〉
α

) (25)
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Fig. 2. DQMOM used in the nonlinear/linear filtering.

while the abscissas are unchanged as

xα(tk+1, Y(tk+1)) = xα(tk+1, Y(tk)), α = 1, . . . ,Ns. (26)

Hence, using the computed state conditional PDF value of
p (x (t) |Y (t) ) , t = t1, t2, . . ., the MMSE estimates of the state
variables or functions of state variables φ(x, t) at each time step
can be obtained as

φ̂(x(t)) = E[x(t) |Y(t)]

=

∫
+∞

−∞

· · ·

∫
+∞

−∞

φ(x(t))
N∑
α=1

wα(Y(t))

×

Ns∏
j=1

δ[xj −
〈
xj
〉
α
(Y(t))]dx1 · · · dxNs

=

N∑
α=1

wα(Y(t))φ(〈x1〉α , . . . ,
〈
xNs
〉
α
) (27)

4. Algorithm outline

In DQMOM implementation, both sides of Eq. (21) are standard
and can be coded in a general form for any nonlinear filtering
problems. This section describes the basic procedures of applying
theDQMOM in the nonlinear filteringwhich involves the following
two steps: (1) prediction and (2) update. In the prediction stage
(as shown in Fig. 2), Eqs. (10), (11) and (19) will be used together
to propagate the weights wα = wα(Y) and abscissas

〈
xj
〉
α
, α =

1, . . . ,N; j = 1, . . . ,Ns. During update, the new weights will be
calculated using the Bayes’ equation Eq. (25) and themeasurement
PDF

p
(
yk+1

∣∣ xk+1)
=

1

(2π)m/2 |R|1/2
e
[
−
1
2 [Y(tk+1)−h(xk+1)]

TR−1[Y(tk+1)−h(xk+1)]
]
(28)

where Y(tk+1) is the current measurement and h(xk+1) is the
predicted measurement function of the state estimated (first
moment of the PDF). The initial value of abscissas and weights
(initialization of the DQMOM filter) can be generated randomly,
where (1) the mean value of the abscissas generated equals the
mean value of the states and (2) the norm of the randomly
generated weights is one.
The states or function of the states estimation can be obtained

through Eq. (27).

5. Numerical examples

In this section, two numerical examples are used to demon-
strate the capabilities of the proposed method.
Fig. 3. First moment with Bayes’ update.

5.1. Example 1: A nonlinear process

In this subsection, the performance of the proposed nonlinear
filter is demonstrated through a nonlinear process governed by the
following nonlinear stochastic ordinary differential equation

dx = (x− x3)dt + σdw (29)

where σ is the standard deviation and w is a Wiener process. The
corresponding FPE is derived as

∂p
∂t
= −

∂[(x− x3)]p
∂x

+
σ 2

2
∂2p
∂x2

. (30)

The simple measurement model is used

y = x+ v (31)

where v ∼ (0, R). To show the effectiveness, the performance
of the proposed nonlinear filtering technique is compared with
the widely used EKF and the finite difference method (FDM)
based nonlinear filtering techniques. In the simulation, the random
process is assumed to have a zero mean and a standard deviation
of σ = 0.02. The standard deviation of the measurement noise
is assumed to be 0.2 (i.e. R = 0.22). Both the SDE and the FPE are
propagatedwith a step size of 0.01 s through theDQMOM,whereas
the measurements (in the EKF, FDM, and DQMOM methods) are
updated at different sampling rates to show the effectiveness of
the proposed nonlinear filtering technique. In this example, three
nodes are used corresponding to a total of six unknowns (i.e. three
weights and three abscissas) to characterize the conditional PDF.
These six unknowns are determined using constraints due to the
evolution of integer moments of type

〈
xk
〉
, where k = 0, 1, . . . 5.

To achieve a similar estimation precision, in the FDM, the spatial
difference is chosen to be 0.01 and the time difference is selected
to be 5× 10−4 s. The integration domain is [−1.5, 1.5].
Fig. 3 shows a case where weights and abscissas are propagated

through the DQMOM with a measurement update. In the case
without a measurement update, the first moment of the PDF
(estimate of the mean value of the state variable) will stay at zero,
which equals the analytical solution. When the Bayes’ formula (in
the DQMOM framework, Eq. (25)) is used to update the weights,
the first moment of the DQMOM solution (estimation) follows the
actual state value, as one should expect. Fig. 3 suggests that the
measurement update was implemented correctly.
A set of one hundred Monte Carlo runs have been done for

all three methods. All the codes are written in Matlab and run in
a Sony VAIO laptop (Intel Core CPU with 2.16 GHz, 1.99 GB and
998 MHz of RAM). The Runge–Kutta 4th order method is used for
integration.
As shown in Figs. 4 and 5, when the measurement update

rate is set at every 0.2 and 0.7 s, the estimation errors from all
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Fig. 4. Update rate at 0.2 s.

Fig. 5. Update rate at 0.7 s.

Fig. 6. Update rate at 1.0 s.

these filters have a comparable precision on the order of 10−3
in the stationary state (also shown in Table 1). However, as the
update delay increases as shown in Fig. 6 (1.0 s) and Fig. 7 (1.5 s),
the estimation errors due to the EKF increase dramatically (from
0.004 to 0.4) whereas those of the FDM and DQMOM methods
are consistent and still kept in the order of 10−3. The decrease
in accuracy observed in EKF can be attributed to errors due to
linearization of nonlinear dynamics.
To achieve the same precision, for all cases, the FDM needs

approximately 14 s and the time spent is almost constant for the
range of update rates considered (see Table 2). The time taken in
the DQMOM approach is much less than that of the FDM and as the
update frequency decreases, the speed of the DQMOM increases
without compromising in the estimation precision (as shown in
Table 2).
We observe that for a given accuracy, the estimation due to the

DQMOMapproach is significantly faster (by an order ofmagnitude)
than the FDM for the low update rate (e.g. 1.5 s).
Fig. 7. Update rate at 1.5 s.

Table 1
Bounds of the estimation error.

Update delay (s) EKF FDM DQMOM

0.2 0.003 0.003 0.001
0.7 0.004 0.003 0.001
1.0 0.04 0.002 0.002
1.5 0.4 0.003 0.002

Table 2
Computational cost (in seconds).

Update delays (s) EKF FDM DQMOM

0.2 0.1959 14.31 6.336
0.7 0.1952 13.93 2.371
1.0 0.1956 13.91 1.733
1.5 0.1989 13.91 1.100

5.2. Example 2: Univariate nonstationary growth model

To further test the proposed DQMOM approach, the method is
applied in a continuous time version of a nonstationary problem,
modified from the discrete-time univariate nonstationary growth
model (UNGM) (Kitagawa, 1987; Kotecha & Djuric, 2003; Wu, Hu,
Wu, &Hu, 2005), where both the state dynamics andmeasurement
models are nonlinear. The process equation of the UNGM is

xn = αxn−1 + β
xn−1
1+ x2n−1

+ γ cos [1.2(n− 1)]+ wn,

n = 1, 2, . . . (32)

and the measurement model is

z = x2/20+ v. (33)

A continuous time version of the process equation is derived as

ẋ = α∗x+ β∗
x

1+ x2
+ γ ∗ cos

[
1.2(t − t0)

∆t

]
+ w,

t ≥ t0 = 1 (34)

where α∗ = (α − 1) /∆t , β∗ = β/∆t , and γ ∗ = γ /∆t are based
upon the first order Euler scheme. α = 0.5, β = 10, and γ = 8
are used in the simulation. The time-step used in the conversion
from the discrete time model (Kitagawa, 1987) to the continuous
time model is ∆t = 0.1 s. The process noise w is t-distributed
with 10 degrees of freedom and v ∼ N(0, 0.01). A step size of
0.1 s is applied in the propagation of the corresponding SDE and
FPE equations, whereas themeasurements are updated at different
sampling rates to show the consistence in estimation precision of
the state.
In this example, two nodes are selected. Therefore, there is a

total of four unknowns (i.e. two weights and two abscissas) to
characterize the conditional PDF and k = 0, 1, . . . , 7.
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Fig. 8a. Estimated state history using the DQMOM approach (update rate at 0.1 s).

Fig. 8b. Estimated state history using the DQMOM approach (update rate at 0.4 s).

Fig. 8c. Estimated state history using the DQMOM approach (update rate at 1.6 s).

A set of fifty Monte Carlo runs have been used for testing the
algorithm. The measurement update rates are set at every 0.1,
0.2, 0.4, 0.8, and 1.6 s respectively. As shown in Figs. 8a–8c, the
estimated state tracks the actual state history for all the cases
under different update rates.
The mean square error of the estimation procedure based on

DQMOM has a consistent precision in the range of 0.218–0.260
for update rates between 0.1s and 1.6 s (shown in Table 3). With
reference to the signal amplitude, which is around 10 according
to the simulation results as shown in Figs. 8a–8c, the percentage
of the state estimation error is only about 2.5%. As expected,
we find that the computational cost of estimation based on
DQMOM (shown in Table 3), also decreases monotonically as the
measurement updates become less frequent.
Simulation results for this numerical example also lead us to

conclusions that are similar to those observed from the analysis
of numerical example 1. While, the error in estimation based on
Table 3
DQMOM for the UNGM.

Update delay (s) MSE Error percentage (%) Computational cost
(in seconds)

0.1 0.254 2.54 8.23
0.2 0.260 2.60 4.79
0.4 0.248 2.48 3.18
0.8 0.218 2.18 2.55
1.6 0.246 2.46 2.33

EKF type approaches increases with a decrease in update rate,
owing to the increase in errors due to linearization of dynamics, the
DQMOM approach can give better estimation performance than
EKF especially at low update rates. Besides, the computational cost
of estimation based on the DQMOM approach was also found to be
significantly lower than FDM for comparable levels of accuracy (as
in numerical example 1).

6. Concluding remarks

A new approach for solving the nonlinear filtering problem is
proposed using the direct-quadraturemethod ofmoments coupled
with Bayesian update of the state conditional PDF. In the DQMOM,
the state conditional PDF is represented by a summation of the
weighted product of multi-dimensional Dirac delta functions.
The location of the quadrature abscissas and their weights in
the probability space are obtained through a set of independent
moment constraints. Based on this method, the Fokker–Planck
equation (a partial differential equation) can be transformed into
a set of differential algebraic equations in terms of Dirac delta
functions. It is expected that the DQMOM approach could lead to
a significant reduction in computational cost, compared to finite
difference (and other equivalent) methods, especially for high-
dimensional problems (as low-ordermoments are preserved in the
DQMOM approach). As compared with EKF based methods, which
are used widely in the nonlinear filtering problems, the nonlinear
dynamics are not required to be linearized. The new approach for
optimal estimation appears to be very promising in the field of
nonlinear filtering theory, due to the improvements in accuracy
and reduction in computational cost.

Acknowledgements

The authors would like to thank Rodney Fox and Peter Attar
formany helpful discussions regarding quadrature basedmethods.
The authors would also like to thank Jangho Yoon for running
the simulation of the finite difference method for the numerical
example 1.

Appendix

The first term in the LHS of Eq. (18) can be simplified as∫
+∞

−∞

· · ·

∫
+∞

−∞

xk11 · · · x
kNs
Ns

(
N∑
α=1

Ns∏
j=1

δjαaα

)
dx1 · · · dxNs

=

N∑
α=1

aα

∫
+∞

−∞

· · ·

∫
+∞

−∞

xk11 · · · x
kNs
Ns

(
δ1αδ2α · · · δNsα

)
dx1 · · · dxNs

=

N∑
α=1

(
Ns∏
j=1

〈
xj
〉kj
α

)
aα (A.1)
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whereas the second term in the LHS of Eq. (18) is∫
+∞

−∞

· · ·

∫
+∞

−∞

Ns∏
m=1

xkmm

(
N∑
α=1

Ns∑
j=1

Ns∏
k=1,k6=j

〈
xj
〉
α
δkαδ

′

jαaα

)
dx1 · · · dxNs

=

N∑
α=1

aα
Ns∑
j=1

∫
+∞

−∞

{
Ns∏

m=1,m6=j

xkmm
Ns∏

k=1,k6=j

δkα

×

[∫
+∞

−∞

x
kj
j

〈
xj
〉
α
δ′jαdxj

] Ns∏
l=1,l6=j

dxl

}

=

N∑
α=1

aα
Ns∑
j=1

[
(−kj)

〈
xj
〉kj
α

] ∫ +∞
−∞

{
Ns∏

m=1,m6=j

xkmm
Ns∏

k=1,k6=j

δkα

Ns∏
l=1,l6=j

dxl

}

= −

N∑
α=1

(
Ns∑
j=1

kj
Ns∏
k=1

〈xk〉kkα

)
aα . (A.2)

In the same way, the third term of the LHS in Eq. (18) is

−

N∑
α=1

Ns∑
j=1

bjα

∫
+∞

−∞

xk11 · · · x
kNs
Ns δ
′

jα

(
Ns∏

k=1,k6=j

δkα

)
dx1 · · · dxNs

=

N∑
α=1

Ns∑
j=1

kj
〈
xj
〉kj−1
α

Ns∏
k=1,k6=j

〈xk〉kkα bjα. (A.3)

The k1, . . . , kNs moments of the RHS of Eq. (18) are derived to be

S̄k1,...,kNs ,

∫
+∞

−∞

· · ·

∫
+∞

−∞

xk11 · · · x
kNs
Ns Sx(x)dx1 · · · dxNs

= −

n∑
i=1

∫
∞

−∞

xk11 · · · x
kNs
Ns

(
∂pFi
∂xi

)
dx1 · · · dxNs

+

∫
∞

−∞

xk11 · · · x
kNs
Ns

[
Ns∑
i=1

Ns∑
j=1

1
2
∂2p(GQGT)ij
∂xi∂xj

]
dx1 · · · dxNs

= S̄1k1,...,kNs + S̄
2
k1,...,kNs

(A.4)

where

S̄1k1,...,kNs = −
Ns∑
i=1

∫
∞

−∞

xk11 · · · x
kNs
Ns

(
∂pFi
∂xi

)
dx1 · · · dxNs

= −

Ns∑
i=1

∫
∞

−∞

xk11 · · · x
kNs
Ns

∂

∂xi

(
Fi(x)

N∑
α=1

wα(t)
Ns∏
j=1

δjα

)
× dx1 · · · dxNs

=

Ns∑
i=1

N∑
α=1

kiwα(t) 〈x1〉k1α · · · 〈xi−1〉
ki−1
α 〈xi〉ki−1α

× 〈xi+1〉
ki+1
α · · ·

〈
xNs
〉kNs
α
Fi(〈x1〉α , . . . ,

〈
xNs
〉
α
). (A.5)

When i 6= j,

S̄2k1,...,kNs =
∫
∞

−∞

xk11 · · · x
kNs
Ns

[
Ns∑
i=1

Ns∑
j=1

1
2
∂2p(GQGT)ij
∂xi∂xj

]
dx1 · · · dxNs

=

Ns∑
i=1

Ns∑
j=1

∫
∞

−∞

xk11 · · · x
kNs
Ns

{
∂2p[D(x)]ij
∂xi∂xj

}
dx1 · · · dxNs

=

Ns∑
i=1

Ns∑
j=1

N∑
α=1

wαkikj

(
Ns∏
k=1

〈xk〉kkα

)/
〈xi〉α

〈
xj
〉
α

× [D(x)]ij
∣∣
〈x1〉α ,...,〈xNs〉α

(A.6)
whereas when i = j,

S̄2k1,...,kNs =
∫
∞

−∞

xk11 · · · x
kNs
Ns

∂2f [D(x)]ii
∂x2i

dx1 · · · dxNs

=

N∑
α=1

wαki(ki − 1)

(
Ns∏
k=1

〈xk〉kkα

)/
〈xi〉2α [D(x)]ij

∣∣
〈x1〉α ,...,〈xNs〉α

.

(A.7)

Notice that D(x) , (1/2)GQGT. Thus, the N(1 + Ns) ODEs can
be constructed using a set of independent moment constraints
k1, . . . , kNs as shown in Eq. (19).
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