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Abstract— An optimal estimation of the states of a nonlinear
continuous system with discrete measurements can be achieved
through the solution of the Fokker-Planck equation, along
with the Bayes’ formula. However, solving the Fokker-Planck
equation is restrictive in most cases. Recently a nonlinear
filtering algorithm using a direct quadrature method of mo-
ments and the extended Kalman filter update mechanism
was proposed, in which the associated Fokker-Planck equation
was solved efficiently and accurately via discrete quadrature
and the measurement update was done through the extended
Kalman filter update mechanism. In this paper this hybrid filter
based on the DQMOM and the EKF update is applied to the
orbit determination problem with appropriate modification to
mitigate the filter smugness. Unlike the extended Kalman filter,
the hybrid filter based on the DQMOM and the EKF update
does not require the burdensome evaluation of the Jacobian
matrix and Gaussian assumption for system noise, and can still
provide more accurate estimation of the state than those of
the extended Kalman filter especially when measurements are
sparse. Simulation results indicate that the advantages of the
hybrid filter based on the DQMOM and the EKF update make
it a promising alternative to the extended Kalman filter for
orbit estimation problems.

Index Terms— Nonlinear filtering, Fokker-Planck equation,
orbit determination, DQMOM.

I. INTRODUCTION

Estimating the state of a dynamic system from noisy

observations is very important in engineering. This problem

has been the subject of considerable research interest ever

since the time Gauss formulated the deterministic least-

square technique for simple orbit determination. Up to date,

many different techniques have been developed and used in a

wide variety of applications, such as navigation and guidance

systems, radar tracking, sonar ranging, satellite and airplane

states determination, and the volatility of financial system

estimation using stock market data, etc. [1][2][3][4][5].

The Bayesian framework is the most commonly used

optimal nonlinear filtering methodology [6][7][8], in which

the principle is to find the probability density function (PDF)

of the state conditioned on the history of the measurements.

The extended Kalman filter (EKF) is most commonly used

nonlinear Bayesian estimator based on the assumptions that

are 1) perturbations from the mean trajectory are small, and
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2) the conditional density function of the state is Gaussian.

When these assumptions are violated (especially the first

one), the EKF performs poorly or becomes unstable. These

problems can be overcome by solving the filtering problem

in the more general setting of nonlinear systems that the

previously mentioned assumptions are not needed.

Estimation theory for a more general setting of nonlinear

systems has been established since the 1960s [1][9][10]. The

exact nonlinear filter for systems with continuous nonlinear

dynamics and discrete nonlinear observations consists of two

equations (Fig. 1) [1]. A partial differential equation called

the Fokker-Planck equation (FPE) [11][12] describes how

the conditional density evolves between measurements, and

the Bayes’ formula describes how the conditional density is

modified by information coming from measurements.

Normally, it is not an easy task to achieve a closed

form solution of the FPE with only a few exceptions. As

a result, it usually has to be evaluated numerically. In recent

years thanks to the advance in computer technology and

numerical methods this estimation technique has been used

in target tracking problems[2][3][13] and the relative position

estimation of a satellite[14][15]. These researchers employed

efficient numerical schemes such as the alternating direction

implicit method with adaptive moving grids to alleviate the

high computational cost [13][14][15]. However, as shown in

these papers, the computational cost is still high.

A nonlinear filtering method using the direct quadrature

method of moments, along with Bayesian update of the

conditional state PDF was first proposed by Xu and Veldula

[16]. This approach involves a representation of the state

conditional PDF in terms of a finite summation of the Dirac

delta functions. Using a small number of scalars (in the

Dirac delta function), the method is able to efficiently and

accurately model stochastic processes through a set of ordi-

Fig. 1: FPE based nonlinear estimation
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nary differential equations (ODEs). The DQMOM approach

could lead to a significant reduction in computational cost,

compared to finite difference (and other equivalent) methods,

especially for high dimensional problems. Further studies on

the DQMOM base nonlinear filter reveal that the “degen-

eracy” phenomenon, similar to the one exists in a typical

particle filter, occasionally appears because in this algorithm

only the weight is updated and the abscissas remain the same

[17]. The un-updated abscissas might be propagated into

the tail locations of the PDF where no significant statistical

meaning is carried. This problem is solved by employing

the update step from the EKF or Unscented Kalman Filter

(UKF) (so that the linearized model is not required in the

update stage of the filter)[18]. Note that similar approaches

of combing different filtering strategies have been proposed,

such as KF and UKF by Sadhua [19], and FPE and EKF/UKF

by Daum [20]. The purpose of this paper is to investigate

and use the hybrid filter based on the DQMOM and the

EKF update for accurate sequential orbit determination of

an earth-orbiting satellite or space object.

When the noise inputs to the system and measurement

noise are small such as orbit determination, EKF can become

“smug.” Smug means the covariance matrix Pk becomes so

small and as a result the gain becomes very small. Due

to the small gain the filter becomes over confident in its

estimation and refuse to accept new information from the

measurements[21]. The same problem was observed with

The hybrid filter based on the DQMOM and the EKF update.

Several solutions have been devised to deal with this problem

[1][21][22]. There are two different approaches, adaptive and

non-adaptive [21]. In this work a non-adaptive approach of

using fixed error covariance matrix is employed to keep the

gain becoming too small.

This paper is divided as follows. In Section II, we briefly

describe the framework of the nonlinear filtering using the

FPE approach. In Section III, the DQMOM approach is

summarized. Section IV includes the measurement update

using the EKF update formula and method to handle the filter

smug. Finally a numerical simulation of orbit determination

problem is presented followed by the discussion of the results

and the conclusion.

II. FOKKER-PLANCK EQUATION AND NONLINEAR

ESTIMATION

In this section we state the nonlinear filtering problem to

be addressed in the work. A nonlinear dynamic systems can

be modeled as an n-dimensional continuous Itô stochastic

differential equation (SDE):

dxt = F(xt ,t)dt + G(xt,t)dβt (1)

where xt ∈ R
n×l,F(xt ,t) ∈ R

n×l and G(xt ,t) ∈ R
n×m are the

state vector, state function, and diffusion matrix, respec-

tively. {dβt} ∈ R
n×l is a Brownian motion process with

E{dβtdβ T
t } = Q(t)dt. The measurement ytk taken at the

discrete time tk is defined as

ytk = h(xtk ,tk)+ νtk (2)

where h(xtk ,tk)∈R
q×l is the measurement function and ν(tk)

is the measurement noise, which is assumed to be a Gaussian

white noise with a covariance matrix of R(t) [1].

If the process described by the SDE is a Markovian

diffusion process, the PDF that characterizes this process is

governed by the Fokker-Planck equation [1].

∂ p

∂ t
= −

n

∑
i=1

∂ [pFi]

∂xi

+
1

2

n

∑
i=1

n

∑
j=1

∂ 2[p(GQGT)i j]

∂xi∂x j

(3)

where p is the conditional state PDF, p(xt |Ytk−1
) and

Ytk−1
is the measurement history vector defined as Ytk−1

,
[y(0),y(2), . . . ,y(k − 1)]T . Also p(xt |Ytk−1

) can be consid-

ered as the probability density function of a process governed

by the Itô SDE between measurements (tk−1 < t < tk), and

found by solving (3) between tk−1 and tk.

Once the PDF function, p(xtk ,t|Ytk−1
) is found from (3)

and the measurement ytk made at the time instant tk, the

Bayes’ formula is used to update the conditional PDF to

p(xtk |Ytk ), where Ytk = [y(0), ...,y(tk)]
T .

p(xtk |Ytk ) =
p(xtk |Ytk−1)p(ytk |xtk)
∫

p(ξtk |Ytk )p(ytk |ξtk )dξ
(4)

The PDF p(ytk |xtk) is defined by the characteristics of the

sensor and is usually assumed to have a Gaussian distribution

p(ytk |xtk) =
1

(2π)q/2|R|1/2
e{−

1
2 [ytk

−h(xk)]
T R−1[ytk

−h(xk)]} (5)

The combination of FPE and Bayes’ formula mentioned

above builds a two-step process to obtain the desired condi-

tional PDF p(xtk |Ytk ) [1]. After p(xtk |Ytk ) is obtained from

(4) the state estimation can be made by calculating the

following integral

x̂i(t) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
xi p(x,t)

n

∏
j=1

dx j (6)

Hence, using the updated conditional PDF, the mini-

mum mean-square estimate (MMSE) estimates of any state

variables or functions of state variables can be obtained.

The central issue associated with the FPE based nonlinear

filtering technique is the high computational cost.

III. DIRECT QUADRATURE METHOD OF MOMENTS

The detailed derivation of the direct quadrature method

of moments (DQMOM) with a systematic initialization can

found in [16][18] and here only a brief outline of the

algorithm is presented.

A. Summary of DQMOM

DQMOM is an approximation method that can solve FPE

efficiently and accurately. In the DQMOM approach, the

state or state conditional PDF p = p(xt |Ytk ) is approximated

by the summation of a weighted multi-dimensional Dirac

delta function as

p =
N

∑
α=1

wα

Ns

∏
j=1

δ [x j −〈x j〉α ] (7)
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where wα , α = 1, ...,N is the corresponding weight for node

α , and 〈x j〉α , α = 1, ...,N; j = 1, ...,Ns is the property vector

of node α called ”abscissas.” N is the number of nodes used

in the PDF representation. In this representation, there are

total N(Ns + 1) unknown variables which will be solved

through the moment constraints. The weighted abscissas

ζ jα ≡Wα〈x j〉α is introduced so that the moments of (3) can

be derived as

Sk1,...,kNs
=

N

∑
α=1

[











1−
Ns

∑
j=1

k j













Ns

∏
k=1

〈xk〉
kk
α

]

aα

+
N

∑
α=1

Ns

∑
j=1

k j〈x j〉
k j−1
α

Ns

∏
k=1,k 6= j

〈xk〉
kk
α b jα

(8)

where wα , ζ jα , and δ jα are functions of time and they

can be propagated in a fairly quick fashion based upon the

set of algebraic ODEs (8) as compared to its original PDE

version (3). In these ODEs dwα/dt ≡ aα and ζ jα/dt ≡ b jα .

Sk1,...,kNs
≡ S

1
k1,...,kNs

+S
2
k1,...,kNs

. The derivation of S
1
k1,...,kNs

and

S
2
k1,...,kNs

can be found in [16] as

S
1
k1..kNs

=
Ns

∑
i=1

N

∑
α=1

[kiwα (t)〈x1〉
k1
α · · · 〈xi−1〉

ki−1
α 〈xi〉

ki
α

〈xi+1〉
ki+1
α · · · 〈xNs〉

kNs
α Fi(〈x1〉α · · · 〈xNs〉α ]

(9)

and

S
2
k1..kNs

=
Ns

∑
i=1

Ns

∑
j=1

N

∑
α=1













wα kik j

[

Ns

∏
k=1

〈xk〉
kk
α

]

〈xi〉α〈x j〉α [D(x)]i j|〈x1〉α ..〈xNs 〉α













if i 6= j

(10)

S
2
k1..kNs

=
N

∑
α=1













wα ki(ki −1)

[

Ns

∏
k=1

〈xk〉
kk
α

]

〈xi〉2
α [D(x)]i j|〈x1〉α ..〈xNs 〉α













if i = j

Once the abscissas and weights are propagated from (8), any

selected statistical moment of the state PDF, such as mean,

variance, and covariance, etc., can be calculated from

Mk1,k2,...,kNs =
N

∑
α=1

wα

Ns

∏
j=1

〈x j〉
k j
α (11)

where k1,k2, . . . ,kNs are nonnegative integers and used to

denote the k1,k2, . . . ,kNs
th moments of the state statistics.

The steps to propagating the FPE are tabulated in Table I.

TABLE I: Propagation of the FPE through DQMOM

Step 1: Initialization of wα and 〈x j〉α , α = 1, ..,N, j = 1, ..,Ns at time t0
Step 2: Between the measurements ti and ti+1, i = 0,1, ...
Step 3: Calculate Sk1 ,...,kNs

using (9) - (10).

Step 4: Propagate (8) from ti to ti+1

Step 5: Calculate the user specified characteristic moments
according to (11).

Step 6: If ti+1 < t f , go to Step 2.

B. Initialization

The initially selected abscissas and weight have to rep-

resent the desired initial statistical information such as the

mean and the variance correctly. Hence, proper modifications

of the weights and abscissas are usually necessary. The de-

sired mean and variance values of the state j can constructed

from a set of chosen abscissas and weights as

µ j =
N

∑
α=1

wα〈x j〉α , j = 1, . . . ,Ns (12)

σ2
j = E

[

〈x j〉
2
α

]

−µ2
j =

N

∑
α=1

wα〈x j〉
2
α −µ2

j , j = 1, . . . ,Ns (13)

The mean can be modified by adding a constant to each

abscissa and the variance can be adjusted by multiplying a

constant to each abscissas while the weights are kept same.

Let us assume that the modified abscissas are

〈x j〉α ,mod = C1 j〈x j〉α +C2 j j = 1, . . . ,Ns (14)

and the desired mean and variance values are µ j,d and σ2
j,d .

In order to maintain the desired mean and variance values,

the coefficients in (14) are

C1 j =
σi,d

σ j

and C2 j = µ j,d − µ j

σi,d

σ j

j = 1, . . . ,Ns (15)

By substituting C1 j and C2 j , the adjusted abscissas with

desired mean and variance is

〈x j〉α ,mod =
σi,d

σ j

〈x j〉α + µ j,d − µ j

σi,d

σ j

j = 1, . . . ,Ns (16)

IV. UPDATE MECHANISM

In this section, the update mechanisms employed to mit-

igate the “degeneracy” phenomenon and prevent the filter

from becoming smug will be described.

A. Update through the Extended Kalman Filter

The prediction of the states x̂− = [x̂−i ]i=1,...,Ns and the error

covariance matrix P− = [P−
i j ]i=1,...,Ns, j=1,...,Ns at time step tk

are calculated from the abscissas and weights propagated

through the DQMOM(8) as

x̂−i =
N

∑
α=1

wα〈xi〉α i = 1, . . . ,Ns (17)

and

P−
i j =

[

N

∑
α=1

wα 〈xi〉α〈x j〉α

]

− x̂−i x̂−j (18)

The updated Kalman gain Kk at the time step tk is given by

Kk = P−
k HT

k [HkP−
k HT

k + R]−1 (19)

where the linearized measurement model is given by Hk =
∂h
∂x
|x=x− . The estimation of the state and the estimated error

covariance are given as

x̂+
k = x̂−k + Kk(yk − ŷk) (20)

and

P+
k = [I−KkHk]P

−
k (21)
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After the measurement update, the abscissas are re-

sampled to match the updated mean and covariance. The

procedure is the same as the initialization strategy described

in Section III.B.

B. Dealing with the filter smugness

“Smug” means the error covariance matrix Pk becomes so

small and as a result the gain becomes very small. Under this

situation the filter believes that the states are well known and

ignores the measurements from the sensor [21].

Several solutions have been devised to deal with this

problem [1][21][22], and they can be categorized into two

different approaches, adaptive and non-adaptive [21]. In

this work a non-adaptive approach is employed to keeping

the gain from becoming too small. Instead of using the

covariance P−
k from DQMOM, a fixed P̄ is used. Thus, (19)

becomes

Kk = P̄HT
k [HkP̄HT

k + R]−1 (22)

Appropriate fixed covariance P̄ can be found/designed

through extensive simulation [1].

V. PROBLEM DESCRIPTION

A. Process Model

The equations of motion that governs the motion of a

satellite in a low earth orbit is [21]:

r̈rr = −
µ

r3
rrr + aaaG + aaaD (23)

where µ and rrr = [x,y,z]T are the gravitational parameter

and the position vector, respectively. The scalar r is the

magnitude of rrr, i.e., r =
√

x2 + y2 + z2. aaaD represent the

drag due to the earth atmosphere and is proportional to

the atmospheric density ρ and the square of the velocity

relative to the atmosphere. The Earth is not a spherically

symmetric body but bulged at the equator, and is also

generally asymmetric. As a result, the gravitational field

around the earth is not isometric. The aaaG is the perturbation

due to this uneven gravitational field. In this work, aaaD and

aaaG are considered as a part of process noise to the system.

So, the nominal process equation used in this work is

r̈̈r̈r = −
µ

r3
rrr (24)

B. Fokker-Planck equation of the Keplerian equation

The state-space form of the Keplerian equation of motion

with the process noise is
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ẋ

ẏ
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+

[

0003×3 0003×3

0003×3 III3×3

]

wwwt , FFFxxx+++GGGwwwt

(25)

where wwwt is a white Gaussian noise process with E[wwwtwww
T
τ ] =

QQQtδ (t − τ)

The corresponding Fokker-Planck equation can be found

by substituting (25) into (3) as

∂ p

∂ t
=−

(

∂ p

∂x
ẋ+

∂ p

∂y
ẏ +

∂ p

∂ z
ż

)

+
µ

r3

(

∂ p

∂ ẋ
x +

∂ p

∂ ẏ
y +

∂ p

∂ ż

)

+
Q4

2

∂ 2 p

∂ ẋ2
+

Q5

2

∂ 2 p

∂ ẏ2
+

Q6

2

∂ 2 p

∂ ż2

(26)

where Qi, i = 4,5,6 are the last three diagonal members of

[GGGQQQGGGT ] from (3)

C. Measurement Model

The inertial position vector of a satellite can be written as

the sum of the range vector and the radar site position vector

[21] as

rrr = RRRs + ρρρ (27)

where RRRs is the position of the sensor, and ρρρ = [ρe,ρe,ρn]
T is

the position vector of a satellite in the local/sensor coordinate

as

ρρρ = ρuûuu+ ρeêee+ ρnn̂nn (28)

wherein the subscriptions, u, e, and n stand for “zenith”,

“east”, and “north”, respectively.

The measurements are range, azimuth and elevation. The

range ρ can be found from

ρ =
√

ρ2
u + ρ2

e + ρ2
n (29)

The azimuth and elevation angles are

az = tan−1

(

ρe

ρn

)

and el = tan−1

(

ρu
√

ρ2
e + ρ2

n

)

(30)

For the sensor position vector RRRs, it is advisable to account

for the precise shape of the Earth to avoid large errors [21].

RRRs in the geocentric inertia coordinate accounted for the

Earth’s equatorial bulge and its magnitude can be found by

[23]

RRRs = rδ cosθ I+ rδ sinθJ + rkK

||RRRs|| =
√

r2
δ + r2

k

(31)

where θ is the sidereal time of the sensor (local sidereal

time). Calculation of θ with the Greenwich sidereal time

(GST) at the beginning of the particular year can be found

from Astronomical Almanac.[21][23], and rδ and rk can be

calculated using

rδ =





R⊕
√

1− e2
⊕ sinλ

+ H



cosλ

rk =





R⊕(1− e2
⊕)

√

1− e2
⊕ sinλ

+ H



sinλ

(32)

where λ is the geodesic latitude of the sensor location, and

R⊕ = 6378.1363km and e⊕ = 0.081819221456 are the mean

equatorial radius of the Earth and the eccentricity of the

Earth, respectively. H is the elevation above the sea level.
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The position vector ρρρ in the inertial coordinate frame is

ρρρ =





x−||Rs||cosλ cosθ
y−||Rs||cosλ sinθ

z−||Rs||sin λ



 (33)

The conversion from the inertial to the sensor coordinate

system is given by the following rotation matrix

C =





cosλ 0 sin λ
0 1 0

−sinλ 0 cosλ









cosθ sinθ 0

−sinθ cosθ 0

0 0 1



 (34)

So the vector ρ is




ρu

ρe

ρn



=





cosλ cosθ cosλ sinθ sinλ
−sinθ cosθ 0

−sinλ cosθ −sinλ sinθ cosλ



ρρρ (35)

VI. NUMERICAL SIMULATION

In this section the performance of the proposed nonlinear

filter, The hybrid filter based on the DQMOM and the EKF

update is demonstrated through simulation and compared

with the result from EKF. This simulation scenario is based

on the one used by Lee and Alfriend [24].

A. Simulation Scenario

The satellite under consideration has the following orbit

parameters: a = 6778.136 km, e = 1.0×10−5, i = 51.6◦, ω =
30o, and Ω = 25◦. The J2 and drag perturbation (aaaG and aaaD

from (23)) are considered as the noise to the system. The

location of the sensor is chosen to be the Eglin Air Force

Base with 30.2316◦ latitude and 86.2147◦ west longitude.

The measurement errors are assumed to be Gaussian random

processes with zero means and variances of σrange = 25.0 m,

σazimuth = 0.015◦, and σelevation = 0.015◦, respectively.

The true initial values of the state vector are set to be

x0 = 4011.5713 km, y0 = 4702.6493 km, z0 = 3238.3582 km,

ẋ = −5.653084 km/s, ẏ0 = 1.5401902 km/s, and ż =
4.7765408 km/s. For the filter, the initial values are obtained

using the Herrick-Gibbs method [24], and they are x0 =
3931.3399 km, y0 = 4608.5963 km, z0 = 3173.5911 km,

ẋ = −5.540022 km/s, ẏ0 = 1.5093864 km/s, and ż =
4.6810100 km/s.

As stated above, the acceleration due to J2, which is

approximately 10−5 km/s2 at low earth orbits is considered

as the noise to the system. So the process noise covariance

matrix Q(t) is set to diag([0 0 0 10−10 10−1010−10])

The simulation of the Keplerian dynamic through the

DQMOM is done using canonical unit instead of the standard

SI unit [23], which means (24) is nondimensionalized for

a better numerical stability. The initial position is used as

the distance unit (DU). The velocity unit (VU) is found by
√

µ/DU, so the time unit (TU) is naturally equal to DU/VU.

The measurement update was done in SI unit.

The number of the nodes used for this study was two, and

the moment constraints are chosen so that the the first three

moments of the PDF were preserved. The details regarding

how to set the moment constraints can be found from [16].

B. Simulation Results

Simulations are executed with two different measurement

update frequencies, 1Hz and 0.05Hz, and the result from

both the hybrid filter based on the DQMOM and the EKF

update and EKF are presented. The figures are the root

mean square errors (RMSE) of the position and the velocity

estimation produced by Monte Carlo simulation of 30 runs.

When the measurement update is frequent (1Hz), as shown

in both Fig. 2a and Fig. 3a, The hybrid filter based on

the DQMOM and the EKF update performs better in terms

of quicker convergence in velocity estimation and better

estimation accuracy in both position and velocity estimation.

When the time between measurement update is increased

to twenty seconds (0.05Hz update frequency), the hybrid

filter based on the DQMOM and the EKF update shows

quicker convergence and better estimation accuracy in both

position and velocity estimation than the EKF as shown in

both Fig. 2b and Fig. 3b. Unlike the position RMSE curve

shown in Fig.2b, the velocity RMSE curve is smooth and not

zigzagged. This is the result of using a fixed error covariance

matrix.
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Fig. 2: The RMSE of the absolute magnitude of the position with different measurement update delay
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Fig. 3: The RMSE of the Absolute magnitude of the velocity with different measurement update delay

Using a workstation with the Intelr 2.33 GHz Xeon

processor and MatLabr, it takes roughly 70 seconds in

CPU time to finish the 200-second simulation for the hybrid

filter based on the DQMOM and the EKF update, while the

EKF did it in about 0.65 seconds. However, as comparing

with other numerical approaches used in nonlinear filtering

design, such as in [13][15][18], the computational cost is

dramatically reduced and very close to the real-time needs.

VII. CONCLUSIONS

In this paper a nonlinear filtering algorithm utilizing the

DQMOM and the EKF measurement update is used to obtain

accurate and efficient orbit estimation. In addition, a fixed

error covariance matrix is used for the gain calculation

to prevent the filter becoming smug. Nondimensionalized

system equation is used for DQMOM to achieve a more

stable propagation of the conditional PDF. Simulation results

indicate that the performances of the hybrid filter based

on the DQMOM and the EKF update is superior to the

standard extended Kalman filter for both frequent and sparse

measurement update in terms of the estimate accuracy and

convergence rate. Also the filter provides the flexibility of

implementation without Jacobian matrix of the dynamic

equation. The advantages of the proposed nonlinear filtering

algorithm show its potential to be suitable for efficient real-

time satellite orbit determination.
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