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Abstract. Fokker–Planck equations which are nonlinear with respect to their
probability densities and occur in many nonequilibrium systems relevant to mean
field interaction models, plasmas, fermions and bosons can be challenging to solve
numerically. To address some underlying challenges, we propose the application
of the direct quadrature based method of moments (DQMOM) for efficient
and accurate determination of transient (and stationary) solutions of nonlinear
Fokker–Planck equations (NLFPEs). In DQMOM, probability density (or other
distribution) functions are represented using a finite collection of Dirac delta
functions, characterized by quadrature weights and locations (or abscissas) that
are determined based on constraints due to evolution of generalized moments.
Three particular examples of nonlinear Fokker–Planck equations considered in
this paper include descriptions of: (i) the Shimizu–Yamada model, (ii) the
Desai–Zwanzig model (both of which have been developed as models of muscular
contraction) and (iii) fermions and bosons. Results based on DQMOM, for the
transient and stationary solutions of the nonlinear Fokker–Planck equations,
have been found to be in good agreement with other available analytical and
numerical approaches. It is also shown that approximate reconstruction of the
underlying probability density function from moments obtained from DQMOM
can be satisfactorily achieved using a maximum entropy method.
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1. Introduction

The solution and characterization of stochastic systems is of great interest to engineers
and scientists in many fields [1, 2]. Such systems often involve Fokker–Planck equations of
(i) linear or (ii) nonlinear kind, that describe the evolution of the underlying probability
density functions. The former kind of Fokker–Planck equations which are linear equations
with respect to the probability density functions (even though the microscopic or Langevin
dynamics is nonlinear) arise in stochastic systems exhibiting diffusion (or Markovian)
processes. In contrast, nonlinear Fokker–Planck equations (NLFPEs), which involve
nonlinearities with respect to the probability density functions, can be used to describe
complex system behavior involving anomalous diffusion, quantum distributions, stochastic
feedback and mean field interactions. Some applications of NLFPEs include plasma
physics [3]–[5], classical models of fermions and bosons [6]–[14], surface physics [15, 16],
nonlinear hydrodynamics [17]–[19], and neurosciences [20]–[22].

The linear Fokker–Planck equation (FPE) describing the Ornstein–Uhlenbeck (OU)
process is one of the few FPEs that has exact analytic stationary and transient
solutions [1, 2]. The Shimizu–Yamada (SY) model was phenomenologically derived for
muscular contractions [23], and was later modified to describe a nonlinear stochastic mean
field by Kometani and Shimizu [24]. So, unlike the OU process, the SY model is a nonlinear
FPE with respect to its probability density. The analytic solutions for the transient mean
and variance have been shown in the text by Frank [2]. Kometani and Shimizu [24] further
modified their model to describe the controlling and regulating of interaction between a
macroscopic supersystem and its weakly coupled microscopic subsystem [25, 26]. Desai
and Zwanzig [25] analyzed this model and derived a nonlinear Fokker–Planck equation
which can be described as a self-consistent dynamic mean field FPE [26]. Although no
transient analytical solutions have been found for this equation, a broad range of numerical
methods [27, 26, 25, 28] have been used to study the Desai–Zwanzig model. Nonlinear
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Fokker–Planck equations have also been derived for the quantum mechanical topic of
classical models of fermions and bosons [6]–[8], [10]–[14]. These equations do have well
known stationary solutions, but the transient solutions have not been well studied.

Considering the broad range of applications of Fokker–Planck equations, a method
to efficiently solve them is desired. Unfortunately, there exist very few Fokker–Planck
equations which can be solved analytically. Due to this, many numerical models and
methods have been proposed and used to analyze linear and nonlinear Fokker–Planck
equations [27], including Monte Carlo techniques [29], cumulant moment expansion
methods [25, 30], path-integral techniques [31, 5, 32], eigenfunction expansions [33, 34] and
finite-difference methods [35]–[37], [13]. It was shown that the use of finite-difference
methods for nonlinear Fokker–Planck equations could lead to stiff systems of ordinary
differential equations [26]. Drozdov and Morillo [27] proposed an implicit finite-difference
method based on a K-point Stirling interpolation formula. This method allowed for an
increase in accuracy without much increase in the number of grid points. They successfully
applied this to the relaxation dynamics for the nonlinear self-consistent dynamic mean
field Fokker–Planck equation describing muscular contraction [24]. They also applied it
with limited success to the more complete statistical-mechanical model given by Desai
and Zwanzig [25]. Following the work of Drozdov and Morillo, Zhang et al [26] utilized a
distributed approximating functional (DAF) [38, 39] based method for the solution of the
so called Desai–Zwanzig model [25]. This method takes advantage of the integral relations
of the Dirac delta function and its derivatives. These relations and their derivatives are
then approximated by a Hermite polynomial whose integrals are discretized on a grid [26].
The goal of Zhang et al was to analyze the validity of a long-lived transient bimodality
captured by Drozdov and Morillo [26, 27] and explain its occurrence.

The direct quadrature method of moments (DQMOM), first developed by Fox et al
[40]–[42] in the context of population balance equations, is presented in this paper as
an accurate and efficient alternative to other computational methods for the solution of
nonlinear Fokker–Planck equations. DQMOM has many advantages over other methods
and has recently been studied for obtaining solutions to the Boltzmann equation [43], for
one-dimensional and two-dimensional noisy van der Pol oscillators [44], for linear Fokker–
Planck equations describing aeroelasticity [45], for polydisperse gas–solid flows [46, 47]
and for nonlinear filtering and control [48]. DQMOM approximates a density function as
a collection of discrete Dirac delta functions which have associated weights and abscissas.
Using constraints on the moments of the equation, one can obtain evolution equations for
solving the unknown weights and abscissas. These weights and abscissas are then used
to compute low order moments. In the current work, DQMOM will be used to compute
numerical solutions to nonlinear Fokker–Planck equations for the first time (most previous
works on DQMOM were for linear Fokker–Planck equations). Comparisons of stationary
and transient solutions obtained from DQMOM will be made with those obtained from
other analytical and/or numerical solutions. While DQMOM enables direct evaluation of
moments, it will also be shown that these low order moments are sufficiently accurate to
allow for satisfactory reconstruction of the underlying probability density functions using
a maximum entropy method.

The rest of this paper is organized as follows. The formulation of DQMOM for solution
of a general nonlinear Fokker–Planck equation is presented in section 2. In section 3 we
will evaluate the accuracy of DQMOM by comparing the numerical solutions obtained
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from DQMOM with corresponding analytical solutions for a linear FPE characterizing the
Ornstein–Uhlenbeck process. After demonstrating the accuracy of DQMOM for a simple
linear case, section 4 will demonstrate the accuracy of DQMOM for three representative
nonlinear Fokker–Planck equations describing (i) the Shimizu–Yamada model, (ii) the
Desai–Zwanzig model (relevant to muscular contraction) and (iii) fermions and bosons.
This work concludes with a brief summary of the results and a glance at future work in
section 5.

2. DQMOM formulation for a general nonlinear FPE

Given the general univariate Langevin equation

dX(t)

dt
= −D(X, t, f) +

√
Q(X, t, f)Γ(t), (1)

where Γ is the Langevin force, D(X, t, f) is the drift coefficient, Q(X, t, f) is the diffusion
coefficient and f ≡ f(x, t) denotes the underlying probability density function (PDF), the
Langevin force has the following correlations:

〈Γ(t)〉 = 0, 〈Γ(t)Γ(t′)〉 = 2δ(t − t′). (2)

The nonlinear Fokker–Planck equation in terms of the probability density function (PDF),
f(x, t), that is equivalent to the above Langevin equation can be expressed as

∂f(x, t)

∂t
= − ∂

∂x
[D(x, t, f)f(x, t)] +

∂2

∂x2
(Q(x, t, f)f(x, t)). (3)

Note that in general nonlinear Fokker–Planck equations, the drift and diffusion coefficients
can depend on the underlying probability density functions.

In the DQMOM approximation, the PDF is approximated as a weighted summation
of Dirac delta functions [42]:

f(x, t) =

M∑

i=1

wi(t)δ(x − xi(t)), (4)

where M is the number of delta functions, wi and xi are the associated quadrature weights
and abscissas (or locations) for each of the delta functions. Note that the quadrature
weights and abscissas are time-dependent quantities, which are evolved based on evolution
equations for selected statistical moments. These moment evolution equations can be
derived from the underlying Fokker–Planck equation. Analogous to the moving or
adaptive grid based methods for solution of partial differential equations, it is hypothesized
that the adaptive (or time dependent) nature of quadrature weights and abscissas will
have similar advantages especially in the context of capturing characteristic behavior
(e.g. evolution of moments up to a chosen order) using fewer quadrature nodes and hence
leading to improvements in computational efficiency. The latter improvements could be
particularly useful in the context of problems where the underlying distributions undergo
significant changes (e.g. unimodal PDF to bimodal PDF, and with significantly different
mean values) during their evolution under the influence of stochastic dynamics (with or
without stochastic feedback). Traditional methodologies for solution of Fokker–Planck
equations based on standard or fixed quadrature relying on orthonormal functions may
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be inadequate when the fixed basis functions initially chosen become inefficient choices
during the course of evolution of the PDF (undergoing significant changes in characteristic
behavior). Basis functions that can adapt to the changing dynamics may appear to be
more desirable for improvements in computational efficiency and the DQMOM approach
offers a class of such basis functions that can adapt according to changes in the PDF
over time. As such significant structural changes in the characteristic behavior of systems
are commonly found in nonlinear Fokker–Planck equations (e.g. the nonlinear Fokker–
Planck equation corresponding to the Desai–Zwanzig model, where the evolution of the
PDF exhibits transient bimodality), the application of the direct quadrature method
of moments to nonlinear Fokker–Planck equations may be worth exploring. Based on
the successful applications of DQMOM for solution of linear Fokker–Planck equations
in previous works [42, 44, 48, 45], generalizations of DQMOM for solutions of nonlinear
Fokker–Planck equations (i.e. the focus of this paper) could be justified.

The initial values of the weights and abscissas can be assigned based on the initial
conditions for the PDF (and hence the moments). From the weights and abscissas,
the generalized moments can be determined for equation (4) using the definition of the
generalized moment, 〈xr〉:

〈xr〉 ≡
∫ ∞

−∞
xrf(x, t) dx =

M∑

i=1

wix
r
i , (5)

where r is the superscript corresponding to any moment and the second equality in the
above equation is obtained using equation (4). Typically in DQMOM this value is a
non-negative integer, but for some applications non-negative fractions may be needed for
better accuracy. The evolution of the moments can then directly be found by taking the
derivative of equation (5) with respect to time as

∂〈xr〉
∂t

= −xrD(x, t, f)f(x, t)|∞−∞ + r

∫ ∞

−∞
xr−1D(x, t, f)f(x, t) dx

+ r(r − 1)

∫ ∞

−∞
xr−2Q(x, t, f)f(x, t) dx. (6)

As the first term on the right-hand side is zero (due to boundedness and continuity of
moments), the above equation can be expressed as

∂〈xr〉
∂t

= r〈xr−1D(x, t, f)〉 + r(r − 1)〈xr−2Q(x, t, f)〉. (7)

Using equations (4), (5) and (7) the above equation can be further expressed in terms of
the adaptive weights and abscissas, as

M∑

i=1

(1 − r)xr
i ẇi +

M∑

i=1

rxr−1
i ζ̇i = r

M∑

i=1

wix
r−1
i D(xi, t, wi) + r(r − 1)

M∑

i=1

wix
r−2
i Q(xi, t, wi),

(8)

where ζ(t) ≡ w(t)x(t) denotes a weighted abscissa. The above represents a set of equations
as Az = b for a selected set of 2M constraints on low order moments (obtained for different
values of r), needed to solve for M undetermined weights and M undetermined abscissas.
Here, the right-hand side of equation (8) constitutes an element of the b vector and

doi:10.1088/1742-5468/2011/09/P09031 5

http://dx.doi.org/10.1088/1742-5468/2011/09/P09031


J.S
tat.M

ech.
(2011)

P
09031

A quadrature based method of moments for nonlinear Fokker–Planck equations

z = [ẇ1 · · · ẇM ζ̇1 · · · ζ̇M ]T denotes a vector of weights and weighted abscissas. The
vector z is obtained as a solution of the system Az = b, from which the weights and
abscissas can be derived via integration of a system of ordinary differential equations.
Note that unlike in the case of linear FPE, the right-hand side of equation (8) can have
a nonlinear dependence on weights for general nonlinear Fokker–Planck equations.

The DQMOM formulation is also straightforward for multivariate cases. To formulate
DQMOM for a three-dimensional problem, instead of equation (4), the following is used
for the weighted summation of Dirac delta functions:

f(x, t) =

M∑

i=1

wi

Nd∏

k=1

δ(xk − xki
), (9)

where Nd is the number of dimensions and it is evaluated at xi and wi. Equation (9)
is then substituted into equation (3). After this substitution the following definition for
generalized mixed moments is used to arrive at the final nonlinear differential equation:

〈
Nd∏

k=1

xrk
k

〉

=

∫ ∞

−∞

(
Nd∏

k=1

xrk
k

)

f(x, t) dx =
M∑

i=1

wi

(
Nd∏

k=1

xrk
ki

)

. (10)

In the following sections, we will illustrate the accuracy of DQMOM for the solution
of both linear and nonlinear Fokker–Planck equations.

3. Linear Fokker–Planck equation in one dimension

The first type of Fokker–Planck equation considered is a linear FPE describing the
Ornstein–Uhlenbeck (OU) process, which is commonly used to describe the Brownian
motion of particles in the presence of a frictional force proportional to velocity [49]. For
our case, the probability density function represents the probability that the particle will
have a given velocity at a certain time as it moves in the gas. Due to the availability of
analytic solutions to the Ornstein–Uhlenbeck FPE, it was chosen to verify the accuracy
of DQMOM for simple linear FPEs.

To derive the FPE for the Ornstein–Uhlenbeck process, we first start with the Ito–
Langevin form of the OU process given by [2]

dX(t)

dt
= −γX(t) +

√
QΓ(t), (11)

where the diffusion, Q, is a constant and the drift is given by γ. Using the drift and
diffusion coefficients, an equivalent Fokker–Planck equation in one dimension is now
written using the probability density function f(x, t):

∂f

∂t
= γ

∂fx

∂x
+ Q

∂2f

∂x2
. (12)

Analytic and stationary solutions are known for the OU FPE, and the analytic
solution of the mean and variance is given as [2]

M1(t, t
′) = exp−γ(t−t′), (13)

M2(t, t
′) =

Q

γ
[1 − exp−2γ(t−t′)]. (14)
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The Ornstein–Uhlenbeck (OU) process was analyzed in one dimension using four
nodes. The basic idea behind choosing the initial values for quadrature weights and
abscissas is to ensure that moments up to a selected order (from a chosen selection
of moment constraints) evaluated using the initial selection for quadrature weights and
abscissas match the corresponding moments of the initial distribution. While the initial
quadrature weights and initial abscissas can be related to the initial moments via a set of
nonlinear algebraic equations, as

∑M
i=1 wi(t) xr

i (t) = 〈xr〉, for M distinct chosen values of
r, the solution of this system can often be cumbersome (especially for large values of M).
Hence, more direct approaches that rely only on matching the first few moments (e.g. up
to covariance) are sought. The effects of initial error in mismatch of selected high order
moments can be assessed by comparisons with other methods.

The initial condition of interest for the OU process is a Dirac delta function located
at unity. This Dirac delta function should now be represented in terms of our quadrature
weights and abscissas such that the overall system is non-singular. Note that the selection
procedure for quadrature weights and abscissas is non-unique and that singularities in
DQMOM can arise when the locations of any two of the quadrature nodes become identical
and/or if the rows of the A matrix become linearly dependent. Given these restrictions,
the initial conditions for the quadrature weights and abscissas are selected such that
the following conditions are satisfied: (a) the zeroth moment 〈x0〉 is unity (due to the
normalization property for probability density functions), (b) the initial value of the mean
〈x〉 = 1, (c) the initial value of the variance is close to zero and (d) the skewness is zero.
This allows us to select the following set of initial values for the weights: w1(0) = w2(0) =
w3(0) = w4(0) = 0.25 (among many other possibilities). The abscissas are selected such
that [x1(0) x2(0) x3(0) x4(0)] = [μ − bσ μ − aσ μ + aσ μ + bσ], where μ is the
initial mean, σ is the initial standard deviation, which is set to a small value, say 10−4.
In order to ensure consistency with the initial choice of weights and variance, we solve for
a and b and obtain a = 0.51/2 and b = 1.51/2 (as one of the many possible solutions). The
quadrature weights and abscissas are evolved such that the evolution equations for a set of
moments are satisfied. The number of moment constraints needed is equal to the number
of unknowns, including weights and abscissas (i.e. eight moment equations are needed
in order to obtain the evolution of four quadrature weights and four abscissas, in one-
dimensional space). We select the following moment constraints or evolution equations
for the moments: 〈xr〉, for r = 0–7. The evolution equation for the moments can be
derived from the underlying Fokker–Planck equation for the OU process, as

∂〈xr〉
∂t

= −γr〈xr〉 + r(r − 1)Q〈xr−2〉. (15)

The corresponding equations governing the time evolution of quadrature weights and
(weighted) abscissas can be inferred from equation (8). These evolution equations for
quadrature weights and (weighted) abscissas can be integrated to obtain the new values
of quadrature weights and (weighted) abscissas over a small time interval, given their
initial conditions. This integration procedure can be iteratively repeated to obtain the
quadrature weights and abscissas for all time, which can further enable us to deduce the
evolution of moments for all time.

The comparison of DQMOM with the exact transient solution for the mean, M1, is
illustrated in figure 1(a). The exact solution is represented by the diamonds, and DQMOM
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Figure 1. Results of (a) mean, M1, and (b) variance, M2, with γ = Q = 1. The
DQMOM results (solid lines) using four quadrature nodes agree with the analytic
solutions (diamonds).

Figure 2. Results of (a) mean, M1, and (b) variance, M2, for Q = 1 and
γ = 0.5, 1.0, 2.0. The DQMOM results using four quadrature nodes for each
γ are shown by solid lines (γ = 0.5), dashed lines (γ = 1.0) and dotted lines
(γ = 2.0). The corresponding analytical solutions are indicated by cross, circle
and triangle symbols respectively.

is represented by the solid line. The mean is physically the average velocity of the free
particle in Brownian motion. The results obtained from DQMOM for the variance are
plotted against the analytic solution for the variance, M2 = 〈x(t)2〉−〈x(t)〉2, in figure 1(b).
As shown, the results obtained from DQMOM match the exact solution for the mean and
variance.

Due to the friction term, γ, it is expected that the velocity of the particle will decrease
to zero as time increases. As the friction increases, it is also expected that the rate of decay
to zero velocity should also increase. This qualitative explanation is verified quantitatively
by equation (13) and is clearly shown in figure 2(a), presenting the evolution of the mean
values of the Ornstein–Uhlenbeck process for three separate drift coefficients, γ, using
DQMOM. The evolution of the variance for the same drift values used in figure 2(a) is
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shown in figure 2(b). From the stationary solution, the values of the variance should
approach the value Q/γ. A larger value of γ not only results in a faster approach to
equilibrium, but also in a smaller equilibrium value.

The results in this section show that DQMOM can match exactly the transient
solution for a linear Fokker–Planck equation following the Ornstein–Uhlenbeck process.
Hence the accuracy of DQMOM for capturing transient solutions of linear Fokker–Planck
equations is validated. We will now apply DQMOM to the solution of nonlinear Fokker–
Planck equations and the results will be described in section 4.

4. Nonlinear Fokker–Planck equations

This section consists of three subsections. The comparison of results from DQMOM to the
analytic stationary and transient solutions of the Shimizu–Yamada model for muscular
contraction is presented in section 4.1. Section 4.2 compares the results from DQMOM to
those obtained by Drozdov [27] and Zhang et al [26] for the Desai–Zwanzig model. The
discussion of nonlinear Fokker–Planck equations finishes with section 4.3 which presents
results obtained from DQMOM for fermions and bosons, and compares the results to the
analytic stationary solution.

4.1. The Shimizu–Yamada model

The Shimizu–Yamada (SY) model [23, 50] was phenomenologically derived as a way to
describe muscular contractions from a hydrodynamic perspective. Muscular contractions
are caused by mutual sliding of myosin and actin filaments with cross-bridges extending
from the myosin to the actin filaments, and the force for the sliding motion is between the
terminal part of the cross-bridge and the actin [23, 50, 24, 2]. Shimizu and Yamada [23]
considered the cross-bridges to be a subsystem making up the supersystem which is the
sliding motion of the filaments. Relating this biological interaction of a subsystem with
a supersystem during muscular contraction to a hydrodynamic system, the cross-bridge
subsystem is analogous to particles in a fluid, and the filament supersystem is considered
to be the macroscopic fluid [23, 50, 24]. The model is then derived for the velocity of
certain muscular tissue [23, 50]. As there exist exact stationary and transient solutions
to this model, it is desired to compare DQMOM results to this nonlinear Fokker–Planck
equation as a benchmark test of DQMOM for a nonlinear system.

The Ito–Langevin equation for the Shimizu–Yamada model is given as [28]

dX(t)

dt
= −γX(t) − κ (X(t) − 〈X(t)〉) +

√
QΓ(t), (16)

where γ and κ make up the drift coefficient. From the Langevin equation, it becomes
apparent that when κ = 0, the Shimizu–Yamada model reduces to the linear Ornstein–
Uhlenbeck process. Also, from the Langevin equation it is clear that the transient mean
will behave in the same way for both the OU process and the Shimizu–Yamada model
no matter what the value of κ is. The Shimizu–Yamada model is then, in terms of the
probability density function [23, 51],

∂

∂t
f(x, t) =

∂

∂x
[γx + κ (x − 〈X〉)] f + Q

∂2

∂x2
f. (17)
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Figure 3. Results of (a) mean, M1, and (b) variance, M2, with γ = κ = Q = 1 for
the Shimizu–Yamada model, equation (17). The solid lines denote results from
DQMOM using four nodes and the symbols denote analytical results.

While the transient variance of the SY model is not the same as that of the OU
process, it is similar, the only difference being the addition of κ with γ, instead of just
γ in the denominator and in the exponential. The equations for the transient mean and
variance are given in equations (18) and (19) respectively [51]:

M1(t, t
′) = exp−γ(t−t′), (18)

M2(t, t
′) =

Q

γ + κ
[1 − exp−2(γ+κ)(t−t′)]. (19)

To validate the accuracy of DQMOM in representing the solution of the nonlinear
Fokker–Planck equation corresponding to the Shimizu–Yamada model, we consider four
quadrature nodes as before, with the same set of initial conditions on quadrature weights
and abscissas as selected for the OU processes. The moment constraints are also set to be
identical to those described earlier for the OU process. Computational results obtained
from DQMOM (solid line) compared with the analytical results given by equations (18)
and (19) are shown in figure 3. In one dimension, the coefficients γ, κ and Q were all
one and DQMOM used four quadrature nodes. As shown by figure 3(a) the DQMOM
result for the transient mean is in excellent agreement with the analytic solution for the
transient mean. Excellent agreement between DQMOM and the exact analytical solution
for the transient variance is also shown in figure 3(b). Now that the accuracy of DQMOM
for a simple nonlinear Fokker–Planck equation has been shown, it is desired to show that
DQMOM can also be used to obtain accurate results for complex nonlinear FPEs.

4.2. The Desai–Zwanzig model

The Desai–Zwanzig (DZ) model gives a more general description than the SY model
for muscular contractions and can be thought of as the velocity of multiple connected
oscillators [25, 2]. The idea that the DZ model describes multiple oscillators allows for
many applications, including a three-dimensional case where this model can describe
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Figure 4. Results of (a) mean, M1, and (b) variance, M2, with γ = b = 1,
κ = 2.0, and Q = 0.1 for the Desai–Zwanzig model, equation (22). The solid line
is from DQMOM, the diamonds are from Drozdov and Morillo [27], and the the
crosses are from Zwanzig and Desai [25].

oscillators arranged in a lattice. For this case, the oscillators represent the atomic forces
on atoms arranged in the lattice. The Ito–Langevin equation derived in [28] for the
Desai–Zwanzig model is

dX(t)

dt
= U ′(X, t) +

√
QΓ(t), (20)

where U ′ is the differential of the kinetic potential with respect to x, and is then given as

U ′(X, t) = γX(t) − bX(t)3 − κ(X(t) − 〈X〉). (21)

From the above equations, the FPE for the DZ model in terms of the probability
density function is given as

∂

∂t
f(x, t) = − ∂

∂x
[γx − bx3 − κ(x − 〈X〉)]f + Q

∂2

∂x2
f. (22)

The DZ model has the property that when κ = 0 it becomes a linear FPE and when
b = 0 it reduces to the Shimizu–Yamada model. Another property of the Desai–Zwanzig
model is that it displays strong bimodality. This was researched extensively by Drozdov
and Morillo [27] and Zhang et al [26] and their results are compared with those obtained
from DQMOM. It was unknown how well DQMOM could capture this bimodality, which
is one reason for the Desai–Zwanzig model being chosen to study. Another reason for
choosing this model is the large number of applications it has, so an efficient method to
solve the DZ model is desired.

While the DZ model does possess transient bimodality, it does not appear until the
diffusion coefficient is small compared to the drift coefficient. An example of this is
clearly seen in figure 4 where Q = 0.1 and κ = 2.0. Figure 4(a) shows the comparison of
the mean computed by DQMOM, represented by a solid line, to a sixth-order cumulant
moments method [25] and a finite-differencing scheme [25, 27], represented by crosses and
diamonds, respectively. Zwanzig and Desai obtained their results using a sixth-order
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Figure 5. Results of (a) mean, M1, and (b) variance, M2, with γ = b = 1.0,
κ = 0.5, and Q = 0.01. In each subfigure, DQMOM (solid line), cumulant
moment method [27] (crosses), and DAF [26] (diamonds) results are compared.

cumulant moment method which has the fastest convergence time out of the three, and
reaches the same stationary solution for the mean as the other two methods. The finite-
differencing scheme developed by Drozdov and Morillo [27] to analyze the Desai–Zwanzig
model has the slowest convergence time. DQMOM is shown to be just as accurate for the
stationary solution, and is close to the other methods during the transient behavior.

The variance of the Desai–Zwanzig model is illustrated in figure 4(b) using the same
values for the drift and diffusion as in figure 4(a). All three of the methods obtain the same
maximum transient variance value, but spend different times at that value. The cumulant
moment method appears to have the fastest convergence time, leaving the maximum the
soonest and converging to the lowest stationary variance. The finite-differencing scheme
stays the longest at the maximum, and reaches the largest stationary mean value. All three
of these methods follow the same trend with DQMOM following the cumulant moment
method more closely, but the results of DQMOM fall in between the results from the other
two methods.

As shown in figures 4(a) and (b), our moment method (i.e. DQMOM) works well
for monostable systems. As the DZ model exhibits bistability under certain conditions, it
would be interesting to investigate whether DQMOM can indeed capture such behavior. It
is shown in figure 5, where κ = 0.5 and Q = 0.01, that DQMOM is indeed able to capture
this bistability. The evolutions of mean and variance are shown in figures 5(a) and (b)
respectively, where the results obtained from DQMOM are compared with those obtained
by Desai and Zwanzig [25] and Zhang et al [26]. Zhang et al [26] obtained their results by
applying a distributed approximating functional (DAF) based method using a polynomial
of degree 54 to approximate the Dirac delta function, δ(x−x′). Note that the predictions of
transient behavior for mean, M1, and variance, M2, obtained from the cumulant moment
method are qualitatively different (and inaccurate) compared to DAF and DQMOM.
This discrepancy is due to known limitations [26, 27] of the cumulant moment method
in capturing transient bimodality, although the cumulant moment method works well for
systems that remain monostable for all time [26, 27]. For bistable systems, the cumulant
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moment hierarchy is known to converge very slowly. While the saturation plateau values
and saturation time scales for M2 obtained from DAF and DQMOM are in reasonable
agreement, the corresponding values obtained from the cumulant moment method are
different (the saturation time scales for M1 are observed to be much shorter and the
transient plateau value for M2 is much smaller for the cumulant moment method).

Note that the comparison shown in figure 5 only required that 15 quadrature nodes
were used in DQMOM. This is equivalent to 30 variables (including 15 quadrature weights
and 15 abscissas/locations of the delta functions) in DQMOM (to be compared with the
computational cost of using a 54 degree polynomial to approximate the delta function
in DAF). In addition to the number of quadrature nodes to be specified in DQMOM
to achieve these results, the initial mean and variance also had to be set. The initial
mean value was given by Zhang et al [26] as x0 = 10−4, but the initial variance was
not given. Knowing that DAF approximates a Dirac delta function, the initial variance
can be set for DQMOM. For this simulation a value of 10−11 for the initial variance was
used. It was observed, however, that as the initial variance was increased, the transient
bimodality existed for longer. This is most likely due to the sensitivity of the system to
initial conditions.

To analyze the characteristics of the bimodality further, the probability density
function (PDF) at various time steps was computed from the moments using a maximum
entropy method [52], subject to moment constraints. In our approach the moments are
obtained via DQMOM and the entropy is maximized subject to the chosen moment
constraints. The kinetic and effective potentials [26] are shown for reference in figures 6(a)–
(d) to show some characteristic features of the Desai–Zwanzig model which has an unusual
bimodality in that there is no ‘flat’ region in the kinetic potential. Drozdov and Morillo [27]
were among the first to observe this behavior, which was confirmed by Zhang et al
[26]. The case of κ = 0.5 and Q = 0.01 was analyzed for comparison and is shown
in figures 6(a)–(d), where the diamonds represent the results from Zhang et al [26], and
the solid line those from DQMOM. The dotted line is the kinetic potential, and the dashed
line is the effective potential, V (x, t), given below:

V (x, t) =
[x3 + x − κ(x − 〈X(t)〉)]2

4Q
− 1

2
(3x2 + κ − 1). (23)

The PDFs show good agreement at t = 1 s (figure 6(a)), and t = 72 s (figure 6(c))
while for t = 4 s (figure 6(b)) the PDFs differ slightly. At the time t = 105.5 s (figure 6(d)),
however, the PDFs differ greatly. DQMOM has already reached an equilibrium value at
t = 105.5 s, while the method of Zhang et al [26] has not yet reached the equilibrium
value, but is close.

Even though the bistability should last longer as the diffusion decreases compared to
the drift term, for very small values of the diffusion this is not the case. This is captured
by DQMOM, Monte Carlo and by the DAF method used by Zhang et al [26]. According
to Zhang et al [26] this is due to the nonlinearity of the system being much larger for this
case than for the other cases. This large nonlinearity dominates the physical process, only
allowing a very short-lived bimodality. For DQMOM to capture this and obtain a similar
transient solution to Zhang et al [26] the number of quadrature nodes was again 15, and
the initial variance value was 10−11. The DZ model for the mean and variance shown
in figure 7 uses γ = 1.0, κ = 0.5, and Q = 0.0001. Monte Carlo is introduced to show
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Figure 6. The plots show the PDF, f (solid line), the effective potential, V
(dashed line), and the kinetic potential (dotted line) from DQMOM. Results for
the PDF from Zhang et al [26] are shown by diamonds with γ = b = 1.0, κ = 0.5,
Q = 0.01, and 〈x(0)〉 = 10−4. (a) t = 1.0 s, (b) t = 4.0 s, (c) t = 72 s, and
(d) t = 105.5 s.

the efficiency of DQMOM in obtaining a solution. This Monte Carlo code was written to
solve the equivalent Langevin equation for the Desai–Zwanzig model and uses one million
samples. Using one processor, DQMOM was able to obtain a solution in approximately
3 min of computational time. For the same values of γ, κ and Q, it took Monte Carlo
18 min of computational time using 32 processors and one million samples. Due to the
sensitivity of the system to initial conditions, the methods do not exactly match during
their evolution. However, their evolutions are close, and have the same stationary values.
Also, since the diffusion term is small, this case is more computationally intensive to
maintain sufficient accuracy.

While the Desai–Zwanzig model was more complex than the Shimizu–Yamada model,
they are both equations which describe muscular contractions. A nonlinear Fokker–Planck
equation for a different application is desired to show the versatility of DQMOM. The
next equation studied is a Fokker–Planck equation for particles which follow Fermi–Dirac
statistics.
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Figure 7. Results of (a) mean, M1, and (b) variance, M2, for the Desai–Zwanzig
model with γ = b = 1.0, κ = 0.5, and Q = 0.0001 corresponding to DQMOM
(lines), the Monte Carlo method (circles), and DAF [26] (triangles).

4.3. Fermions and bosons

Fermions or particles following Fermi–Dirac statistics (FD) obey the Pauli exclusion
principle (EP) which states that for systems composed of either elementary material
particles or atoms and molecules composed of an odd number of them, no quantum
energy state may contain more than one particle. In contrast, particles that obey Bose–
Einstein (BE) statistics or bosons are not constrained by the exclusion principle and a
large number of particles can occupy the same quantum state. The behavior of particles
obeying a generalized exclusion–inclusion Pauli principle (EIP) has also been studied
by Kaniadakis and Quarati [6, 7] via the introduction of (a) a continuous parameter κ
ranging from −1 to 1 to represent the degree of indistinguishability (or classicality) of
the particles and (b) enhancement or inhibition factors based on occupation numbers.
These authors also derived the corresponding nonlinear Fokker–Planck equations (based
on enhancement and inhibition factors) and the underlying stationary distributions, which
give FD statistics for κ = −1, BE statistics for κ = +1, Maxwell–Boltzmann statistics for
κ = 0 and intermediate statistics for all other values. In this section, we are interested
in exploring the transient and stationary solutions of the Fokker–Planck equations for
fermions using DQMOM. The FPE for particles obeying Fermi–Dirac statistics and Bose–
Einstein statistics obtained from [6, 7] is given below, where the upper sign corresponds
to the BE and the lower sign corresponds to the FD case:

∂

∂t
n(t, v) = − ∂

∂v
k1(v)[1 ± n(t, v)]n(t, v) + k2

∂2

∂v2
n(t, v), (24)

where

k1 = cv, k2 =
c

βm
, β =

1

kT
(25)

and k is the Boltzmann constant, T is the absolute temperature and m is the mass. Note
that a similar nonlinear Fokker–Planck equation can also be derived using momentum
space instead of velocity space.
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Taking the flux of the particles into account and making the energy a variable, from
equation (24) Kaniadakis [7] derived the following equation:

∂n(t, E)

∂t
=

2c

E1/2

∂

∂E

(
E3/2

{
n[1 ± n] +

1

β

∂n

∂E

})
. (26)

Introducing the occupational probability, p(t, E), into equation (26) gives the
following Fokker–Planck equation which is solved using DQMOM:

∂p

∂t
= −2c

∂

∂E

[

−
(

E +
1

2β
±

√
E

θ
p

)

p

]

+
2c

β
E

∂2p

∂E2
, (27)

where θ = 2π(2/m)3/2 and comes from the fact that the particles are spherical. The
derivation for this is found in the appendix.

The stationary solution for equation (27) is given by

pst(E) =
θE1/2

exp{[E − μ]/kT} ∓ 1
, (28)

where μ is the integration constant. When the temperature is less than the Fermi
temperature, μ can be approximated as the Fermi energy.

To compare the results for DQMOM to the analytic stationary moment results
obtained from equation (28), the integration constant had to be determined numerically
using MapleTM. Once μ was determined, the moments of equation (28) were taken and
the results compared to DQMOM. Transient and stationary moment results obtained
from DQMOM (for kT = 1 and θ = 1) are compared to the analytic stationary
moment results in figure 8. To increase the accuracy of DQMOM, a total of nine nodes
were required. Unlike the previous applications of DQMOM where non-negative integer
moment constraints were used, this application required constraints on the fractional
moments as well. Constraints on the evolution of (raw) fractional moments, 〈Er〉, for r
ranging from 0 to 4.25, in increments of 0.25 were used in DQMOM.

5. Conclusion

In this work, we present (for the first time) the development and application of an
efficient and accurate computational method, the direct quadrature method of moments
(DQMOM) for the solution of nonlinear Fokker–Planck equations. DQMOM features the
representation of a probability density function using a finite collection of Dirac delta
functions characterized by unknown quadrature weights and abscissas. The weights and
abscissas are adaptive in time and are obtained from constraints on the evolution of
generalized moments. It may be noted that in the case of a one-dimensional nonlinear
Fokker–Planck equation (where the drift and diffusion coefficients can be functions of the
underlying probability density function), a DQMOM based numerical solution using M
nodes (where each node i is characterized by a weight wi(t) and abscissa location xi(t))
involves solution of 2M evolution equations for moments (e.g. {M0, M1, . . . , M2M−1}) from
which the evolution of (M) weights and (M) abscissa locations can be determined (for
all time). The time adaptive feature of these quadrature nodes (in contrast to fixed node
quadrature) is particularly useful in improving the computational efficiency, especially
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Figure 8. Transient and stationary behavior of (selected integer and fractional)
raw moments obtained from equation (27), which describes the distribution
of particles obeying Fermi–Dirac statistics. The dashed lines represent exact
stationary solutions obtained from a stationary Fermi–Dirac distribution. For
the cases shown here, kT = 1.0 and θ = 1.0.

in the context of problems where the underlying distributions undergo significant
changes during their evolution under the influence of stochastic dynamics (with or
without stochastic feedback). Generalization of the DQMOM formulation for solution
of multivariate nonlinear Fokker–Planck equations is also developed in this paper (in
section 2). Although DQMOM involves the evolution of moments, it is shown that
important features of the probability density functions (e.g. multimodal probability
distributions) can be reconstructed accurately based on the moments using the maximum
entropy method.

Using no more than four quadrature nodes, DQMOM was applied to the linear
Fokker–Planck equation describing the Ornstein–Uhlenbeck process. Then DQMOM was
applied to the nonlinear Fokker–Planck equations describing the Shimizu–Yamada model,
the Desai–Zwanzig model, and particles which obey Fermi–Dirac and Bose–Einstein
statistics. Where available, the results have been compared with analytic transient and
stationary solutions of the mean and variance, which showed excellent agreement. For
the Desai–Zwanzig model, DQMOM was also able to capture the long-lived transient
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bimodality, which a cumulant moment method was unable to capture. This bimodality
was captured by both a finite-differencing scheme, which is more computationally
intensive, and a DAF method using a polynomial approximation of Dirac delta functions of
degree 54 [26]. In addition to capturing the long-lived bimodality, DQMOM was also able
to efficiently capture a numerical solution of the Desai–Zwanzig model when the diffusion
coefficient was small relative to the drift coefficient. This efficiency is most apparent when
compared to the computational time and resources required by Monte Carlo. For the
solution of most of these FPEs, four quadrature nodes were all that was required. When
capturing the bimodality present in the DZ model 15 nodes were required, and nine were
required for capturing the transient solution of the Fermi–Dirac FPE. The solution of the
Fermi–Dirac FPE also required constraints on the fractional moments, which have been
used for the first time in DQMOM.

It was shown in this work that DQMOM can be used to efficiently solve nonlinear
Fokker–Planck equations, appearing in a wide range of disciplines. Areas where DQMOM
may be beneficial include: plasma Fokker–Planck equations, radiation Fokker–Planck
equations, quantum Fokker–Planck equations, and others. In future work DQMOM
will be applied to the Fokker–Planck equation for particles following Bose–Einstein
statistics, transport phenomena in plasmas, the nonlinear Schödinger equation and
radiation hydrodynamics.

Appendix. Derivation of the Fokker–Planck equation governing fermions and
bosons

The appendix shows the derivation of the Fokker–Planck equation for the Fermi–Dirac
statistics used by DQMOM from the equation derived by Kaniadakis [7].

Starting with equation (26), we have

∂n(t, E)

∂t
=

2c

E1/2

∂

∂E

(
E3/2

{
n[1 ± n] +

1

β

∂n

∂E

})
, (A.1)

and using the equation for the occupational probability, p,

p(t, E) = 2π

(
2

m

)3/2 √
En(t, E), (A.2)

the energy Fokker–Planck equation for the occupational probability density can now be
derived.

We define θ as

θ ≡ 2π

(
2

m

)3/2

. (A.3)

Solving equation (A.2) for n, and substituting that into equation (A.1) yields

∂

∂t

(
p

θ
√

E

)
=

2c

E1/2

∂

∂E

[
E3/2 p

θ
√

E

(
1 ± p

θ
√

E

)
+

E3/2

β

∂

∂E

(
p

θ
√

E

)]
. (A.4)
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Expanding equation (A.4) gives

∂

∂t

(
p

θ
√

E

)
=

2c

E1/2

∂

∂E

[
Ep

θ
± E1/2p2

θ2
+

E3/2

β

1

θ
√

E

∂p

∂E
− 1

2

1

β

p

θ

]
. (A.5)

Multiplying both sides by θ
√

E and expanding the partial derivative yields

∂p

∂t
= 2c

∂

∂E

[

Ep − 1

2β
p ±

√
E

θ
p2

]

+
2c

β

∂p

∂E
+

2c

β
E

∂2p

∂E2
. (A.6)

Further simplification of equation (A.6) gives equation (27), as

∂p

∂t
= −2c

∂

∂E

[

−
(

E +
1

2β
±

√
E

θ
p

)

p

]

+
2c

β
E

∂2p

∂E2
. (A.7)
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