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We discuss the arbitrary polynomial chaos (aPC), which has been subject of research in a few recent
theoretical papers. Like all polynomial chaos expansion techniques, aPC approximates the dependence
of simulation model output on model parameters by expansion in an orthogonal polynomial basis. The
aPC generalizes chaos expansion techniques towards arbitrary distributions with arbitrary probability
measures, which can be either discrete, continuous, or discretized continuous and can be specified
either analytically (as probability density/cumulative distribution functions), numerically as histogram
or as raw data sets. We show that the aPC at finite expansion order only demands the existence of
a finite number of moments and does not require the complete knowledge or even existence of a
probability density function. This avoids the necessity to assign parametric probability distributions
that are not sufficiently supported by limited available data. Alternatively, it allows modellers to choose
freely of technical constraints the shapes of their statistical assumptions. Our key idea is to align the
complexity level and order of analysis with the reliability and detail level of statistical information
on the input parameters. We provide conditions for existence and clarify the relation of the aPC to
statistical moments of model parameters. We test the performance of the aPC with diverse statistical
distributions and with raw data. In these exemplary test cases, we illustrate the convergence with
increasing expansion order and, for the first time, with increasing reliability level of statistical input
information. Our results indicate that the aPC shows an exponential convergence rate and converges

faster than classical polynomial chaos expansion techniques.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The lack of information about the properties of physical systems,
such as material parameters or boundary values, can lead to model
uncertainties up to a level where the quantification of prediction
uncertainties may become the dominant question in application
tasks. Most physical processes appearing in nature are non-linear
and, as a consequence, the required mathematical models are non-
linear. Traditional and very well-known approaches for stochastic
simulation are brute-force Monte Carlo simulation (e.g. [29]) and
related approaches (e.g. latin hypercube sampling [15]). Unfortu-
nately, for large and complex models, Monte Carlo techniques
are inadequate. Even single deterministic simulations may require
parallel high-performance computing. As a reasonably fast and
attractive alternative, stochastic model reduction techniques based
on the polynomial chaos expansion can be applied.

Polynomial chaos expansion. A large number of studies for
diverse applications is based on the polynomial chaos expansion
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(PCE) introduced by Wiener [52] in 1938. The chaos expansion
offers an efficient high-order accurate way of including non-linear
effects in stochastic analysis. PCE can be seen, intuitively, as a
mathematically optimal way to construct and obtain a model
response surface in the form of a high-dimensional polynomial in
uncertain model parameters. The chances and limitations of
polynomial chaos and related expansion techniques were dis-
cussed in [3]. The paper [43] showed how to use PCE for robust
design under uncertainty with controlled failure probability.
Recently, the sensitivity analysis based on PCE decomposition
[5,9,34] has received increased attention. The papers [42,45]
demonstrate correspondingly how classical PCE and its new aPC
version can deliver the information required for global sensitivity
analysis at low computational costs. Also, FORM and SORM
methods (e.g. [17]) could be extended to higher-order accuracy
via PCE, however, this has not yet been achieved.

The PCE technique can mainly be sub-divided into intrusive and
non-intrusive approaches for the involved projection integral. The
intrusive approach requires manipulation of the governing equa-
tions and can sometimes provide semi-analytical solutions for
stochastic analysis. The best-known method from this group is the
stochastic Galerkin technique, which originated from structural
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mechanics [20] and has been applied in studies for modeling
uncertainties in flow problems [19,30,58]. However, because of the
necessary symbolic manipulations, the procedure may become very
complex and analytically cumbersome. For that reason, non-intru-
sive approaches like sparse quadrature [23] and the probabilistic
collocation method [16,26] have been receiving increasing attention.

Polynomial chaos expansion for non-Gaussian distributions. The
original PCE is based on Hermite polynomials, which are optimal
for normally distributed random variables. Unfortunately, natural
phenomena and uncertainty in engineering are often not that
simple, and the distribution of physical or model parameters
often cannot be considered Gaussian. However, it is possible to
put into conformity a physical variable with a normal variable
by an adequate transformation called Gaussian anamorphosis
or normal score transformation (e.g. [48]) or approximate para-
metric transformations [11]. Using transformed variables for
expansion cannot be considered an optimal choice because it
leads to slow convergence of the expansion (e.g. [57,58]). In
recent years, the PCE technique has been extended to the general-
ized polynomial chaos (gPC), based on the Askey scheme [2] of
orthogonal polynomials by [57,58]. The gPC extends PCE towards
a counted number of parametric statistical distributions (Gamma,
Beta, Uniform, etc.). However, application tasks demand further
adaptation of the chaos expansion technique to a larger spectrum
of distributions. In [50,32], the authors presented a multi-element
generalized polynomial chaos (ME-gPC) method. It is based on a
decomposition of the random space into local elements, and
subsequently implements gPC locally within the individual ele-
ments. An error control theory for the ME-gPC method was
developed in [51] for elliptic problems. The ME-gPC is the first
adaptive piecewise approach helping to deal with discontinuity of
distributions or of model responses, and provides the desired
adaptation to a wide spectrum of distributions. The ME-gPC
conception offered in [50] provides a flexible tool for stochastic
modeling, but interprets these data as an exactly known prob-
ability distribution, and considerably increases the computational
effort for multidimensional stochastic problems.

Limited availability of data. The methods discussed above
assume an exact knowledge of the involved probability density
functions. Unfortunately, information about the distribution of
data is very limited in realistic engineering applications, especially
when environmental influences or natural phenomena are
involved, or when predicting or engineering the environment
(see also [46]). Applied research on (partially) natural or complex
realistic systems often faces the problem of limited information
about the model parameters and even about their probability
distributions. For example, material properties of underground
reservoirs are insufficiently available to provide a full picture of
their distribution. Moreover, the statistical distribution of model
parameters can be nontrivial, e.g., bounded, skewed, multi-modal,
discontinuous, etc. Also, the dependence between several uncer-
tain input parameters might be unknown, compare [25]. Depend-
ing on the modeling task and circumstances, statistical information
on model parameters may be available either discrete, continuous,
or discretized continuous, they could exist analytically as PDF/CDF
or numerically as histogram. The key shortcoming of current PCE
approaches in this context is twofold. First, they are heavily
restricted in handling most of these conditions, and second they
assume that this information is complete and perfect.

Small samples or data sets do not contain perfect or complete
information on the probability distribution of model input para-
meters. For example, the study [46] demonstrated that limited
information on input statistics introduces its own type of uncer-
tainty in quantifying statistical model output distribution. Also,
any attempt to construct probability density functions of any
particular shape from samples of limited size or from sparse

information introduces additional subjectivity into the analysis,
which bears the severe risk of leading to biased results. In a
related application study [44], we illustrate that errors or addi-
tional (and mostly subjective) assumptions in data interpretation
can severely bias uncertainty quantification and risk assessment,
and hence could lead to failing designs. Methods of maximum
entropy [18], closely related to known as the exponential poly-
nomial method [13] in reliability engineering, and minimum
relative entropy [56] are often used in the engineering sciences
to construct a probability distribution from sparse information
(mostly in the form of a few statistical moments and bounds) that
may be available from different instances of the same object or
from different objects with supposedly similar properties or
conditions. Although these two methods are designed to mini-
mize subjectivity and even though they can preserve the sample
moments up to arbitrary order, they are heavily debated within
the statistical community (e.g. [33]). In fact, they still introduce
new assumptions and impose a specific assumption on distribu-
tion shape. The same is true for other typical methods to
construct PDFs from moments in the field of reliability engineer-
ing, such as the Hermite polynomial transformation [53]. Such
methods, however, are more subjective than entropy-based
methods, since they cannot keep the original sample moments
up to higher orders unchanged. If one still desires to fit a PDF as a
pragmatic tool to filter raw data against noise, one should have
full freedom in the chosen distribution shapes, not restricted by
the technical constraints of PCE or gPC.

Approach and novelties. To overcome the first part of the
problem, we claim that it is not even necessary to cast the
available statistical information into probability density func-
tions. Instead, the available information can directly and most
purely be used in stochastic analysis, when using our data-driven
formulation of PCE, see Section 2. We argue that applied tasks
demand direct handling of arbitrary data distributions without
additional assumptions for stochastic analysis. To overcome the
second part of the problem, we suggest to perform a robustness
analysis around the PCE (here: aPC) to assess the impact of
incomplete statistical input information. Overall, we propose to
align the complexity level and order of analysis with the relia-
bility and detail level of statistical information on the input
parameters.

The concept we propose in the current paper is to approach
the problem in a highly parsimonic and yet fully data-driven
description of randomness. We draw attention to the arbitrary
polynomial chaos (aPC) that has recently been touched upon in a
few theoretical papers. Two studies focusing on proofs of exis-
tence were published in the mathematical stochastics community
[14,37]. Constructing the aPC polynomials by Gram-Schmidt
orthogonalization was presented in the field of aerospace engi-
neering [55,54]. These studies did not discuss the aPC in the light
of data availability, limited reliability of data and assumptions in
data interpretation.

The aPC extends chaos expansion techniques by employing a
global polynomial basis for arbitrary distributions of data. In a
certain sense, it allows to return back to a global basis with the
new freedom of arbitrary polynomial chaos that the ME-gPC
[50,51] uses only within piecewise local elements.

The most important property of the aPC that we will install
and exploit in the current paper is that the aPC can work with
probability measures that may be (if necessary) implicitly and
incompletely defined via their moments only, and that it requires
no additional information. In fact, our equations will show
explicitly (in closed form) that statistical moments are the
only source of information that is propagated in all polynomial
expansion-based stochastic approaches. Thus, exact probability
density functions do not have to be known and do not even have
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to exist. For finite-order expansion, only a finite number of
moments has to be known. This opens the path to data-driven
applications, where data samples with limited size merely allow
inference of a few statistical moments, but are not sufficient to
support, without a substantial degree of subjectivity, the assump-
tion of an exactly known probability measure (see discussion in
Section 4.1). Fully in line with the demands of application tasks,
the statistical data of modeling parameters can be specified either
analytically (as probability density/cumulative distribution func-
tions), numerically as histogram as a raw data sets.

In Section 2, we deliver the necessary mathematical material,
and provide the necessary properties and proofs in Section 3. The
convergence rate of the aPC will be illustrated in the context of an
example problem in Section 4. How to address issues arising from
the incomplete and inaccurate character of raw data sets used as
statistical input information is discussed and illustrated in Section 5.

2. The arbitrary polynomial chaos expansion
2.1. One-dimensional aPC

We will consider a stochastic process in the probability space
(Q,A,I') with space of events (2, g-algebra A and probability measure
I', see e.g. [22]. Let us consider a stochastic model Y = f(&) with
model input & € 2 and model output Y. For a stochastic analysis of Y,
the model f(£) may by expanded as follows:

d
YO~ > aPYO), 1)
i=1
where d is the order of expansion, c; are the expansion coefficients
that are determined by Galerkin projection, numerical integration or
collocation, and P?(&) are the polynomials forming the basis
(P, ... ,PD} that is orthogonal (or even orthonormal) with respect
to the measure I" (see Eq. (6)). The only difference between aPC and
previous PCE methods is that the measure I" can have an arbitrary
form, and thus the basis {P©, ... P} has to be found specifically for
the probability measure I" appearing in the respective application.
This open the path to data-driven applications of aPC. If a
function Y(¢) is expanded in the orthonormal polynomial basis
(PO, ... P then characteristic statistical quantities of Y(¢) can
be evaluated directly from the expansion coefficients c; For
example, the mean and variance of Y(¢) are given by the following
simple analytical relations:

N
Hy=C1, oy=> ci. 2
i=2

Notice that, in the current paper, we will focus on mono-dimen-
sional stochastic input (i.e., only one uncertain parameter) for
simplicity, but without loss of generality (see Section 2.2).

2.2. Multi-dimensional aPC

Most realistic applications feature multi-dimensional model
input ¢, i.e. E={&,&,,...,Ey}). Here, the total number of input
parameters is equal to N. The model parameters can be design or
control parameters that can be chosen by the operator of a
system, and uncertain parameters that describe our (incomplete)
knowledge of the system properties. Hence, to investigate the
influence of all input parameters &;,&,, ... on the model output Y,
the model output Y can be represented by a multivariate poly-
nomial expansion as follows

M
Y(f]vav---véN)% Zci(pi(élvézv---véN)- (3)

i=1

Here, the coefficients ¢; quantify the dependence of the model
output Y on the input parameters &;,&,, ...,Ey. The number M of
terms in the expansion (3) depends on the total number of input
parameters N and on the order d of the expansion, according to
the combinatory formula M = (N+d)!/(N!d!). The function &; is a
simplified notation of the multi-variate orthogonal polynomial
basis for &;,&,,...,&y. Assuming that the input parameters within
1,8, ..., ¢y, are independent (e.g. [20]), the multi-dimensional
basis can be constructed as a simple product of the corresponding
univariate polynomials

N i
D1l = [P CEan i,

=1

N
N d<M, i=1,...N, 4)
j=1

where oc]’ﬁ is a multivariate index that contains the combinatoric
information how to enumerate all possible products of individual
univariate basis functions. In other words, the index o can be seen
as M x N matrix, which contains the corresponding degree (e.g. O,
1, 2, etc.) for parameter number j in expansion term k.

Let us mention that, in the current state of science for
polynomial chaos expansions, the random variables have to be
statistically independent or may be correlated in a linear fashion
only. Linear correlation can be removed by adequate linear
transformation, such as the KL-expansion [26], also called proper
orthogonal decomposition [28] or principal component analysis
[31] in other disciplines. Construction of a joint polynomial basis
for statistically dependent random variables beyond linear depen-
dence is a very important issue for future research.

2.3. Stochastic analysis based on PCE

Egs. (1) and (3) can be interpreted as a model response surface
for Y=f(&,&,,...,&y), and represent the basic key element for:
(I) uncertainty quantification; (II) robust design and (III) global
sensitivity analysis.

(I) The simplest way to quantify uncertainty is via the
analytical relations, see Eq. (2). However, in order to evaluate
more complex statistical quantities, Monte Carlo simulation can
be performed directly and immensely fast on the obtained
polynomial given by Eq. (3) (see e.g. [44,49]). For Monte Carlo
simulation in the absence of precise statistical information,
Oladyshkin et al. [44] discuss and suggest the maximum entropy
method for PDF estimation.

(I) Including design and control parameters together with
uncertain parameters in expansion (3) provide an effective basis
for robust design. The paper [43] showed how to use PCE for robust
design under uncertainty with controlled failure probability.

(Ill) Expansion (3) also delivers the information required for
global sensitivity analysis including simultaneous influences of
different modeling parameters at low computational costs. For
example, Sobol indices [35,36] or Weighted indices [45] can be
computed directly from the coefficients o;.

3. Moment-based analysis

Let us define the polynomial P®(¢) of degree k in the random
variable ¢ e Q:

k

PR =3"p¢, k=04, (5)

i=0

where p* are coefficients in P¥(¢).
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Our goal is to construct the polynomials in Eq. (5) such that
they form an orthonormal basis for arbitrary distributions. The
arbitrary distributions for the framework presented in our paper
can be either discrete, continuous, discretized continuous, speci-
fied analytically, as histograms, raw data sets or by their
moments. In this paper, we exploit this freedom and show how
to treat any given probability distribution solely defined by the
statistical moments of &. For limited-order expansion, this allows
to work with arbitrary probability measures that are implicitly
and incompletely defined by a limited number of moments only.

The goals of this section are to: (1) Derive a constructive rule
to obtain the orthonormal basis which clarifies that only
moments of £ are important, (2) show that finite-order expansion
only requires a finite number of moments, (3) provide conditions
for the existence of an aPC even for sampled data.

3.1. Constructing the aPC from moments

Orthonormality for polynomials P® of degree k and P® of
degree [ is defined as

[ POOP@Ar@=ou vki=0d. ©
JEeQ

where 0y, is the Kronecker delta. For the further development, we
will make use of only the orthogonality condition

[ Po@P@are=o vkzl @
EeQ

Instead of the normality condition, we will at first introduce an
intermediate auxiliary condition by demanding that the leading
coefficients of all polynomials be equal to 1

pl=1 vk )

The following conditions apply for the orthogonal polynomial
basis (PY(&)} (k= 0,d). First, for the zero-degree polynomial P©,
we obtain directly from (7) and (8) that p{’ =1, which also
satisfies the normality condition (6). The orthogonality conditions
for PV are as follows:

1 .
/ Py [Z P?”f‘} ar) =
ce@ i=0

= E)

This procedure can be continued for the construction of all
following polynomials to obtain an orthogonal basis. The general-
ized conditions of orthogonality for any polynomial P® of degree
k with all lower-order polynomials can be written in the following
form:

k .
[ [Z pﬁ’”é’} dre)=o,
ceq i=0

k .
/ {Z pi" “’} {Z pﬁ»"’é’] r )=
ceQ i=0

k-1 i k i
ﬁ {Z pE"‘”c’f’} [Z pﬁ"’cf’} dr=o,
cE€ i i=0

Qlizo

p=1. (10)

The system of equations given by (10) is closed and defines the
unknown polynomial coefficients p(k) (i=0,k) of the required
basis. Obviously, the above definition of the orthogonal polyno-
mial of degree k uses the definition of all polynomials of lower
degrees O,...,k—1. We will use that particular property to
simplify the system in Eq. (10) by substituting the first equation
into the second, the first and the second into the third, and so on.
In addition, we will apply condition (8). Hence, without loss of
generality, the system in Eq. (10) can be reduced to

/ Zp“"c dr( =0,

k .
[ > petaro=o,
€eli—o

/ Zp(k)él+l< 1 dr(é)_

pl=1. (11)

Note that this rearrangement defines the kth orthogonal poly-
nomial independent of all other polynomials from the orthogonal
basis. The kth raw moment of the random variable ¢ is defined as

i = / & dre). (12)
e

This allows to re-write Eq. (11) based on only the raw moments
of &:

Z P =0,

Z p(k),uwrl =0,

Zp, Hi g 1—

Y =1. (13)

Alternatively, the system of linear equations (13) can be written
in the more convenient matrix form:

(k)

Ho My Ik pg{) 0
My My Mgy pl 0
: o : =1 (14)
M1 Mg Hog_q Pk_1 0
0 0o ... 1 p(k) 1
k

As a direct consequence, an orthogonal polynomial basis up to
order d can be constructively defined for any arbitrary probability
measure I' under the following conditions: the coefficients pf.k)
can be constructed if and only if the square matrix of moments in
the left-hand side of Eq. (14) is not singular. In the Appendix, we
provide a proof for this under the condition that the number of
support points in the distribution of ¢ is greater than k and that all
moments up to order 2k—1 are finite. This holds for all continuous
random variables, under the condition that 2k—1 moments exist.
If the moments of ¢ are evaluated directly from a data set of
limited size or from a discrete probability distribution featuring a
finite number of possible outcomes, there need to be k or more
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distinct values in the data set or distribution. All moments are
always finite if no element of the data set is infinite.

From the Egs. (7) to (14), it becomes evident that moments are
the only required form of information on input distributions for
constructing the basis and thus to operate the aPC. For finite-
order expansion, a finite number of moments is sufficient. Hence,
if a raw data set is the only form of available input information,
computing its moments is sufficient, and estimating a full PDF
from the data is not necessary. The same is true if only a limited
number of moments are provided as input characterization. Also,
arbitrary parametric distribution can be addressed, simply by
working with their moments. This implies that any difference
between distributions that becomes visible only in moments of
order higher than 2d—1 will be invisible to any order d poly-
nomial expansion technique.

3.2. Explicit form of data-driven polynomial chaos

In this section, we present an analytical explicit form of the
coefficients for moderate degrees of polynomials, which can be
easily used for diverse data-driven application tasks, such as
uncertainty quantification, global sensitivity analysis and prob-
abilistic risk assessment. The coefficients for the higher degrees of
polynomials can be obtained using the implicit scheme presented
above (14), via recursive relations (see [1, Chapter 22]), via Gram-
Schmidt orthogonalization (see [55,54]) or via the Stieltjes pro-
cedure [39].

To simplify the explicit form of coefficients, we will assume a
normalized distribution of data with zero mean and unit variance
after linear transformation

/ (é_,u)
=" 1>
which leads to a centralization and standardization of all moments.

Thus, the orthogonal polynomial basis (POE) (k= 0,d) can be
presented as

PO (&) = Zp«i)(f '“> (16)

where p® are the coefficients of polynomial P’ defined explicitly
through the raw moments of & from the relations below. Due to
Eq. (15), the raw moments of & are related to the central
moments i, (&) of & via:

(&) = T OO,
Coefficients for polynomial of 0 degree

PO =1. (17)
Coefficients for polynomial of 1st degree

py’ =0, pi’= (18)
Coefficients for polynomial of 2nd degree

pe=-1, pP=—ps P = (19)

Coefficients for polynomial of 3rd degree

(3)

Py = 13— 18+ s pig—ps, DY = —ps s + 13— g+ i3 g,

P(z3) = —H3 g+ Hs— U3,

3
Py

=1—ps+483, (20)
Coefficients for polynomial of 4th degree

PG = HAMs g+ 13 7 — LG HE— 243l + 210G Hs — 113,

P = — 13+ 13 13— 1 g s + g s s + M3 s s

- 3 s g — s ol — LG s + 13 Mo — M3 143,

DS = —HGHE + Ms Ly + a3 — MG g + 13 s — M s s,

P = 13— sty — 13 1ty + 13+ g,

4) _

Py = — 15+ U516 —2 ks g + 115 @21

3.3. Normalization

The above orthogonal polynomial basis can be used directly for
analysis. However, an orthonormal basis has more useful proper-
ties (see Eq. (2) and Section 3.4). Thus, the next step is to
normalize the orthogonal basis. We will use the norm for the
polynomial P¥ introduced in Eq. (6):

P2 = / JPUER dr@). @2
e

Hence, a valid orthonormal polynomial basis {¥® (&)} (k = 0,d) is:

v = Z#@' 23)

HP(’"H

For normalization, the evaluation of IP®| for k=d additionally
requires finiteness and availability of the 2d th moment.

3.4. Summarized properties of the orthonormal basis

As consequence of the derivations in Sections 3.1 and 3.3, the
polynomial basis in Eq. (23) has the following properties:

Property 1. The orthonormal basis can be constructed without
any hierarchical conditions or recurrence relations that are used in
[1, Chapter 22] and in [54,55].

Property II. Existence of the moments L, ...,l,q iS the necessary
and sufficient condition for constructing an orthonormal basis
(PO, wDy up to degree d, together with the condition that the
number of supports points of ¢ is greater than d if ¢ is a discrete
variable or is represented by a data set.

Property IIl. The orthonormal polynomial basis for arbitrary prob-
ability measures is based on the corresponding moments only, and
does not require the knowledge (or even existence) of a probability
density function.

Property IV. All the zeros of the orthogonal polynomials are real,
simple and located in the interior of the interval of orthogonality [1].
This property is useful for numerical integration, especially for
bounded distributions.

Property V. As particular cases, the Hermite, Laguerre, Jacoby
polynomials, etc. from the Askey scheme and the polynomials for
log-normal variables by Ernst et al. [14] can be reconstructed within
a multiplicative constant.

Property VI. All distributions that share the same moments up to
order 2d will also share the same basis, and thus will lead to identical
results in an expansion up to order d.

4. Data-driven modeling

The arbitrary polynomial chaos expansion presented in
Sections 2 and 3 provides a simple and efficient tool for analysing
stochastic systems. We will consider a very simple model in order
to focus all attention on our data-driven concept, which is based
directly on the moments of sampled data without intermediate



184

steps of data reinterpretation. This avoids the subjectivity usually
introduced when choosing among a small limited number of
theoretical distributions to represent a natural phenomenon, and
so avoids the problems of subjectivity under limited data avail-
ability is discussed in Section 1. These problems will be illustrated
in Section 4.1. An application to a problem with a realistic level
of complexity and a detailed discussion of expert’s subjectivity
in uncertainty analysis is presented in [44]. That paper demon-
strates how subjectivity of interpreting limited data sets can
easily lead to substantial prediction bias, and that the subjective
choice of distribution shapes has a similar relevance as uncer-
tainties due to physical conceptualization, numerical codes and
parameter uncertainty.

Here, for simplicity, we consider the exponential decay differ-
ential equation which was already used in [58] to illustrate the
Askey scheme:

dy(e) B
=Y. YO =1

Let Ypc be the solution obtained using the polynomial chaos
expansion (1) for the problem defined in Eq. (24). We use a Monte
Carlo simulation as reference solution and define the time

dependent relative error ¢(t) between the polynomial chaos
expansion solution YpAt) and the Monte Carlo solution Yy,(t) as

|Ypc(t)—Y mc(b)]
y=—F——+""—.
O=""eo|

(24)

(25)

4.1. Fidelity of data-driven interpretation

To illustrate the fidelity of the data-driven chaos expansion,
we will consider a synthetic example for an empirical data
distribution, see Fig. 1, and apply both aPC and the classical PCE
for comparison. The illustrative data set (with sample size
N=500) presented in the left plot of Fig. 1 was generated as
superposition of normal and log-normal distributions and con-
tains statistical noise introduced due to the small size of the data
sample.

The classical approach would be to introduce a parametric
probability distribution, e.g., with fitted mean and variance or
with maximum likelihood parameters. Here, for illustration, we
select the Normal, Lognormal and Gamma distribution, see
the right plot of Fig. 1. Evidently, the list of possible candidate
distributions for fitting to the considered data can be very long.
Introducing a full probability density function (PDF) resembles a
strong assumption on all higher moments up to infinite order, and

Histogram of data distribution
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15 ]

Data distribution

10

[TH
3
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claims to know the exact shape, e.g., also of the extreme value
tails. Such assumptions on the alleged shape of the underlying
probability density function, unfortunately, can lead to substan-
tial errors in data interpretation. The data-driven approach
strongly alleviates this situation, because it can directly handle
a set of moments (e.g., the mean, variance, skewness, kurtosis,
and so forth), without any further assumptions on higher-order
moments and without having to introduce a PDF at all. This
also provides the freedom to work with only a small number
of moments obtained via expert elicitation, without asking for a
full PDF.

We will apply different orders of the polynomial chaos
expansion (1) to the test problem (24) using two sources of input
information about the data distribution: (1) the three introduced
assumptions on PDFs (right plot of Fig. 1) and (2) the pure raw
data sample (left plot of Fig. 1). To observe the pure impact of data
interpretation regardless of numerical techniques, we treat all
four cases with the aPC, i.e., we construct an optimal orthonormal
polynomial base (see Section 2) for each case. This avoids the non-
linear transformations that are usually necessary to map the
assumed PDFs onto the normal PDF. Such transformations would
introduce additional errors, as discussed in Sections 4.2 and 4.3.

Technically, the coefficients ¢; in the chaos expansion can be
obtained, e.g., by Galerkin projection (e.g. [19,30,58]) or by the
Collocation method (e.g. [16,26,60]). Both methods lead to the
same result when using the optimal polynomial basis in the case
of univariate analysis. Fig. 2 illustrates the convergence of the
mean and variance (at time t=1) for the assumed PDFs (left plot
of Fig. 1) and for the pure raw data (right plot of Fig. 1).

All considered cases reproduce an acceptable approximation
with the linear expansion. Increasing the expansion order shows
strong convergence for the data-driven polynomial chaos expan-
sion. However, increasing the order does not assure convergence
for the expansions based on interpreted data. The problem does
not lie in poor numerical properties when treating these distribu-
tions, but in accurate convergence to a wrong value. This error is
introduced only by fitting parametric PDFs to the data instead of
letting the data fully manifest themselves. In fact, the PDF-based
analysis are good only up to first order, because only moments up
to the second are represented accurately by the matched PDFs.
This means that all effort spent for higher-order expansion
(especially for complex problems) is invested to negligible
improvement, if not matched with an adequate effort for accurate
data interpretation. The key advantage of aPC is this respect is
that (1) it allows full freedom in the used type of input informa-
tion, and (2) our analysis in Section 3 makes explicitly clear what
amount of information (i.e., the moments up to a certain number)
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Fig. 1. Data distribution (left plot) and assumed stochastic distribution: Normal, Lognormal and Gamma (right plot).
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Fig. 2. Convergence on data: estimation of mean (left plot) and variance (right plot).

enters the analysis at what expansion order. This allows to align
the complexity and order of analysis with the reliability and detail
level of statistical information on the input parameters.

4.2. Evidence of improved convergence

In this section we will illustrate the efficiency of analysis
within an optimal (data-driven) polynomial basis. We wish to
show the improved convergence rate of the arbitrary polynomial
chaos compared to the classical PCE technique. The classical PC
requires non-linear transformations to map non-normal input
data distributions onto the normal PDF. In this technical aspect,
the classical PCE does not differ from the gPC, which requires
transformation onto one of possible PDF from Askey scheme.

Eq. (24) can be expanded (see Eq. (1)) in the orthogonal
polynomial basis ¥;(¢). The projection coefficients are defined as

= [ YOr@dre, i-0d. (26)
JEeQ

We will apply both the aPC and the classical PCE (including the
mapping onto the normal distribution) to the example (24). For
these two expansions techniques, we will apply both Galerkin
projection (intrusive) and Gauss quadrature (non-intrusive) to
evaluate the integral in Eq. (26). In both intrusive and non-
intrusive approaches, the resulting values ci(t) from Eq. (26) will
change with the distribution of the random variable . For the
optimal basis (used in aPC), however, the results from Galerkin
projection and numerical integration coincide. This yields 3 dis-
tinguishable techniques. For all tree techniques, we analyse the
performance for diverse exemplary distributions of the univariate
input ¢ (Rayleigh, Weibull, Log-normal). Detailed descriptions of
these distributions can be found in [38]. For the classical PCE, the
random variable ¢ is not distributed in the same space as the
polynomial basis ¥;(¢), and an additional conversion is required.
Thus we map the model variable & onto a corresponding normal
variable £y by Gaussian anamorphosis or normal score transform
[48]. Fig. 3 illustrates the convergence of the mean and variance of
Y (at time t=1) for our three exemplary distributions of the model
input £. As previously demonstrated for the gPC [57], expansion in
the optimal polynomial basis without transformation shows at
least an exponential convergence. Convergence with a non-
optimal basis (here: Hermite) after transformation strongly
depends on the nonlinearity of the required transformation from

& to Ey.

4.3. Clarification of error types

In Section 4.1, we demonstrated the possible errors introduced
by subjective data interpretation when fitting parametric PDFs to
raw data. In that analysis, we deliberately excluded the error by
the different numerical accuracies of aPC and classical PCE. Now,
we will demonstrate the faster numerical convergence of aPC
compared to classical PCE with transformation, but this time
excluding the error of data interpretation. We classify the cause of
error into two types: I—transformation expansion error and
[I—numerical integration error. Modeling within the non-optimal
basis using Galerkin projection leads to errors by expanding and
truncating the transformation, which we denote here as transfor-
mation expansion error (type I). Modeling within the non-optimal
basis using Gauss quadrature entails numerical integration error
(type II). Using the optimal basis provides identical results for
both intrusive and non-intrusive methods, because numerical
integration is exact when using the roots of the d+1 order
polynomial from the optimal basis, and because no transforma-
tion from ¢ to &y is necessary.

Transformation expansion error (type I). For intrusive manipula-
tion, the anamorphosis transformation from ¢ to ¢y has to be
expanded in &y. The finite number d of terms in this expansion
causes the first type of error. The difference between expansion in
an optimal basis and expansion of Y(¢) after transformation to &y
is the so-called “aliasing error” (see [59]). Fig. 4 illustrates the
nature of the this type of error. Expansion of the transformation
(here & =exp(&y)) at different orders is shown in the left plot of
Fig. 4. The right plot of Fig. 4 demonstrates the corresponding
mapping of a normal probability density function (PDF) back to
physical space using the expanded and truncated expansion. In
these examples, the normal PDF should transform to a log-normal
PDF. The strong nonlinearity of the logarithmic transformation
leads to a poor approximation with a finite number of terms.
Thus, the choice of a non-optimal polynomial basis for the model
input ¢ leads to a wrong representation of the probability
measure I'¢. This leads to the erroneous analysis of model output
Y(¢) visible for Galerkin-based computations in Fig. 3.

Numerical integration error (type II). The accuracy of numerical
integration (especially sparse) strongly depends on the choice of
integration points. For example, in Gauss-Hermite integration,
the polynomial basis defines the positions ¢; of integration points
in the space of the input variable by the roots of the polynomial of
degree d+ 1. Thus, using a non-optimal polynomial basis provides
a non-optimal choice of the integration points, which causes the
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Fig. 3. Convergence of mean (left) and variance (right) estimation based on optimal basis and transformed basis using Galerkin projection (G.) and numerical integration
(C.). For the optimal basis (used in aPC), the results from Galerkin projection and numerical integration coincide.

second type of error. To illustrate this type of error, let us consider
a stochastic model with a random variable ¢ that follows a non-
Gaussian distribution. The selected model is an extremely simple
non-linear one

Y (&) = E°. 27)

In our example, the input parameter ¢ is distributed according
to the Chi-square distribution. We will construct two expansions:
one based on Hermite polynomials with adequate Gaussian
anamorphosis, and one based on optimal polynomials for the
Chi-square distribution of the input data. In both cases, we
employ Gauss quadrature and compare the results to a reference
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Fig. 5. Numerical integration error: transformation shift (left plot) and convergence to exact analytical solution (right plot).

solution. The supposedly optimal location of the integration
points for Hermite polynomials correspond to the roots of the
Hermite polynomial of order d+ 1, back-transformed from &y to &
by anamorphosis. However, the truly optimal distribution of the
integration points are the roots of the optimal polynomials that
are orthogonal for ¢ without further transformation. The obvious
difference is shown in the left plot of Fig. 5. The transformed
points are shifted against the optimal ones and thus cannot be
considered as an optimal choice for numerical integration. There-
fore, strong nonlinearity in the transformation leads to significant
errors in PCE techniques that derive their numerical integration
rules from the involved basis. Evidently, the example in Eq. (27)
has an analytical solution, which can be reproduced by the
expansion of 6th order within the optimal basis (see the right
plot in Fig. 5). However, the transformed Hermite chaos combined
with non-optimal Gauss quadrature does not converge to the
known analytical solution even for the expansion degree d=6
that should be, in theory, fully accurate construct Y = &£°.

5. Robustness analysis for inaccurate input data

The presented approach can handle different forms of input
information. In particular, it can directly handle raw data, which

can be useful for practical applications. However, when the input
data set is small, the sample moments are only uncertain
estimates of real moments. Hence, a direct application of the
method presented becomes less robust. In that case, it would be
useful to apply some standard methods to assess the robustness
in the estimation of moments, such as Jackknife or Bootstrapping
(e.g. [12]). In the field of reliability engineering, Bootstrap meth-
ods have been applied to construct upper confidence limits for
unreliability in [10]. Bootstrap-based confidence intervals caused
by the uncertainty representing computationally demanding
models by meta-models has been investigated in the paper [41]
via regression based sensitivity analysis. The recent paper [4]
explores sparse and partially random integration techniques for
PCE, applied to sensitivity analysis, and provides Monte Carlo
based estimates for the error introduced by the random character
of the used integration rules. In this section, we focus on the
robustness of data-driven expansions with respect to the limited
size of a raw data set, that represents the underlying probability
distributions of model input only inaccurately.

For that, we repeatedly (N=1000) generated raw data accord-
ing to the assumed underling theoretical distribution. Each time,
we constructed a new data-driven basis and performed a projec-
tion of the model output Y (Eq. (24)) to the corresponding data-
driven polynomial basis and computed the mean p, and variance
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Fig. 6. Robustness of data-driven expansion with respect to the size of a raw data sample: variance of the mean (top) and variance of the variance (bottom).

0% of the model output Y(t=1) in each repetition. From this,
we computed the variance of the mean aiy and the variance of
the variance aiz. This entire nested Monte Carlo analysis was
repeated for sizes of the raw data set ranging from N=20 to 1000.
Fig. 6 shows the results for the distributions considered in Section
4.2, For this illustration, we used a 3rd degree of expansion. Other
degrees of expansion (1—6) show similar results, all of them
having error variances inversely proportional to the size of the
sampled data set (1/N), i.e. having error standard deviations
proportional to 1/+/N. This rate is visible as the slope of the
scatter plots in Fig. 6.

The scatter is caused by the finite number of Monte Carlo
repetitions used in the error estimation. It corresponds to the
Monte Carlo error of the error estimate. Only visually, the scatter
increases with increasing size N of the data sets due to the
logarithmic scale of the ordinate. The important aspect of the plots
in the Fig. 6, however, is not the degree of scatter (i.e. the
uncertainty of the error estimation), but the average slope (i.e.
the error estimate itself).

Apparently, the data-driven chaos expansion has a convergence
rate proportional to 1/+/N for the standard deviation and confidence
intervals of computed model output statistics. This convergence rate
is well known for the variance of sample statics and from Monte
Carlo techniques in general [6]. This means that the aPC does not
modify the robustness and convergence properties with respect to
insufficient sample size in comparison to moments from classical
sample statistics or Monte Carlo simulation.

The analysis we performed here cannot be done with compu-
tationally expensive models, or if a single real data set is all that
is available. In that case, one can perform a Jackknife or Boot-
strapping method to estimate the sampling distribution of the
used moments from that data set, and propagate the resulting
randomized moments through the response surface obtained
with a constant set of integration points. This will estimate the
variances of the PCE solution due to the limited size of the data
set, and corresponded to the value for a single given N in Fig. 6.

Especially in such cases with very small data sets, expert
opinion can be very useful to filter the data set, remove alleged
outliers, fit a simple or complex PDF, and so forth. In our proposed
approach, an expert will have total freedom of data interpretation
(not restricted to the selection among standard PDFs) and can
provide much more sophisticated information (e.g. lower and
higher moments, complex and even non-parametric distributions,
etc.). According to our approach, expert opinion (in a most general

sense) will be incorporated directly without any additional
transformation or additional subjectivity when translating it to
the stochastic numerical framework. The presented methods
allow experts to choose freely of technical constraints the shapes
of their statistical assumptions.

6. Remaining issues for future research

The polynomial basis for continuous or discrete random
variables can be constructed if and only if the number of support
points (distinct values) in the distribution (within the available
data set) is greater than the desired degree of the basis (see
Property II in Section 3.4). However, for discrete cases we cannot
guarantee that the integration points (see Section 4) will be
distributed only within the space of a random variable. Still, it
would be possible for each integration point to find a neighbour-
ing point that belongs to the discrete space, but the convergence
is not guaranteed, and this remains an open question for future
research.

Formal knowledge about the convergence of the polynomial
basis for diverse random spaces can be very useful for practical
needs, such as the convergence for the Hermite basis in normal
space [7]. Karl Weierstrass established his approximation theo-
rem in 1885, which states that every continuous function defined
on an interval can be uniformly approximated as closely as
desired by a polynomial function. A generalization of the Weier-
strass theorem was proposed in the Stone-Weierstrass theorem
where, instead of the interval, an arbitrary compact Hausdorff
space is considered and, instead of the algebra of polynomial
functions, approximation with elements from more general sub-
algebras were investigated [40]. Thus, if the random space is an
arbitrary compact Hausdorff space, uniform convergence is guar-
anteed and the polynomial space is dense in the arbitrary
compact Hausdorf space. However, it is not assured that any
polynomial expansion (including the optimal orthonormal basis)
will uniformly converge in any random space and the definition of
the random space will define convergence in that space.

The classical theorem of [47] characterizes the problem of
polynomial density by the unique solvability of a moment
problem, which means that the distribution function is required
to be uniquely defined by the sequence of its moments. Ernst
et al. [14] discussed such aspects for the generalized chaos
expansion (gPC), and showed that the moment problem is not
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uniquely solvable for the lognormal distribution. However, the
mentioned works demand existence and precise knowledge about
the probability density function, which is neither required nor
desired for the arbitrary polynomial chaos (aPC). We observed
convergence of the aPC in Section 4 for a counted number of
useful cases, however research on a formal proof of convergence
is a remaining question for future research.

As an outlook for future development, we point out the con-
struction of a joint basis for parameters that have a complex
statistical dependence beyond correlation. Following that direction,
the aPC could be the first PCE family member that will allow to
handle non-linear statistical dependence between input variables.

7. Summary and conclusions

In the current paper, we presented the arbitrary polynomial
chaos expansion (aPC). The aPC conception provides a constructive
and simple tool for uncertainty quantification, global sensitivity
analysis and robust design. It offers a new data-driven approach for
stochastic analysis that avoids the subjectivity of assigning para-
metric probability distributions that are not sufficiently supported
by available data. We show that a global orthonormal polynomial
basis for finite-order expansion demands the existence of a finite
number of moments only, and does not require exact knowledge or
even existence of a probability density function. Thus, the aPC can
be constructed for arbitrary parametric and non-parametric dis-
tributions of data, even if the statistical model output character-
ization of input data is incomplete.

Also, the orthonormal basis can be constructed without using
any hierarchical conditions or recurrence relations with polyno-
mials of lower-order. For discrete random variables, the aPC can
be constructed if and only if the number of discrete values of the
random variable is greater than the largest considered degree of
the basis. In case of continuous random variables, the aPC can be
constructed from a number of moments which equals to two
times the degree of the basis. If desired, the method can work
directly with raw sampled data sets to represent the uncertainty
and possible variational ranges of input data. The presented
methods allow experts to choose freely of technical constraints
the shapes of their statistical assumptions and makes explicitly
clear what amount of information (i.e., the moments up to a
certain order) enters the analysis at what expansion order. Over-
all, this allows to align the complexity and order of analysis with
the reliability and detail level of statistical information on the
input parameters.

We also provided numerical studies for diverse exemplary
distributions, where we illustrated convergence rates for optimal
and non-optimal polynomial bases using intrusive and non-intru-
sive methods. This analysis strictly illustrated that using a non-
optimal polynomial basis provides slow convergence of the chaos
expansion and therefore causes additional errors in subsequent
analysis. Modeling results within our new data-driven aPC show,
at least, an exponential convergence for all examined cases. We
defined, discussed and illustrated the difference between numerical
integration error and transformation expansion error. Both errors
lead to wrong estimates of statistical characteristics when using a
non-optimal basis. Thus, the aPC not only provides freedom for
modeling physical systems with unknown probability distribution
function, when only data sets of very limited size are available, but it
also provides better convergence rates than conventional polyno-
mial chaos techniques.

When the statistical information used as input is inaccurate or
uncertain, i.e. when using small sets of raw data, a new form of
uncertainty enters into the analysis and has to be considered in
convergence assessments. We propose to apply Jackknife or

Bootstrapping methods to asses the uncertainty of moments from
small data sets, and then propagate that uncertainty through the
aPC onto the output statistics to asses robustness. In an illustra-
tive test case, we observe the classical Monte Carlo convergence
rate for the results of the PCE analysis with respect to the size of
the raw data set.
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Appendix: Non-singularity of the moments matrix

Let us write the square matrix of Eq. (14) in the following
decomposed form:

M= H B 28
ey a
where
Ho - g Hi
H=| : : |, B= o
M1 oo Hok—2 Hok—1
C=[0... 0], D=[1]

Evidently, D is always invertible, and hence the determinant of M
is given by:

det(M) = det(D)det(H—BD~'C) (29)
Because det(D)=1 and C=|0, ...,0], we obtain:
det(M) = det(H). 30)

The matrix H is also known as the Hankel matrix of moments.
The properties of its determinant were studied in the paper [27].
Moreover, Karlin [24] showed that det(H) for rank(H) = k is zero if
and only if the distribution of & has only k or fewer points of
support. Thus, M is non-singular if and only if the number of
support points in the distribution of ¢ is greater than k and if all
moments up to order 2k—2 are finite.
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