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Theoretical results for the convergence of statistical moments in numerical quadrature based

polynomial chaos computational uncertainty quantification are presented in this work. This is

accomplished by considering the computation of the moments through a direct numerical quadrature

method, which is shown to be equivalent to stochastic collocation. For problems which involve output

variables which have a polynomial dependence on the random input variables, lower bound

expressions are derived for the number of quadrature points required for convergence of arbitrary

order moments. In addition, an error expression is derived for when this lower bound is used for

problems which have a higher degree of continuity than what was assumed when the bounds are

computed. The theoretical results are demonstrated through a simple random algebraic problem and a

nonlinear plate problem. The results presented in this work provide further insight into the widely used

polynomial chaos expansion method of uncertainty quantification along with presenting simple

expressions which can be used for uncertainty quantification code verification.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The process of uncertainty quantification (UQ) results in a
measure of the effect of uncertainty in a system input on the
system response quantities of interest. In the design of engineer-
ing systems, the information produced from uncertainty quanti-
fication can be used as a tool for enabling quantitative risk
analysis [1]. When the so-called system involves a computational
model, this is accomplished through the propagation of model
input uncertainty through the computational model to determine
the statistics of the model outputs. These statistics can then be
used to determine the probability of undesirable events (outputs)
which in turn can be used to give a measure of the risk involved in
a given ‘‘activity’’. Several examples of the application of uncer-
tainty quantification for problems (activities) of interest to the
engineering community are discussed in Refs. [2–4].

When discussing types of model input uncertainty, the classi-
fication provided in Ref. [5] is often used. In this classification
three types of uncertainty are recognized: aleatory or irreducible
uncertainty; epistemic uncertainty; and uncertainty due to
human error. When considering computational uncertainty the
first two are relevant [6,7] and relate to a lack of knowledge in the
true physics of the problem (epistemic) and randomness in a
ll rights reserved.
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system (model) parameters (aleatory). Aleatory uncertainty can
normally be put in the framework of a probabilistic description
while epistemic uncertainty is often difficult to quantify. In this
paper we will deal only with aleatory uncertainty.

Computational uncertainty quantification methods can be
intrusive or non-intrusive. Most intrusive methods can be
thought of as weighted-residual methods whereby the (random)
response variables in a differential equation are expanded in a
finite series of basis functions (functions of the random input
variables) and then the error in the approximation is forced to be
orthogonal to a ‘‘test’’ functional space (from considerations of
error minimization). This results in a set of deterministic (differ-
ential) equations for the coefficients in the expansion. On the
other hand in non-intrusive methods, deterministic simulation
tools can be treated as ‘‘black boxes’’ and hence simulation code
modification is not required. A typical non-intrusive uncertainty
quantification scheme consists of, similar to intrusive methods,
expanding the random response variable in a finite series of basis
functions whose coefficients are then computed by sampling the
black box simulation and then using spectral projection or linear
regression [8]. For either method, intrusive or non-intrusive, once
the coefficients in the expansion are found they can be used to
reconstruct the response which then can be used to determine
statistical quantities of interest.

The most common functional spaces used in the expansions
correspond to what is called generalized polynomial chaos [9–14]
and can be generated using the Wiener–Askey scheme. The first
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instance of this was introduced by Wiener [15] as the span of the
Hermite polynomial functionals of a Gaussian random process
and is often called Wiener’s polynomial chaos or Homogeneous
chaos. Depending on the type of continuous random variable, the
Wiener–Askey scheme generates polynomials which are ortho-
gonal to the measure of the random variable.

When using uncertainty quantification analysis for an engi-
neering system, an important objective should be the determina-
tion of a set of design criteria which can be used in a probabilistic
context so that a reliability analysis is permitted [16–18]. In this
context, the statistical moments (including mean, variance, skew-
ness, kurtosis) of the system response can provide bounds about
its expected range along with giving meaningful information
about the reliability of the system with random inputs. The
moments can also be used together with some expansion, such
as the Edgeworth expansion [19], to approximate the probability
distribution function of the response process. In order for the
uncertainty quantification analysis to provide useful information
about system reliability, the moments of interest should be
estimated accurately to within a user-defined tolerance. Some
key questions which should then be asked are: (a) what smart

choices can the analyst make in an a priori sense to ensure that

moments up to a desired order are estimated accurately? and
(b) how many samples are necessary for accurate uncertainty

quantification, including asymptotic convergence in (point estimates

of) the probability density of the system output and convergence in

moments up to an arbitrarily high order? In other words (regarding
question (a)), if something is known about the functional depen-
dence of the random response on the random input, can the
minimum number of samples in a non-intrusive uncertainty
quantification analysis be chosen ahead of time such that all
moments up to a given order are guaranteed to be converged? It
appears that convergence in probability density functions of
system outputs (regarding question (b)) is dependent on the type
of reconstruction approach used (e.g. Edgeworth series, Max-
imum Entropy approach) to determine the probability density
function based on the underlying moments (up to a known order).

In this paper we will present analysis which addresses ques-
tion (a). Specifically, we will provide theoretical results on the
necessary conditions for the number of samples needed in a non-
intrusive polynomial chaos expansion (PCE) to provide statistical
moments of a response variable within a given error bound. For
random response variables which are given in terms of polyno-
mials of the random input variables, these conditions provide a
lower bound on the number of samples needed for an exact
evaluation of the statistical moments. In addition an expression is
developed for the error incurred if this lower bound is used for a
problem which has a higher degree of continuity than which was
assumed when the bound was computed. In order to produce
these results, we will develop the non-intrusive uncertainty
quantification process directly in terms of numerical quadrature
of the statistical moments [20], the result of which will be shown
to be equivalent to stochastic collocation [8]. In addition to aiding
in the development of the theoretical results, the authors feel that
presenting the computation of statistical moments from a direct
quadrature perspective presents a simple, straightforward way of
introducing the topic. The theoretical results on the number of
samples needed for statistical moment convergence will be
demonstrated using a simple numerical example. It may be noted
that in our analysis (regarding determination of minimum num-
ber of samples needed for convergence of moments up to a
desired order), we assume that the exact functional dependence
of the system response on the system input is known and can be
represented via polynomials. Although this may not often be the
case, the present analysis serves as an important tool for code
verification and validation. As this work is particularly focused on
identifying the conditions for accurate estimation of moments (of
arbitrary order) using quadrature, it could complement many
methods in reliability analysis that involve moment dependent
(e.g. variance based) or moment independent (e.g. entire output
distribution) uncertainty measures [17,18,13,14].
2. Theory

In this section we will present the salient theoretical details
which are needed to derive the theoretical results for the PCE
method. Further details on the generalized PCE can be found, for
example, in Refs [3,10].

2.1. A direct quadrature view of the computation of moments of

random response

The nth moment of a random variable u which is a function of
N independent random variables, denoted here as nðyÞ ¼ fx1ðyÞ,
x2ðyÞ, . . . ,xNðyÞg, is given by the expression

/unðnÞS¼
Z
O

uðnðyÞÞnpðnðyÞÞ dnðyÞ, ð1Þ

where y is a random event and O and pðnðyÞÞ denote the support
and probability density (respectively) corresponding to n.

The basis of the direct quadrature computation is to use
numerical (Gauss) quadrature to compute the integral in Eq. (1).
Using Gauss quadrature a one-dimensional integral of the formZ b

a
f ðxÞwðxÞ dx ð2Þ

is approximated with the M-point quadrature formula given byZ b

a
f ðxÞwðxÞ dx�

XM
i ¼ 1

f ðxiÞ ~wi: ð3Þ

The evaluation point xi corresponds to the ith root of the
orthogonal polynomials with the weighting function w(x). Com-
mon weighting functions (with the corresponding support)
include 1 (Gauss–Legendre), 1=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2Þ

p
(Gauss–Chebyshev) and

e�x2
(Gauss–Hermite). Higher dimensional integrals can be com-

puted using tensor products of one-dimensional formulas or, if
the dimension is large, a sparse grid technique such as Smolyak
quadrature [21]. If f(x) is continuous on ½a,b�, then it can be shown
[22] that the approximations in Eq. (3) converge to the integral
as M-1.

For a function f ðxÞAC2M
½a,b� the error in Eq. (3) is given by

E¼
f 2M
ðzÞ

ð2MÞ!
/FM ,FMS, ð4Þ

where f 2M
ðzÞ corresponds to the 2M th derivative of f and

aozob. Also /FM ,FMS corresponds to the inner product of
the Mth-order polynomial which is orthogonal to the weighting
function w(x) in Eq. (3). From Eq. (4) it can be shown that M point
Gauss quadrature is exact for a polynomial of degree at most
2M�1.

For clarity of presentation we will now restrict ourself to N¼1,
i.e. a one-dimensional space of a single random variable (x).
Additional consideration of results for higher dimensions will be
given where necessary. For one dimension, Eq. (1) can now be
approximated using numerical quadrature as

/unðxÞS¼
Z b

a
uðxðyÞÞnpðxðyÞÞ dxðyÞ

�
XM
i ¼ 1

uðxiÞ
n ~wi, ð5Þ
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where the quadrature points xi and weights ~wi could correspond
to quadrature rules which have pðxÞ as the weighting function
w(x) in Eq. (3). For example if pðxÞ is a Gaussian distribution or a
uniform distribution, Gauss–Hermite and Gauss–Legendre quad-
rature would be used. Alternatively, if a quadrature rule does not
exist for the given pðxÞ, Eq. (5) can be rewritten in such a way as to
use a known quadrature rule e.g.

/unðxÞS¼
Z b

a
uðxðyÞÞnpðxðyÞÞ dxðyÞ

¼

Z d

c
uðxðyÞÞn

pðxðyÞÞ
f ðxðyÞÞ

f ðxðyÞÞ dxðyÞ

�
XM
i ¼ 1

uðxiÞ
n

f ðxiÞ
pðxiÞ ~wi, ð6Þ

where the limits of integration c and d along with the weights ~wi

and quadrature points xi correspond to the distribution (weight-
ing) function f ðxðyÞÞ for which a quadrature rule exists.

2.2. Equivalence of the direct quadrature view with stochastic

collocation

In the Stochastic Collocation (SC) method the response vari-
able uðxÞ is expanded in terms of a set of Lagrange polynomials
with unknown coefficients. If we once again restrict ourselves to
N¼1, this can be written as

uðxÞ ¼
XM
i ¼ 1

uiLiðxÞ ¼
XM
i ¼ 1

ui

YM
j ¼ 1,ja i

xðyÞ�xj

xi�xj
, ð7Þ

where Li ¼
QM

j ¼ 1,ja iððx�xjÞ=ðxi�xjÞÞ is the ith Lagrange polyno-
mial. The expression for the nth moment of uðxÞ is given by

/uðxÞnS¼
Z b

a

XM
i ¼ 1

ui

YM
j ¼ 1,ja i

xðyÞ�xj

xi�xj

0
@

1
A

n

pðxðyÞÞ dxðyÞ, ð8Þ

which can be approximated using a M point numerical quad-
rature of the type given in Eq. (3)

/uðxÞnS�
XM
k ¼ 1

XM
i ¼ 1

ui

YM
j ¼ 1,ja i

xk�xj

xi�xj

0
@

1
A

n

~wk: ð9Þ

If the stochastic collocation points in Eq. (9), xj, correspond to the
abscissa values for a quadrature rule which is appropriate for
pðxðyÞÞ the following is true:

XM
i ¼ 1

ui

YM
j ¼ 1,ja i

xk�xj

xi�xj
¼

uk i¼ k

0 iak

(
: ð10Þ

With this result Eq. (9) becomes

/uðxÞnS�
XM
k ¼ 1

XM
i ¼ 1

ui

YM
j ¼ 1,ja i

xk�xj

xi�xj

0
@

1
A

n

~wk ¼
XM
k ¼ 1

un
k
~wk, ð11Þ

which is equivalent to Eq. (5).

2.3. Generalized polynomial chaos for computation of moments of

random response

In generalized polynomial chaos, the random response vari-
able is written as a truncated generalized Fourier series:

uðnðyÞÞ �
XP

j ¼ 0

ujCjðnðyÞÞ, ð12Þ

where the basis functions Cj are orthogonal polynomials which
would correspond to the measure of the random input variable,
for example Hermite polynomials for a Gaussian random variable.
These polynomials can be generated using the Askey-scheme [10]
if standard distributions are used or numerically if correlation
exists or the distribution is nonstandard. The coefficients uj in Eq.
(12) are computed by projecting the response against each basis
function and using the orthogonal properties of Cj

uj ¼
/uðxðyÞÞ,CjðxðyÞÞS
/CjðxðyÞÞ,CjðxðyÞÞS

, ð13Þ

where the inner product for the measure of choice is defined as

/uðnðyÞÞ,vðnðyÞÞS¼
Z
O

uðnðyÞÞvðnðyÞÞpðnðyÞÞ dnðyÞ: ð14Þ

As stated, Eq. (12) is a generalized Fourier series and hence if u

is a L2 random variable, i.e. has finite variance, the series shows
mean-square convergence [23]. It should be noted, however, that
while convergence of the order 1 and 2 moments is guaranteed,
Field and Grigoriu [24] showed that depending on how the
function u depends on x, moments higher than 2 may or may
not converge as the number of terms in Eq. (12) is increased.

Once again we now will use N¼1 in our derivations in order to
simplify the presentation. Placing Eq. (12) into Eq. (1) results in
the following expression for the approximation to the nth
moment of a random response using generalized polynomial
chaos:

/uðxðyÞÞnS�
Z b

a

XP

j ¼ 1

ujCjðxðyÞÞ

2
4

3
5n

pðxðyÞÞ dxðyÞ: ð15Þ

Replacing the coefficients uj in Eq. (15) with the expressions in
Eqs. (13) and (14) results in the following generalized polynomial
chaos approximation for the nth moment of uðxðyÞÞ:

/uðxðyÞÞnS�
Z b

a

XP

j ¼ 1

R b
a uðxðyÞÞCjðxðyÞÞpðxðyÞÞ dxðyÞR b

a C2
j ðxðyÞÞpðxðyÞÞ dxðyÞ

0
@

1
ACjðxðyÞÞ

2
4

3
5

n

pðxðyÞÞ dxðyÞ: ð16Þ

In Eq. (16) the variance of the orthogonal polynomials, i.e. the
integral

R b
a C2

j ðxðyÞÞpðxðyÞÞ dxðyÞ, can most often be computed
analytically. The remaining integrals can be approximated using,
for example, a numerical quadrature which has a weighting
function corresponding to the measure of the random input
variable. The resulting expression can be written as

/uðxðyÞÞnS�
XM
l ¼ 1

XP

j ¼ 1

PM
i ¼ 1 uðxiðyÞÞCjðxiðyÞÞ ~wi

/Cj,CjS

 !
CjðxlðyÞÞ

2
4

3
5

n

~wl:

ð17Þ
3. Theoretical results

Comparing PCE and the direct quadrature (SC) methods for
computation of statistical moments, one can develop expressions
for the commonly used PCE approach regarding the number of
samples needed for an exact computation of arbitrary order
moments for a known polynomial functional relationship
between the output and input variables. These will now be
developed.

Proposition 3.1. Given a random response variable uðxðyÞÞAPq,
where Pq is the space of polynomials of degree at most q, which is a

function of a single random variable xðyÞ the nthmoment of uðxðyÞÞ
for a Pth order polynomial chaos approximation to uðxðyÞÞ can be

computed exactly using a numerical quadrature with at least M
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samples where M is given by

M¼max
qþPþ1

2
,
nqþ1

2

� �
:

Mathematical reasoning for Proposition 3.1:
(1)
 From Eq. (13) in order to evaluate the Pþ1 th coefficient uPþ1,
an integrand of order qþP must numerically integrated. If this
integration is to be exact then we must have Pþqþ1r2M or
MZðPþqþ1Þ=2. If M satisfies this criteria then all other
coefficients uj will also be evaluated correctly.
(2)
 By Eq. (4) in order to exactly compute the nth moment of
uðxðyÞÞ using the direct quadrature given in Eq. (5) the
following relation must hold true between the number quad-
rature points (samples) M, n and q:

nqr2M�1 ð18Þ
(3)
 If Eq. (17) is to be exact then Eq. (12) must be an equality and
therefore Eqs. (17) and (5) are equivalent, i.e. the direct
quadrature and generalized polynomial chaos expressions
for the nth order moment are equivalent.
(4)
 From steps 1, 2 and 3 (above) we arrive at the stated
proposition.
It should be noted that Proposition 3.1 provides a lower bound but
not necessarily an optimal value for M. In some circumstances,
the value of M can be less than that given in the proposition. This
can occur when, for example, odd functions in Eq. (5) integrate to
zero negating an inexact evaluation of the uj in Eq. (12).

A corollary resulting from Proposition 3.1 is the following.

Corollary 3.1. Given a random response variable uðnðyÞÞ which is a

function of N random variables with continuity in the ith random

variable given by Pqi
and which is expanded in a Pith order

polynomial chaos expansion for the ith random dimension, a lower

bound on the number of samples needed to exactly represent the nth

moment of uðnðyÞÞ is given by

M¼max
YN
i ¼ 1

qiþPiþ1

2

� �
,

YN
i ¼ 1

nqiþ1

2

� � !
:

This corollary results from using (1) and (2) from the mathema-
tical reasoning for Proposition 3.1 and the idea of anisotropic
tensor product quadrature in multiple dimensions.

As it was shown that the direct quadrature view for statistical
moments is equivalent to the result for these same quantities
computed using stochastic collocation (SC), another way of view-
ing Proposition 3.1 (and Corollary 3.1) is that they represent the
number of sample points which are needed for SC and PCE to be
equivalent.

If instead the response variable uðxðyÞÞ has a higher degree of
continuity then Cq and can be expanded in a Taylor series, the
following proposition can be stated.

Proposition 3.2. Given a random response variable uðxðyÞÞACq and

if the qþ1th derivative uðqþ1Þ exists on (a,b) then the choice for M

stated in Proposition 3.1 results in an error which to leading order is

given by

Eq ¼

Z b

a

Z xðyÞ

0

uðqþ1Þ

t!
ðxðyÞ�tÞq dt

" #
pðxðyÞÞ dxðyÞ:
Mathematical reasoning for Proposition 3.2: If one expands the
random variable uðxðyÞÞ in a Taylor series about the point xðyÞ ¼ 0,
i.e.

uðxðyÞÞ ¼
Xq

k ¼ 0

1

k!
uðkÞð0Þxk

ðyÞþEqðxðyÞÞ, ð19Þ

EqðxðyÞÞ ¼
Z xðyÞ

0

uðqþ1Þ

t!
ðxðyÞ�tÞq dt, ð20Þ

the nth moment given in Eq. (1) (for N¼1 ) can be written as

/unðxðyÞÞS¼
Z b

a

Xq

k ¼ 0

1

k!
uðkÞð0Þxk

ðyÞ

" #
þ

Z xðyÞ

0

uðqþ1Þ

t!
ðxðyÞ�tÞq dt

" #n

pðxðyÞÞ dxðyÞ: ð21Þ

Expanding the expression in integrand and then writing the
integral as the sum of two integrals results in the following
expression for the /unðxðyÞÞS:

/unðxðyÞÞS¼
Z b

a

Xq

k ¼ 0

1

k!
uðkÞð0Þxk

ðyÞ

" # !n

ÞpðxðyÞÞ dxðyÞ

þ

Z b

a

1

0!
uð0Þð0Þx0

ðyÞ
Z xðyÞ

0

uðqþ1Þ

t!
ðxðyÞ�tÞq dt

" # 

þ
1

1!
uð1Þð0Þx1

ðyÞ
Z xðyÞ

0

uðqþ1Þ

t!
ðxðyÞ�tÞq dt

" #
þ � � �

!

pðxðyÞÞ dxðyÞ: ð22Þ

If higher order terms (in xðyÞ) are ignored in the second integral in
Eq. (22) the mathematical reasoning needed for Proposition 3.2 is
now complete as the first integral is exactly represented if the
number of samples is chosen as stated in Proposition 3.1 and the
first term in the second integral is exactly the error term given in
Proposition 3.2. A similar result in multiple dimensions can be
derived using a multidimensional Taylor series expansion.

The values of qi and Pi in Corollary 3.1 are linked. This
connection leads to the following idea. From a practical stand-
point, if a PCE result is desired, the direct quadrature method of
computation of moments can be used (along with Proposition 3.1
or Corollary 3.1) to determine the order of PCE and the number of
sample points needed for an accurate computation of the nth
moment of a response variable when qi is unknown (as is usually
the case for ‘‘real’’ problems). This is accomplished by varying the
number of quadrature points in the ith random dimension while
keeping fixed the number of quadrature points in the other
dimensions. A converged value (to within some E) of the mean
for Mi quadrature points in the ith random dimension can then be
used to determine a good approximation to qi (and therefore Pi),
i.e qi ¼ 2Mi�1. The error incurred by choosing a certain value of E
is related to Eq. (4). The samples used in the direct quadrature
simulations could then be used directly to determine the coeffi-
cients in the PCE expansion if the number of samples used
satisfies the result from Proposition 3.1/ Corollary 3.1. This idea
could have potential limitations when the model response is non-
differentiable and/or if the assumptions of Proposition 3.1
break down.
4. Numerical results

In order to demonstrate numerically the results from
Proposition 3.1, a simple random algebraic problem (which has
moments which can be computed analytically) is solved in one
random dimension (N¼1). The simulation involves the random
algebraic equation given by uðxðyÞÞ ¼ xðyÞq for q ranging from 1 to 8.
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The random variable is assumed to be Gaussian with zero mean and
a standard deviation of 1 (N(0,1)).

It is important to note that Proposition 3.1 provides valuable
information on the ‘‘minimum’’ number of sample points (M)
needed for exact moment evaluation (for known functions)
through the commonly used PCE approach for UQ. Shown in
Table 1 are the comparisons of the value of M resulting from
Proposition 3.1 and the corresponding value needed for an exact
moment evaluation using PCE. Only nonzero moments are con-
sidered when evaluating Proposition 3.1. Various values of q,n and
P are given in the table. For example the first row in Table 1
corresponds to the result (from Proposition 3.1 and the actual
computation) for the number of sample points needed to com-
pute the standard deviation of u (where u¼ xðyÞ) for a PCE of
order 1. Similarly the third row corresponds to number of samples
for the computation of the flatness value for an order 6 PCE
solution. Only a small subset of all the results are shown in
Table 1 (and Fig. 1). For all cases simulated, Proposition 3.1 always
gives a result which either matches exactly with the numerically
determined value or which is conservative (by no more than four
sample points). Rows 3, 6, 8 and 14 in Table 1 are examples of
when the proposition gives a conservative value for the number
of samples. A verification of Proposition 3.1 is also illustrated in
Fig. 1, which shows the convergence in kurtosis using both direct
quadrature (DQ) and PCE approaches, for a random algebraic
equation uðxðyÞÞ ¼ x5

ðyÞ.
Table 1
PCE numerical simulation results for Proposition 3.1.

q n P max Pþqþ1
2 , nqþ1

2

� �
Computational value of M

1 2 1 2 2

1 4 4 3 3

1 4 6 4 3

2 1 1 2 2

2 3 3 4 4

2 3 7 5 4

4 1 1 3 3

4 1 2 4 3

4 2 8 7 7

5 2 5 6 6

5 4 9 11 11

7 2 7 8 8

7 4 10 15 15

8 1 8 9 5

8 2 8 9 9
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at

ne
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Fig. 1. Comparison of convergence in flatness factor for direct quadrature (DQ)

and PCE approaches, using the random algebraic equation uðxðyÞÞ ¼ x5
ðyÞ.
In order to demonstrate the application of DQ for higher
dimensional (spatial and random) problems of relevance to
engineering and risk analysis, an application in nonlinear
mechanics is considered. A square plate (of length 1 m) con-
structed of aluminum material and which is clamped on all four
sides (all degrees of freedom constrained) and subjected to a
constant pressure load of 200 kPa. This example corresponds to
the example problem given in Section 4.3 in Ref. [25]. The
kinematic and strain formulations used here in the finite element
spatial discretization of the problem correspond to the GL3
element from Ref. [25]. This formulation results in a problem
where the strain depends on the displacement in a nonlinear
manner. This element has been implemented into an in-house
finite element solver which is used in conjunction with the
software developed for the non-intrusive UQ analysis presented
here. A coarse 4�4 mesh is used in the current work. The random
input variables considered are the modulus of elasticity (x1),
thickness (x2) and Poisson ratio (x3) which have mean values of
72 GPa, 0.001 m and 0.30 respectively. The standard deviation for
each random input variable is taken to be 10% of its mean. The
exact functional dependence of the random output variable,
which here was chosen to be the displacement at the center of
the plate, on the random input variables is not known.

Figs. 2–5 show the absolute error, defined as the absolute
value of the difference between a given result and what is taken
as the exact value for this example (eabs ¼ 9/unSDQ�/unSexact9),
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Fig. 2. Absolute error in mean versus number of samples for nonlinear plate

problem.
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Fig. 3. Absolute error in standard deviation versus number of samples for non-

linear plate problem.
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Fig. 5. Absolute error in flatness versus number of samples for nonlinear plate

problem.

Table 2
Mean and standard deviation for nonlinear plate problem for various number of

quadrature points in each random dimension.

M1 M2 M3 Mean�101 Standard deviation�102

3 2 2 0.5170515204 0.2486268980

4 2 2 0.5170518824 0.2486876808

5 2 2 0.5170518952 0.2486903195

6 2 2 0.5170518958 0.2486904634

7 2 2 0.5170518958 0.2486904726

8 2 2 0.5170518958 0.2486904735

7 3 2 0.5170669650 0.2504881992

7 4 2 0.5170673270 0.2505485432

7 5 2 0.5170673398 0.2505511627

7 6 2 0.5170673404 0.2505513056

7 7 2 0.5170673404 0.2505513147

7 8 2 0.5170673404 0.2505513156

7 7 3 0.5170671351 0.2505684581

7 7 4 0.5170671345 0.2505685293

7 7 5 0.5170671345 0.2505685297

12 12 12 0.5170671355 0.2505685590
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Fig. 6. Absolute error in first four standardized moments versus PCE order with

nine quadrature points in each random dimension for nonlinear plate problem.
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Fig. 4. Absolute error in skewness versus number of samples for nonlinear plate

problem.
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versus the number of samples for the mean, standard deviation,
skewness and flatness respectively. The DQ and Monte Carlo
results are shown in Figs. 2–5. The ‘‘exact’’ value for each of the
standardized moments is taken to be the computed values from a
DQ solution with 12 sample points in each of the three random
variable dimensions. These values are 0:51707� 10�1,
0:25057� 10�2, 0.35912 and 0:32723� 101 for the mean, stan-
dard deviation, skewness and flatness respectively. As expected,
the convergence of the Monte Carlo results for higher order
moments is very slow. The convergence of the Monte Carlo
results also appears to be non-monotonic for the standard devia-
tion and flatness. It should be noted that it may be possible to
improve the estimation of moments using smoothing procedures
(e.g see Ref. [26]).

Table 2 gives values for the mean and standard deviation from
a DQ solution for various number of quadrature points (M1, M2

and M3) in each of the random dimensions. The values are taken
out to 10 places after the decimal point in order to correspond to
the magnitude of the absolute error values reported in Figs. 2–5.
The product of M1, M2 and M3 in Table 2 corresponds to the
abscissa values in Figs. 2–5. Although arbitrary, as stated pre-
viously the first random dimension in the simulations corre-
sponds to the modulus of the elasticity, the second the thickness
and the third is the Poisson’s ratio. From Table 2 and Fig. 2 one
can see that the mean is within 1:0� 10�10 of the ‘‘exact’’ solution
with seven quadrature points in the first and second random
dimension and four quadrature points in the third dimension.
From this one can infer that a polynomial chaos solution which
uses an order four expansion in the first and second random
dimensions and order three in the third dimension should be
sufficient to capture the functional dependence of the output on
the random inputs. Fig. 6 shows the absolute error in the PCE
result versus PCE order (equal in each random dimension) for the
first four standardized moments. The number of samples is based
upon Proposition 3.1 with q¼4 and n¼4 hence the value of M in
each dimension is taken to be 9. From Fig. 6 it appears that in
order to accurately compute the mean only an order 1 PCE
expansion is needed for this problem. However, the higher order
moments require at least an order four expansion in order for the
absolute error to be within 1:0� 10�3 of the exact result.
5. Conclusions

Risk analysis often involves the use of computational modeling
along with uncertainty analysis to determine the statistics of
undesirable events which can give a quantitative measure for the
risk involved with a certain activity. The results presented in this
paper provide further insight into methods currently used in
computational uncertainty quantification and therefore directly
support reliability and risk analysis activities currently being
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pursued in the engineering community. Theoretical results are
given for the convergence of statistical moments computed using
the quadrature-based non-intrusive polynomial chaos expansion
method. These results are derived by considering directly, the
numerical quadrature of the statistical moments, the result of
which can be considered equivalent to the expression for the
moments which would result from a stochastic collocation
method. Expressions are presented for the lower bound on the
number of samples needed to exactly compute, using a
quadrature-based polynomial chaos expansion, a given order
moment for a random output variable with a known polynomial
dependence on the random inputs. Additionally a result is derived
for the error incurred if this lower bound is used for a problem
with a higher degree of continuity than what was assumed when
the bound was computed. The theoretical results are demon-
strated numerically using a simple random algebraic problem and
a nonlinear plate problem.
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