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Complex flow regimes
Need of upscaled models and efficient methods

Dimensionless numbers
▶ Reynolds number (fluid or particles) Re= 𝑈𝑓,𝑟𝐿𝜈
▶ Particles Stokes number St= 𝜏𝑝

𝜏𝑓
= 𝜏𝑝𝑈𝑓

𝐿
▶ Knudsen number Kn= 𝜆

𝐿

Re >> 1 → transition to turbulence
small scale and collisions, Kn > 10−3 → non-equilibrium effects

poly-dispersity, different St, evolving size→ differential segregation

Problem Model Tool

Turbulence Large Eddy Simulation (LES)
Poly-dispersity Population Balance Eq. (PBE) QBMM¹
Collisions Boltzmann Eq. QBMM
Multi-phase Eulerian/Mixture Algebraic Slip

Random heterogeneousmaterials DNS + upscaling

¹QBMM=Quadrature-BasedMomentMethod



Open and recent projects

Fluid dynamics and porous media - Applications
▶ Pore-scale simulations (single andmulti-phase)
▶ Microfluidics, drop impacts on structured surfaces
▶ Particulate processes in turbulent flows, colloid deposition
▶ Momentum transfer closures for polydispersed flows

Multiscale simulations - Numerics
▶ Numerical studies on convergence properties of flow in complex geometries
▶ Upscaling/model reduction of PDEs in subsurface flows and in
Lithium-ion batteries

▶ Multilevel Monte Carlo sampling for flows with random
geometry/parameters

▶ Discretization of PDF equations by quadrature-basedmomentmethods

UQ and Stochastic Modelling
▶ Bayesian inference for calibration and validation of macro-scale models
▶ Dynamic and static data assimilationwithmean-field Ensemble Kalman Filter
▶ High-dimensional interpolation and surrogates formachine learning inMD
▶ PDF closures for turbulent and porous media flows
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Notation

Please keep inmind the following notation:
▶ Probability Density function (PDF): 𝑓 or𝑃
▶ Number Density Function (NDF):𝑛
▶ Space coordinates x, velocityU
▶ Subscripts: 𝑝 for particles, 𝑓 for fluid
▶ Statistical moments: 𝑀 or𝜇
▶ Particle mass: 𝑚
▶ Polynomial of order𝛼: 𝑃𝛼
▶ Internal variables: general 𝜉 (or 𝜉), size𝐿, species concentration𝜙
▶ Quadrature nodes denoted by the internal variable with subscript 𝑖
▶ Quadrature weights denoted by𝑤𝑖
▶ Ω𝜉 (or simplyℝ): support for variable 𝜉

NO Einstein summation convention

This is just amodelling and numerical overview. Sorry but there will be no
mathematical details (spaces, BCs, probability spaces, proofs, etc...),

use your intuition (and ask if needed)!!
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Smoluchowski coagulation equation
Smoluchowski, 1916

Describe particle aggregation/coagulation

𝜕𝑛(𝐿, 𝑡)
𝜕𝑡 = 1

2 ∫
𝐿

0
𝐾(𝐿−𝐿̃, 𝐿̃)𝑛(𝐿−𝐿̃, 𝑡)𝑛(𝐿̃, 𝑡) 𝑑𝐿̃−∫

∞

0
𝐾(𝐿, 𝐿̃)𝑛(𝐿, 𝑡)𝑛(𝐿̃, 𝑡) 𝑑𝐿̃

▶ Not to be confusedwith the Smoluchowski equation (drift-diffusion equation)
▶ Integro-differential equation
▶ Number density𝑛 of particles with size𝐿
▶ No spatial dependence
▶ RHS (𝒬) has a gain and a loss termwritten in terms of the aggregation
frequency𝐾

▶ 𝐾 is usually very complex and non-linear

Very interestingmathematical topic (stability, linearization, large-time
asymptotics), see works of Klemens Fellner (Graz)
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Population Balance Equation (PBE)

Extension of the Smoluchowski coagulation equation, very popular in Chemical
Engineering, Biology and Social Models

𝜕𝑛
𝜕𝑡 + 𝜕

𝜕x ⋅ (U𝑛) + 𝜕
𝜕𝜉 ⋅ (G𝑛) = 𝒬

▶ 𝑛 = 𝑛(𝜉; x, 𝑡) number of particles per unit volume
▶ 𝜉𝑖 generic internal variables (volume, size, area, composition, other
properties)

▶ U given advection velocity field
▶ 𝒬 describe the generic particulate process with Birth (nucleation), Breakage
(Fragmentation) and Aggregation (Coagulation)²

𝒬 = 𝒬0 + 𝒬1(𝑛) + 𝒬2(𝑛, 𝑛)
▶ G describe growth of particles (velocity in phase space 𝜉)
▶ Usually written for spatially inhomogeneous systems and coupledwith CFD
to simulate dispersed bubbles and particles

²with frequency kernels that can be seen as upscaled jump processes
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The physical basis of Boltzmann eq.
Binary collisions

Molecular encounters for hard-spheres potential

▶ 𝑑 is themolecular diameter
▶ g = U − U∗ is the pre-collision velocity
difference

▶ g′ = U′ − U′
∗ is the post-collision

velocity difference

Number andmomentum are conserved during a collision

𝑚 + 𝑚∗ = 𝑚′ + 𝑚′
∗; U + U∗ = U′ + U′

∗
as well as kinetic energy (in the case of elastic collisions)

U ⋅ U + U∗ ⋅ U∗ = U′ ⋅ U′ + U′
∗ ⋅ U′

∗



Boltzmann Equation (BE)

From the Liouville n-particles equation, assuming indistinguishable particle and
the ”Stosszahlansatz” (molecular chaos³ hypothesis), the Boltzmann equation is
obtained

𝜕𝑛(U)
𝜕𝑡 + 𝜕

𝜕x ⋅ (U𝑛(U)) + 𝜕
𝜕U ⋅ (A𝑛(U)) =

∫
ℝ3

∫
𝕊+

[𝑛(U′)𝑛(U′
∗) − 𝑛(U)𝑛(U∗)]𝛽 (g, x) dsdU∗

▶ A is the acceleration,
▶ 𝕊+ is the solid angle
▶ 𝛽 (g, x) is the collision kernel

Equations with similar structure: Vlasov (no collisions), Williams-Boltzmann spray
equation, ...

³particles are uncorrelated, two-particles PDF is product of one-particle PDF



Boltzmann Equation and Equilibrium

Most of the studies andmethods for BE are based on the concept of Equilibrium
Distribution

▶ The equilibrium distribution 𝑓𝑒𝑞 is such that𝒬(𝑓𝑒𝑞, 𝑓𝑒𝑞) = 0
▶ Also called ”Maxwell-Boltzmann” or ”Maxwellian” distribution, a Gaussian in
the standard case

▶ Fixing the first 2moments (3 in case of NDF), only one Gaussian exist
▶ If onewants to study non-equilibrium phenomena,moremomentsmust be
studied

▶ Grad’s momentmethod is based on small deviations from equilibrium

𝑓 ≈ 𝑓𝑒𝑞(1 + 𝑎1𝐻1(𝑣) + 𝑎2𝐻2(𝑣) + …)

▶ Othermethods (such as Lattice Boltzmann) rely on a linearized collision term
(BGK, Bhatnagar-Gross-Krook approximation)

𝒬 ≈ 1
𝜏𝑟

(𝑓 − 𝑓𝑒𝑞)

All thesemethods require the prior knowledge of the equilibrium distribution!



Flow regimes

The Boltzmann Equation is not only for rarefied gases!

▶ The flow regime of a granular gas depends on Knudsen number𝐾𝑛 = 𝜆
𝐿0

▶ The hydrodynamic description based on the Navier-Stokes-Fourier (NSF)
equation is valid only for low𝐾𝑛:

▶ Continuous regime (𝐾𝑛 < 0.01): NSFwith no-slip BC.
▶ Slip regime (0.01 < 𝐾𝑛 < 0.1): NSF and partial slip BC at walls.
▶ For𝐾𝑛 > 0.1: Full Boltzmann equation.

Kn
Euler N-S

Boltzmann equation
Collisionless 
Boltzmann eq.

∞0 0.01 0.1 1 10010
Adapted from: G. A. Bird (1994)
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TheMethod of Moments

▶ MOMoriginates in kinetic theory of gases⁴: 𝑛(𝑡, x,U)
▶ The moment of order zero is related to the density:

𝜌(𝑡, x) ≡ 𝑚𝑀0,0,0(𝑡, x) = 𝑚∭
+∞

−∞
𝑛(𝑡, x,U) dU

▶ The moment of order one is used to define the average velocity:

⟨U⟩ = (𝑀1,0,0
𝑀0,0,0

, 𝑀0,1,0
𝑀0,0,0

, 𝑀0,0,1
𝑀0,0,0

)

▶ By applying theMOM to the Boltzmann equation, an infinite system of
equations (cascade) appears

▶ Euler, Navier-Stokes and Burnett equations are obtained bywith the
Chapman-Enskogmethod (asymptotic expansions at different orders)

⁴The same name howevermay refer tomany differentmethods in different fields
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The GPBE fluid-particle systems

▶ 𝑛(𝑡, x,Up, 𝜉
p
,Uf, 𝜉

f
), represents the number of particles (per unit volume)

with velocity equal toUp, internal coordinate 𝜉
p
and see a continuous phase

with velocityUf and internal coordinate 𝜉
f
.

▶ The evolution of the NDF is dictated by the GPBE:

𝜕𝑛
𝜕𝑡 + 𝜕

𝜕x ⋅ (Up𝑛) + 𝜕
𝜕Up

⋅ [(Afp + Ap) 𝑛] + 𝜕
𝜕𝜉

p

⋅ (Gp𝑛)

+ 𝜕
𝜕Uf

⋅ [(Apf + Af) 𝑛] + 𝜕
𝜕𝜉

f

⋅ (Gf𝑛) = 𝒬 (1)

▶ phase-space velocity for particle velocity: Afp + Ap ( average particle
acceleration→ accelerationmodel (drag, lift, ...)

▶ phase-space velocity for particle internal coordinate: Gp (e.g. particle growth
rate)

▶ Discontinuous jump term: 𝒬 (e.g. particle collision, aggregation, breakage,
nucleation, etc.)
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GPBE and QBMM

Generalized Population Balance Equation can be used for various applications
▶ Poly-dispersed⁵ multiphase flows
▶ Bubbly flows, Particle-laden flows
▶ Granular flows, fluidized beds
▶ Rarefied gases

Classical CFDmodels such asMixturemodel, two-fluidmodel can be recovered

In general the idea of quadrature-basedmomentmethods (QBMM) can be used
for generic kinetic/PDF equations

▶ Statistical description of turbulence and turbulent reactive flows (Pope)
▶ Mean field limit inmodels of social behavior (crowd, swarms, traffic, opinion)
▶ Mean field equations of stochastic processes
▶ Fokker-Planck equation

⁵Fluid or solid particles of different size immersed in a continuous fluid phase



Numerical methods developed

Themesoscale/kinetic models are highly dimensional (1 time + 3 spatial
coordinates + 1 size + 3 velocities +… )

A plethora of methods have been generated:
▶ Interestingways to solve it are Lagrangian /Monte Carlomethods (DSMC) or
to high-dimensional adaptive DGmethods

▶ In PBE the distribution is often discretized into classes or sections (FD)
▶ Widely used among practitioners inmultiphase CFD is the
multiple-size-group (MUSIG)method

▶ For the BE it is equivalent to the discrete-velocitymethod
▶ Themethod ofmoments (MOM) has been used for the solution of both PBE
and BE, but the resulting closure problem is overcome by different strategies
(e.g. Gradmethod, other functional assumptions, method ofmoments with
interpolative closure, MOMIC)



Method of Moments

▶ Important advantage is that themoments correspond to quantities that have
meaningful physical interpretations and are therefore directly measurable

▶ This is a crucial point, since inmany applications the NDF is not directly
measured, but is inferred frommeasurements of integral quantities

▶ Twomain issues arise when usingMOM: number of moments to be tracked
and closure problem

▶ The closure problem is the impossibility of writing a term as a function of a
finite set of moments

▶ When the kinetic equation contains a derivative with respect to an internal
variable, we have a cascade of equations for themoments (𝑀𝑖 depends on𝑀𝑖+1)

▶ Often integral source terms also need closure

The issues of the number of moments to be tracked and the closure adopted both
affect overall accuracy⇒ connected and addressed together



Closure problem

When applying themoment transform (i.e. integral) closuresmust be assumed

The closure problem appears always in the following
form:

𝐼 = ∫
Ω𝜉

𝑔(𝜉)𝑛(𝜉)d𝜉, (2)

where𝑛(𝜉) is the univariate NDF to be approximated and 𝑔 a generic function to
be closed

Presumed-PDF approaches
▶ A possible approach is to simply to assume a shape for the PDF/NDF
▶ This is reasonable when there is a fast relaxation towards equilibrium (e.g., in
Boltzmann equations theMaxwellian equilibrium is a Gaussian)

▶ There aremany cases when the actual NDF is far from equilibrium
▶ How to find the best closure?



The problem is multiscale in nature!

  

Microscale model
Fully resolved direct numerical simulation

Mesoscale model
Population balance equation

Boltzmann equation
Kinetic equation

(Lagrangian methods)

Macroscale model
Moment equations

Mixture model
Two-fluid model

(Eulerian methods)

Density function closure

Moment transform
Moment closure

Volume 
average

Reconstruction
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Gaussian quadrature
Basic idea behind QBMM

▶ The closure problem can be overcome by using the following quadrature
formula:

∫
Ω𝜉

𝑛(𝜉)𝑔(𝜉)d𝜉 ≈
𝑁

∑
𝛼=1

𝑤𝛼𝑔(𝜉𝛼), (3)

where𝑤𝛼 and 𝜉𝛼 are theweights and the nodes/abscissas of the quadrature
formula, and𝑁 is the number of nodes

▶ The degree of accuracy is equal to 𝑑 if the interpolation formula is exact when
the integrand is a polynomial of order less than or equal to 𝑑 and there exists
at least one polynomial of order 𝑑 + 1 thatmakes the interpolation formula
inexact.



Gaussian quadrature
Basic idea behind QBMM

▶ The closure problem can be overcome by using the following quadrature
formula:

∫
Ω𝜉

𝑛(𝜉)𝑔(𝜉)d𝜉 ≈
𝑁

∑
𝛼=1

𝑤𝛼𝑔(𝜉𝛼), (4)

where𝑤𝛼 and 𝜉𝛼 are theweights and the nodes/abscissas of the quadrature
formula, and𝑁 is the number of nodes

QBMMuse a Gaussian quadrature
The NDF is theweight function ormeasure; themoments

𝑀𝑘 = 𝑀(𝑘) = ⟨𝜉𝑘⟩ = ∫
Ω𝜉

𝑛(𝜉)𝜉𝑘 d𝜉, 𝑘 = 0, 1, 2, … (5)

are used to compute a Gaussian quadrature rule with a degree of accuracy of
2𝑁 − 1,.



Gaussian quadrature

A set of polynomials {𝑃0(𝜉), 𝑃1(𝜉), … , 𝑃𝛼(𝜉), …}with
𝑃𝛼(𝜉) = 𝑘𝛼,0𝑥𝛼 + 𝑘𝛼,1𝑥𝛼−1 + ⋯ + 𝑘𝛼,𝛼, is said to be orthogonal in the
integration intervalΩ𝜉, with respect to theweight function, if

∫
Ω𝜉

𝑛(𝜉)𝑃𝛼(𝜉)𝑃𝛽(𝜉)d𝜉 {= 0 for𝛼 ≠ 𝛽,
> 0 for𝛼 = 𝛽, (6)

and, of course, is said to be orthonormal if

∫
Ω𝜉

𝑛(𝜉)𝑃𝛼(𝜉)𝑃𝛽(𝜉)d𝜉 = {0 for𝛼 ≠ 𝛽,
1 for𝛼 = 𝛽. (7)



Gaussian quadrature
Basic idea behind QBMM

Any set of orthogonal polynomials {𝑃𝛼(𝜉)} has a recurrence formula relating any
three consecutive polynomials in the following sequence:

𝑃𝛼+1(𝜉) = (𝜉 − 𝑎𝛼)𝑃𝛼(𝜉) − 𝑏𝛼𝑃𝛼−1(𝜉), 𝛼 = 0, 1, 2, … (8)

with𝑃−1(𝜉) ≡ 0 and𝑃0(𝜉) ≡ 1 andwhere

𝑎𝛼 =
∫Ω𝜉

𝑛(𝜉)𝜉𝑃𝛼(𝜉)𝑃𝛼(𝜉)d𝜉
∫Ω𝜉

𝑛(𝜉)𝑃𝛼(𝜉)𝑃𝛼(𝜉)d𝜉 , 𝛼 = 0, 1, 2, … (9)

𝑏𝛼 =
∫Ω𝜉

𝑛(𝜉)𝑃𝛼(𝜉)𝑃𝛼(𝜉)d𝜉
∫Ω𝜉

𝑛(𝜉)𝑃𝛼−1(𝜉)𝑃𝛼−1(𝜉)d𝜉 , 𝛼 = 1, 2, … . (10)

One can calculate 𝑎0, then𝑃1(𝜉), then 𝑎1 and 𝑏1 and so on...



Gaussian quadrature
Basic idea behind QBMM

▶ The coefficients 𝑎𝛼 and 𝑏𝛼 can bewritten in terms of themoments
▶ The coefficients necessary for the construction of a polynomial of order𝑁 can
be calculated from the first 2𝑁 − 1moments of the NDF

▶ For example with𝑀0,𝑀1,𝑀2 and𝑀3, it is possible to calculate the
following coefficients:

𝑎0 = 𝑀1
𝑀0

,

𝑎1 = 𝑀3𝑀2
0 + 𝑀3

1 − 2𝑀2𝑀1𝑀0
𝑀2𝑀0 + 𝑀2

1 − 2𝑀2
1 𝑀0

,

𝑏1 = 𝑀2𝑀0 + 𝑀2
1 − 2𝑀2

1 𝑀0
𝑀2

0
,

(11)

which suffice for the calculation of the polynomial𝑃2(𝜉)



Gaussian quadrature
Basic idea behind QBMM

GAUSSIAN QUADRATURE
The necessary and sufficient condition for the following formula:

∫
Ω𝜉

𝑛(𝜉)𝑔(𝜉)d𝜉 =
𝑁

∑
𝛼=1

𝑔(𝜉𝛼)𝑤𝛼 + 𝑅𝑁(𝑔), (12)

to be a Gaussian quadrature approximation is that its nodes {𝜉𝛼} coincide with
the𝑁 roots of the polynomial𝑃𝑁(𝜉) of order𝑁 orthogonal inΩ𝜉 with respect
to theweight function𝑛(𝜉).
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History of quadrature-basedmoment methods

▶ McGraw (1997) introduced the QuadratureMethodOfMoments (QMOM) in
the context of Population Balance Equation

▶ Marchisio and Fox (2005) developed the Direct QuadratureMethod of
Moments (DQMOM) that became very popular in the Chemical Engineering
community because very easy to implement in CFD codes

▶ Different extensions tomultivariate cases have been proposed. Themore
general one is the Conditional QMOM (CQMOM) (Yuan and Fox, 2011)

▶ Kernel density type reconstruction have been incorporated in QMOMwith the
ExtendedQMOM (EQMOM) (Yuan, Laurent, Fox, 2012)

▶ Different applications have been studied: particulate processes, dispersed
flows (gas-liquid, gas-solid, fluid-solid), turbulentmicro-mixing, rarefied
gases, generic kinetic/Fokker-Planck equations, non-linear filtering, ...

▶ Recently proposed forUncertainty Quantification (Passalacqua and Fox,
2012; Attar and Vedula, 2012)

▶ A large number of variants have been proposed (FCMOM, TBMM,
DuQMoGeM, SQMOM , ...)

All the closures based on Gaussian quadratures computed directly frommoments
took the name ofQUADRATURE-BASEDMOMENTMETHODS (QBMM)



Quadrature-basedmoment methods

▶ For univariate problems things are simple: with QMOM, transport equations
for the first 2𝑁 moments are solved, the closure problem is overcome by
using a quadrature approx.

▶ The quadrature is very accurate in approximating integrals of smooth
functions in which the NDF appears (such as the collision integrals)

▶ Themethod implicitly assumes that the NDF is a summation of Dirac delta
functions centered on the nodes andweighted by theweights of the
quadrature approximation

▶ The quadrature approximation of order𝑁 is calculated from the first 2𝑁
moments with direct inversion algorithms: product-difference or Wheeler
algorithms



Quadrature-basedmoment methods

HOWDOWE COMPUTE THE GAUSSIAN QUADRATURE
APPROX?

The𝑁 weights and𝑁 abscissas can be determined by solving the following
non-linear system:

𝑀0 =
𝑁

∑
𝛼=1

𝑤𝛼,

⋮

𝑀2𝑁−1 =
𝑁

∑
𝛼=1

𝑤𝛼𝜉2𝑁−1
𝛼 .

(13)

using the Newton-Raphsonmethod, or any other non-linear equation solver (very
expensive, ill-posed and very good initial guess needed)

Muchmore efficient are the product-difference or Wheeler algorithms



Quadrature method of moments

▶ Let us consider the following example (continuous rate of change of the
internal coordinate ̇𝜉 = 𝐺p):

D𝑛
D𝑡 = 𝑆 = − 𝜕

𝜕𝜉 (𝐺p𝑛) + ℎ, (14)

▶ We solve transport equations for themoment set:

D𝑀𝑘
D𝑡 = 𝑆𝑘, (15)

with 𝑘 = 0, 1, 2, … , 2𝑁 − 1 andwith an initial condition
𝑀𝑘(0) = ∫Ω𝜉

𝑛(0, 𝜉)𝜉𝑘 d𝜉
▶ Integration of the system requires the evaluation of the source term through
the quadrature approximation



Quadrature method of moments

▶ Moment equations

D𝑀𝑘
D𝑡 = 𝑘 ∫

∞

0
⟨𝐺p|𝜉⟩𝜉𝑘−1𝑛(𝜉)d𝜉 (16)

▶ The closure problem is overcome as follows:

D𝑀𝑘
D𝑡 = 𝑘

𝑁
∑
𝛼=1

⟨𝐺p|𝜉𝛼⟩(𝜉𝛼)𝑘−1𝑤𝛼 (17)

▶ where as alreadymentionedweights𝑤𝛼 and nodes 𝜉𝛼 are calculated from
the PD orWheeler algorithm from themoments

▶ This method is called QuadratureMethod ofMoments (the variables are the
moments)



Quadrature method of moments

In the case of standard nucleation, (positive) growth, growth dispersion,
aggregation and breakage, application of QBMM to the source term yields

D𝑀𝑘
D𝑡 = 𝐽𝑘 + 𝑘

𝑁
∑
𝛼=1

𝜉𝑘−1
𝛼 𝐺𝛼𝑤𝛼 + 𝑘(𝑘 − 1)

𝑁
∑
𝛼=1

𝜉𝑘−2
𝛼 𝐷𝛼𝑤𝛼

+1
2

𝑁
∑
𝛼=1

𝑁
∑
𝛾=1

[(𝜉𝛼 + 𝜉𝛾)𝑘 − 𝜉𝑘
𝛼 − 𝜉𝑘

𝛾] 𝛽𝛼,𝛾𝑤𝛼𝑤𝛾+
𝑁

∑
𝛼=1

𝑏𝛼 ̄𝑁𝑘
𝛼𝑤𝛼−

𝑁
∑
𝛼=1

𝜉𝑘
𝛼𝑏𝛼𝑤𝛼

(18)

where𝐺𝛼 = ⟨𝐺p|𝜉𝛼⟩,𝐷𝛼 = 𝐷(𝜉𝛼),𝛽𝛼,𝛾 = 𝛽(𝜉𝛼, 𝜉𝛾) and 𝑏𝛼 = 𝑏(𝜉𝛼)
and themoments of the daughter distribution function are

̄𝑁𝑘
𝛼 = ∫ 𝜉𝑘𝑁(𝜉|𝜉𝛼)d𝜉.



Direct quadrature method of moments

▶ The fact that the closure problem is overcomewith the quadrature
approximation:

∫
Ω𝜉

𝑛(𝜉)𝑔(𝜉)d𝜉 ≈
𝑁

∑
𝛼=1

𝑤𝛼𝑔(𝜉𝛼), (19)

▶ Is equivalent to the assumption that the NDF is as follows:

𝑛(𝜉) =
𝑁

∑
𝛼=1

𝑤𝛼𝛿 (𝜉 − 𝜉𝛼) , (20)

▶ Instead of tracking the evolution for themoments, the evolution of the
weights and nodes in the quadrature approximation could be directly tracked:
Direct quadraturemethod ofmoments



Direct quadrature method of moments

▶ Assuming that theweights and nodes are differentiable in space/time the
following transport equation is obtained:

𝑁
∑
𝛼=1

𝛿(𝜉 − 𝜉𝛼) (D𝑤𝛼
D𝑡 ) −

𝑁
∑
𝛼=1

𝛿′(𝜉 − 𝜉𝛼) (𝑤𝛼
D𝜉𝛼
D𝑡 ) = 𝑆(𝜉), (21)

▶ If the weighted nodes (or weighted abscissas) 𝜍𝛼 = 𝑤𝛼𝜉𝛼 are introduced:

𝑁
∑
𝛼=1

𝛿(𝜉 − 𝜉𝛼) (D𝑤𝛼
D𝑡 ) −

𝑁
∑
𝛼=1

𝛿′(𝜉 − 𝜉𝛼) (−𝜉𝛼
D𝑤𝛼
D𝑡 + D𝜍𝛼

D𝑡 )

= 𝑆(𝜉). (22)



Direct quadrature method of moments

▶ We now define 𝑎𝛼 and 𝑏𝛼 to be the source terms:

D𝑤𝛼
D𝑡 = 𝑎𝛼, D𝜍𝛼

D𝑡 = 𝑏𝛼. (23)

▶ Using these definitions Eq. (22) can be rewritten in a simpler form:

𝑁
∑
𝛼=1

[𝛿(𝜉 − 𝜉𝛼) + 𝛿′(𝜉 − 𝜉𝛼)𝜉𝛼] 𝑎𝛼−
𝑁

∑
𝛼=1

𝛿′(𝜉−𝜉𝛼)𝑏𝛼 = 𝑆(𝜉). (24)

▶ This equation can now be used to determine the unknown functions 𝑎𝛼 and
𝑏𝛼 by applying themoment transformation.



Direct quadrature method of moments

▶ DQMOM can be applied for any independent set of moments (number of
momentsMUST be equal the number of unknown functions)

▶ Knowing that:

∫
+∞

−∞
𝜉𝑘𝛿(𝜉 − 𝜉𝛼)d𝜉 = (𝜉𝛼)𝑘,

∫
+∞

−∞
𝜉𝑘𝛿′(𝜉 − 𝜉𝛼)d𝜉 = −𝑘(𝜉𝛼)𝑘−1,

(25)

▶ Themoment transform of Eq. (24) yields

(1 − 𝑘)
𝑁

∑
𝛼=1

𝜉𝑘
𝛼𝑎𝛼 + 𝑘

𝑁
∑
𝛼=1

𝜉𝑘−1
𝛼 𝑏𝛼 = 𝑆𝑘, (26)

with 𝑘 = 𝑘1, 𝑘2, … , 𝑘2𝑁 .



Direct quadrature method of moments

▶ The linear system in Eq. (26) can bewritten inmatrix form:

A𝛼 = d. (27)

where

𝛼 = [𝑎1 ⋯ 𝑎𝑁 𝑏1 ⋯ 𝑏𝑁]𝑇 = [ab] , (28)

d = [𝑆𝑘1
⋯ 𝑆𝑘2𝑁−1

]𝑇 , (29)

▶ The components of thematrix A are

𝑎𝑖𝑗 = {(1 − 𝑘𝑖) 𝜉𝑘𝑖
𝑗 if 1 ≤ 𝑗 ≤ 𝑁 ,

𝑘𝑖𝜉𝑘𝑖−1
𝑗 if𝑁 + 1 ≤ 𝑗 ≤ 2𝑁 .

(30)



Direct quadrature method of moments

▶ If (as in QMOM) the first2𝑁 integermoments are chosen (i.e.,𝑘 = 0, … , 2𝑁 − 1),
thematrix of the linear system is

A =

⎡
⎢⎢
⎣

1 ⋯ 1 0 ⋯ 0
0 ⋯ 0 1 ⋯ 1

−𝜉2
1 ⋯ −𝜉2

𝑁 2𝜉1 ⋯ 2𝜉𝑁⋮ ⋮ ⋮ ⋮
2(1 − 𝑁)𝜉2𝑁−1

1 ⋯ 2(1 − 𝑁)𝜉2𝑁−1
𝑁 (2𝑁 − 1)𝜉2𝑁−2

1 ⋯ (2𝑁 − 1)𝜉2𝑁−2
𝑁

⎤
⎥⎥
⎦

.

(31)

▶ A does not depend on theweights𝑤𝛼 and if the abscissas 𝜉𝛼 are unique, then Awill be
full rank.



Direct quadrature method of moments

▶ This method is called Direct quadraturemethod ofmoments and follows this
procedure:

▶ The evolution equations for weights and nodes of the quadrature
approximation are solved:

D𝑤𝛼
D𝑡 = 𝑎𝛼, D𝑤𝛼𝜉𝛼

D𝑡 = 𝑏𝛼. (32)

▶ The source terms are calculated by inverting the linear system and by using
the following initial condition:

𝑤𝛼(0) = 𝑤0
𝛼, 𝜍𝛼(0) = 𝑤0

𝛼𝜉0
𝛼 for 𝑘 = 1, … , 𝑁 . (33)

in turn calculated from the initial moments



QMOM&DQMOM

▶ QMOM&DQMOMare very accurate in tracking the evolution of the
moments of the NDF: 4-8moments do the same job ofmany (e.g. 100) classes
or sections (see for example thework ofMarchisio et al., 2003 and Vanni,2000)

▶ TheWheeler algorithm is very robust (if themoments are realizable) and for
particular cases theWheeler algorithm is successful when PD fails

▶ QMOM&DQMOMare identical for spatially homogeneous systems (if the
nodes are distinct and if the problem is continuous in time)

▶ Important differences arise when treating spatially inhomogeneous systems
(discussed next)

▶ In general increasing the number of nodes of the quadrature approximation
and ofmoments to be tracked increases the accuracy

▶ Problems can appear when kernels and NDFs are discontinuous or when they
are localized in the phase-space (e.g. fine dissolution)
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Extended QMOM

▶ only integral representation, no localized processes in phase space,
smoothness of kernels𝛽,𝐺,...

▶ It fails in the computation of the entropy∫Ω𝜉
𝑓𝑙𝑜𝑔𝑓d𝜉

▶ However smooth basis functions can be used instead of delta functions
(ExtendedQuadratureMethod ofMoments, EQMOM)

▶ PDF reconstructed as amixture of Gaussians (or other distributions) like the
Kernel Density Estimation

▶ The choice of basis functions can be done arbitrarily or with additional
unknown parameters (e.g., mean and variance of normal distribution)

▶ Additional parametersmust be found by additional equations (i.e., more
momentsmust be solved)

- The inversion problems can become difficult to solve

An alternative is the reconstruction throughMaximum EntropyMethod or the
reconstruction through the orthogonal polynomials

REMARK: An underlying kinetic representation and the reconstruction of the PDF of the
velocity are also the basis of the so-called Kinetic schemes andAsymptotic Preserving
schemes (see very interestingworks of S. Jin, P. Degond, ...)



Quadrature-basedmoment methods

EQMOM for a dissolution problem
Gaussian distr. Solution with𝑁 = 4 beta

distr.
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aYuan, C., Laurent, F., Fox, R.O. An extended quadraturemethod ofmoments for population balance equations (2012) Journal of
Aerosol Science, 51, pp. 1-23.
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QBMM -multivariate case

The original multiivariate GPBE for𝑀-dimensional phase space:

𝜕𝑛
𝜕𝑡 + 𝜕

𝜕x ⋅ (Up𝑛) = 𝜕
𝜕x ⋅ (𝐷𝜕𝑛

𝜕x ) − 𝜕
𝜕𝜉 ⋅ (G𝑛) + 𝒬, (34)

is solvedwith DQMOMwith the following (𝑀 + 1)𝑁 equations:

𝜕𝑤𝛼
𝜕𝑡 + 𝜕

𝜕x ⋅ (Up,𝛼𝑤𝛼) = 𝜕
𝜕x ⋅ (𝐷𝛼

𝜕𝑤𝛼
𝜕x ) + 𝑎𝛼, (35)

𝜕𝑤𝛼𝜉𝛼
𝜕𝑡 + 𝜕

𝜕x ⋅ (Up,𝛼𝑤𝛼𝜉𝛼) = 𝜕
𝜕x ⋅ (𝐷𝛼

𝜕𝑤𝛼𝜉𝛼
𝜕x ) + b𝛼 (36)

with𝛼 ∈ 1, … , 𝑁 andwhere the source terms are calculated by solving the following linear
system:

𝑁
∑
𝛼=1

[(1 −
𝑀
∑
𝛽=1

𝑘𝛽)
𝑀
∏
𝛽=1

𝜉𝑘𝛽
𝛽,𝛼] 𝑎𝛼 +

𝑁
∑
𝛼=1

𝑀
∑
𝛽=1

𝜕
𝜕𝜉𝛽,𝛼

(
𝑀
∏
𝛾=1

𝜉𝑘𝛾
𝛾,𝛼) 𝑏𝛽,𝛼

=
𝑁

∑
𝛼=1

𝑀
∑
𝛽=1

𝑀
∑
𝛾=1

𝜕2

𝜕𝜉𝛽,𝛼𝜕𝜉𝛾,𝛼
(

𝑀
∏
𝛿=1

𝜉𝑘𝛿
𝛿,𝛼) + 𝒮𝑘1,…,𝑘𝑀 , (37)



QBMM -multivariate case

Whereas with QMOMafter having defined a generic moments :

𝑀k ≡ ∫
Ω𝜉

𝜉𝑘1
1 ⋯𝜉𝑘𝑀

𝑀 𝑛(𝑡, 𝜉) d𝜉 (38)

equivalent notations𝑀𝑘1,…,𝑘𝑀
= 𝑀k = 𝑀(𝑘1, … , 𝑘𝑀) = 𝑀(k), we solve

the resulting transport equations:

𝜕𝑀k

𝜕𝑡 + 𝜕
𝜕x ⋅ (U𝑘

p 𝑀k) − 𝜕
𝜕x ⋅ (𝐷𝑘 𝜕𝑀k

𝜕x ) = 𝒮k =

∫
Ω𝜉

𝜉k [− 𝜕
𝜕𝜉 ⋅ (⟨Gp|𝜉⟩𝑛) + 𝒮] d𝜉 (39)

and the closure problem is overcome by using the quadrature approximation.



QBMM -multivariate case

For multivariate problems𝑁(𝑀 + 1)moments ( optimal moment set) are used
to determine the quadrature approximation
Brute-force QMOM: direct solution of the following non-linear system

𝑀𝑘𝑖1,𝑘𝑖2,…,𝑘𝑖𝑀
= 𝑀(k𝑖) =

𝑁
∑
𝛼=1

𝑤𝛼
𝑀
∏
𝛽=1

𝜉𝑘𝑖𝛽
𝛽,𝛼, 1 ≤ 𝑖 ≤ 𝑁(𝑀 + 1)

by employing the Newton-Raphson iterative scheme:

Z𝑛+1 = Z𝑛 − A−1(K, X𝑛)F(Z𝑛).
The Jacobian A is identical to thematrix of the linear system of DQMOM!
Alternatively the Tensor-Product QMOM can be used



Optimal moment set

▶ To perform calculations with bothmultivariate QMOM⁶ and DQMOM the
matrix Amust be non-singular (or full rank)

▶ For𝑀 = 1 (univariate) problems this requirement is satisfied if the nodes are
distinct

▶ Formultivariate cases, having distinct abscissas does not guarantee that A
will be full rank

▶ It can be shown that for fixed𝑁 and𝑀 , certain distinct moments are linearly
dependent when𝑀 ≥ 1 for all possible sets of abscissas

▶ It is therefore necessary to identify amoment set for which A is always
non-singular for all non-degenerate points in phase space for given values of
𝑀 and𝑁 .

▶ This definition is useful also when other inversion algorithms are used (e.g.
Tensor-Product QMOM)

⁶If the Brute-Force inversion algorithm is used.



Optimal moment set

OPTIMALMOMENT SET
1. An optimal moment set consists of𝑁(𝑀 + 1) distinctmoments.
2. An optimalmoment set will result in a full-rank squarematrix A for all possible

sets of𝑁 distinct, non-degenerate abscissas.

3. An optimal moment set includes all linearly independentmoments of a
particular order 𝛾𝑖 before addingmoments of higher order.

4. An optimal moment setmust result in a perfectly symmetric treatment of the
internal coordinates.



Optimal moment set

Table:Moments used to build a bivariate quadrature approximation (𝑀 = 2) for𝑁 = 2. In
this case𝑀0,3 is chosen as the third-ordermoment to saturate the degrees of freedom.

M(2,0)
M(1,0)
M(0,0) M(0,1) M(0,2) M(0,3)

Table:Moments used to build a bivariate quadrature approximation (𝑀 = 2) for𝑁 = 3. In
this case𝑀2,1,𝑀1,2 and𝑀0,3 are chosen among the third-ordermoments to saturate
the degrees of freedom.

M(2,0) M(2,1)
M(1,0) M(1,1) M(1,2)
M(0,0) M(0,1) M(0,2) M(0,3)



Optimal moment set

Table:Optimal moment set used to build a bivariate quadrature approximation (𝑀 = 2) for
𝑁 = 4. Only when𝑁1/𝑀 is an integer, there exists an optimal moment set (that fulfills the
symmetry requirement).

M(3,0) M(3,1)
M(2,0) M(2,1)
M(1,0) M(1,1) M(1,2) M(1,3)
M(0,0) M(0,1) M(0,2) M(0,3)

Table:Optimal moment set used to build a bivariate quadrature approximation (𝑀 = 2) for
𝑁 = 9.

M(5,0) M(5,1) M(5,2)
M(4,0) M(4,1) M(4,2)
M(3,0) M(3,1) M(3,2)
M(2,0) M(2,1) M(2,2) M(2,3) M(2,4) M(2,5)
M(1,0) M(1,1) M(1,2) M(1,3) M(1,4) M(1,5)
M(0,0) M(0,1) M(0,2) M(0,3) M(0,4) M(0,5)



Multivariate Conditional QMOM

▶ Methods based on conditional density functions:
𝑛(𝜉1, 𝜉2) = 𝑛1(𝜉1)𝑓21(𝜉2|𝜉1) = 𝑛2(𝜉2)𝑓12(𝜉1|𝜉2)

▶ Univariate quadrature (𝑁1) calculated from the first2𝑁1 − 1:

(
𝑀0,0,…,0,0⋮

𝑀2𝑁1−1,0,…,0,0
) PD/Wheeler−−−−−→ (

𝑤1⋮
𝑤𝑁1

) (
𝜉1;1⋮

𝜉1;𝑁1
) .

resulting for example in: 𝑛(𝜉1, 𝜉2) = ∑𝑁1
𝛼1=1 𝑤𝛼1𝛿 (𝜉1 − 𝜉1;𝛼1) 𝑓21(𝜉2|𝜉1)

▶ The generic moment becomes:

𝑀𝑘1,𝑘2 = ∬ 𝑛(𝜉1, 𝜉2)𝜉𝑘1
1 𝜉𝑘2

2 d𝜉1 d𝜉2

=
𝑁1
∑

𝛼1=1
𝑤𝛼1𝜉𝑘1

1;𝛼1 ∫ 𝑓21(𝜉2|𝜉1;𝛼)𝜉𝑘2
2 d𝜉2

▶ Conditional moment: ⟨𝜉𝑘2
2 ⟩

𝛼1
= ∫ 𝑓12(𝜉2|𝜉1;𝛼1)𝜉𝑘2

2 d𝜉2



Multivariate Conditional QMOM

For each of these𝑁1 nodes, 2𝑁2 − 1 conditional moments are calculated, and
univariate quadratures𝑁2 are determined (in direction 𝜉2): Conditional QMOM
or CQMOM

1;1ξξξξ
1ξξξξ

2ξξξξ

1,1;2ξξξξ

(((( ))))1w

(((( ))))1;1w

2;1ξξξξ
(((( ))))2w

11;1 −−−−N
ξξξξ
(((( ))))11 −−−−Nw

1;1 N
ξξξξ
(((( ))))

1Nw

2,1;2ξξξξ(((( ))))2;1w

1,1;2 2 −−−−Nξξξξ(((( ))))1;1 1 −−−−Nw

2,1;2 Nξξξξ(((( ))))
1;1 Nw

1,2;2ξξξξ (((( ))))1;2w

2,2;2ξξξξ (((( ))))2;2w

(((( ))))1;2 2 −−−−Nw

2,2;2 Nξξξξ (((( ))))
2;2 Nw

1,2;2 2 −−−−Nξξξξ

1,;2 1Nξξξξ (((( ))))1;1Nw

2,;2 1Nξξξξ (((( ))))2;1Nw

(((( ))))1; 21 −−−−NNw

21 ,;2 NNξξξξ (((( ))))
21 ;NNw

1,;2 21 −−−−NNξξξξ

1,1;2 1 −−−−Nξξξξ
(((( ))))1;11 −−−−Nw

2,1;2 1 −−−−Nξξξξ
(((( ))))2;11 −−−−Nw

(((( ))))1;1 21 −−−−−−−− NNw

21 ,1;2 NN −−−−ξξξξ (((( ))))
21 ;1 NNw −−−−

1,1;2 21 −−−−−−−− NNξξξξ

L

L



Multivariate Conditional QMOM

Table:Moments used to build a bivariate quadrature approximation (𝑀 = 2) for
𝑁1 = 𝑁2 = 3 using CQMOMwith 𝜉2 conditioned on 𝜉1 (top) and 𝜉1 conditioned on 𝜉2
(bottom).

M(5,0)
M(4,0)
M(3,0)
M(2,0) M(2,1) M(2,2) M(2,3) M(2,4) M(2,5)
M(1,0) M(1,1) M(1,2) M(1,3) M(1,4) M(1,5)
M(0,0) M(0,1) M(0,2) M(0,3) M(0,4) M(0,5)

M(5,0) M(5,1) M(5,2)
M(4,0) M(4,1) M(4,2)
M(3,0) M(3,1) M(3,2)
M(2,0) M(2,1) M(2,2)
M(1,0) M(1,1) M(1,2)
M(0,0) M(0,1) M(0,2) M(0,3) M(0,4) M(0,5)



QBMM -multivariate case

Bivariate Gaussian distr. with 𝜌 = 0.0 and𝑁 = 9; BF-QMOM (diamond),
TP-QMOM (circle) and CQMOM (square)



QBMM -multivariate case

Bivariate Gaussian distr. with 𝜌 = 0.5 and𝑁 = 9; BF-QMOM (diamond),
TP-QMOM (circle) and CQMOM (square)
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Quadrature Method of Moments

▶ The spatially inhomogeneous GPBE operating on𝑛(𝜉) reads as follows:
𝜕𝑛
𝜕𝑡 + 𝜕

𝜕x ⋅ (⟨Up|𝜉⟩𝑛) = 𝜕
𝜕x ⋅ (𝐷(𝜉)𝜕𝑛

𝜕x ) − 𝜕
𝜕𝜉 (⟨𝐺p|𝜉⟩𝑛) + 𝒮 (40)

▶ The application of themoment transform,𝑀𝑘 = ∫ 𝑛(𝜉)𝜉𝑘 d𝜉, generates
several closure problems:

𝜕𝑀𝑘
𝜕𝑡 + 𝜕

𝜕x ⋅ (U𝑘
p 𝑀𝑘) = 𝜕

𝜕x ⋅ (𝐷𝑘 𝜕𝑀𝑘
𝜕x ) + 𝑆𝑘 (41)

where of courseU𝑘
p = ∫⟨Up|𝜉⟩𝑛(𝜉)𝜉𝑘 d𝜉

𝑀𝑘
(similarly𝐷𝑘) and

𝒮𝑘 = ∫ ( 𝜕
𝜕𝜉 (⟨𝐺p|𝜉⟩𝑛) + 𝒮) 𝜉𝑘 d𝜉.

▶ The solutionwith QMOM is as usual ...



Quadrature Method of Moments

▶ From {𝑀0, 𝑀1, … , 𝑀2𝑁−1} the Gaussian quadrature with𝑁 nodes is
constructed resulting in the following approximation

𝑀𝑘(𝑡, x) = ∫
Ω𝜉

𝑛(𝑡, x, 𝜉)𝜉𝑘 d𝜉 ≈
𝑁

∑
𝛼=1

𝑤𝛼(𝑡, x) (𝜉𝛼(𝑡, x))𝑘
(42)

▶ that can be used to overcome the different closure problems, for example:

U𝑘
p (𝑡, x) =

∫Ω𝜉
⟨Up|𝜉⟩𝑛(𝑡, x, 𝜉)𝜉𝑘 d𝜉

𝑀𝑘
≈

∑𝑁
𝛼=1⟨Up|𝜉𝛼⟩𝑤𝛼𝜉𝑘

𝛼
𝑀𝑘

(43)

▶ By using different velocities,U𝑘
p (𝑡, x), for the differentmoments, we can

describemixing and segregation patterns



Direct quadrature method of moments

Moreover if𝑤𝛼 and 𝜉𝛼 are continuous functions of space and time, DQMOM can
also be applied (slightly different now due to the diffusion term):

𝜕𝑤𝛼
𝜕𝑡 + 𝜕

𝜕x ⋅ (⟨Up|𝜉𝛼⟩𝑤𝛼) = 𝜕
𝜕x ⋅ (𝐷(𝜉𝛼)𝜕𝑤𝛼

𝜕x ) + 𝑎𝛼 (44)

𝜕𝑤𝛼𝜉𝛼
𝜕𝑡 + 𝜕

𝜕x ⋅ (⟨Up|𝜉𝛼⟩𝑤𝛼𝜉𝛼) = 𝜕
𝜕x ⋅ (𝐷(𝜉𝛼)𝜕𝑤𝛼𝜉𝛼

𝜕x ) + 𝑏𝛼 (45)

with𝛼 ∈ 1, … , 𝑁 andwhere the source terms are as usual determined by solving
the following linear system:

(1 − 𝑘)
𝑁

∑
𝛼=1

𝜉𝑘
𝛼𝑎𝛼 + 𝑘

𝑁
∑
𝛼=1

𝜉𝑘−1
𝛼 𝑏𝛼 = 𝑆𝑘 + 𝐶𝑘, (46)

where

𝐶𝑘 = 𝑘(𝑘 − 1)
𝑁

∑
𝛼=1

𝜉𝑘−2
𝛼 𝐶𝛼, 𝐶𝛼 = 𝑤𝛼𝐷 (𝜕𝜉𝛼

𝜕x ⋅ 𝜕𝜉𝛼
𝜕x ) , (47)



Spatial discretization andmoment corruption

▶ Amoment set is said to be valid or realizable, if the Hankel-Hadamard determinants are
all non-negative:

∆𝑘,𝑙 =
∣
∣∣
∣

𝑀𝑘 𝑀𝑘+1 … 𝑀𝑘+𝑙𝑀𝑘+1 𝑀𝑘+2 … 𝑀𝑘+𝑙+1⋮ ⋮ ⋮ ⋮
𝑀𝑘+𝑙 𝑀𝑘+𝑙+1 … 𝑀𝑘+𝑙+𝑙

∣
∣∣
∣
≥ 0, 𝑘 = 0, 1, 𝑙 ≥ 0 (48)

for𝑘 = 0, 1 and 𝑙 ≥ 0.
▶ For 𝑙 = 1we get:

𝑀𝑘𝑀𝑘+2 − 𝑀2
𝑘+1 ≥ 0 𝑘 = 0, 1, 2, … . (49)

which for𝑘 = 0 becomes the constraint of positive variance
▶ Equivalently this becomes:

��(𝑀𝑘) + ��(𝑀𝑘+2)
2 ≥ ��(𝑀𝑘+1) 𝑘 = 0, 1, 2, … ; (50)

or in other words convexity of the function ��(𝑀𝑘)with respect to𝑘



Spatial discretization andmoment corruption

Less stringent condition: convexity of function ��(𝑀𝑘)
with respect to 𝑘

Ad-hoc correction algorithms are needed!



Spatial discretization in QMOM

An alternative is to solve the transport equation for a generic moment𝑀𝑘 with
discretization schemes that PRESERVE themoments (”Realizable schemes”):

𝜕𝑀𝑘
𝜕𝑡 +

�
�

��Up
𝜕𝑀𝑘
𝜕𝑥 = 𝑆𝑘 − Up

𝜕𝑀𝑘
𝜕𝑥

After spatial discretization (finite-volume):

W P E

U
b

x

d𝑀 P
𝑘

d𝑡 = 𝑆P

𝑘− Up
Δ𝑥 (𝑀 e

𝑘 − 𝑀w
𝑘)

With first-order upwind𝑀 e
𝑘 = 𝑀 P

𝑘 and𝑀w
𝑘 = 𝑀W

𝑘

Spatial discretization schemes based on first-order upwind always result in
VALIDmoments. Higher-order schemes (CDS, second-order upwind, QUICK,
MUSCL) can result in INVALIDmoments.



Spatial discretization in QMOM

▶ One solutionwould be to evaluate themoments at the faces𝑀 e
𝑘 and𝑀w

𝑘
through the quadrature approximation

▶ We know the value of themoments at the center of the cells𝑀W
𝑘 ,𝑀 P

𝑘,𝑀 E
𝑘

W P E

U
b

x

▶ From thesemoments we can evaluate the correspondingweights𝑤P
𝛼 and

abscissas 𝜉P𝛼
▶ If weights at the center of the face are interpolatedwith 𝑝th-order spatial
reconstruction and the abscissas are interpolated 1st-order spatial the
resultingmoments will be valid

▶ This allows to improve the numerical accuracy preserving themoments!
▶ Alternatively one can use semi-Lagrangian schemes (Attili and Bisetti, 2013)



Spatial discretization in DQMOM

▶ In QMOM the governing equations are for themoments that are ‘conserved’
variables

▶ In DQMOM the governing equations are for weights andweighted abscissas
that are ‘primitive’ variables

▶ WhenQMOM is used (if proper discretization schemes are used) only the
transported 2𝑁 moments are preserved and conserved (and their linear
combination)

▶ When DQMOM is used only weights andweighted abscissas are conserved
and their linear combination: 𝑀0 and𝑀1

▶ One disadvantage of DQMOM is that only twomoments (of the 2𝑁 selected)
are conserved and saved from numerical errors!

▶ Another way to look at the problem is to consider that the equations in
finite-volume codes are solvedwith an error called numerical diffusionwhose
coefficient is unknown!



Spatial discretization in DQMOM

▶ The original DQMOM requires the solution of these equations:

𝜕𝑤𝛼
𝜕𝑡 + 𝑈p

𝜕𝑤𝛼
𝜕𝑥 = 𝑎𝛼

𝜕𝑤𝛼𝜉𝛼
𝜕𝑡 + 𝑈p

𝜕𝑤𝛼𝜉𝛼
𝜕𝑥 = 𝑏𝛼

⇕
𝜕𝑀𝑘

𝜕𝑡 + 𝑈p

𝜕𝑀𝑘
𝜕𝑥 = 𝑆𝑘

▶ When the finite-volume discretization is applied:

d𝑤P
𝛼

d𝑡 + 𝑈p

∆𝑥 (𝑤e
𝛼 − 𝑀w

𝑘) = 𝑎P
𝛼

d(𝑤𝛼𝜉𝛼)P
d𝑡 + 𝑈p

∆𝑥 ((𝑤𝛼𝜉𝛼)e − (𝑤𝛼𝜉𝛼)w) = 𝑏P𝛼
⇕

d𝑀P
𝑘

d𝑡 + 𝑈p

∆𝑥 (𝑀 e
𝑘 − 𝑀w

𝑘) = 𝑆P

𝑘

failing in conserving higher-ordermoments (𝑘 ≥ 2)



Spatial discretization in DQMOM

▶ Solution: fully conservative version of DQMOM ( DQMOM-FC):

d𝑀P
𝑘

d𝑡 = − 𝑈p

∆𝑥 (𝑀 e
𝑘 − 𝑀w

𝑘) + 𝑆P

𝑘

⇕
d𝑤P

𝛼
d𝑡 = −𝑎P

𝑐,𝛼 + 𝑎P
𝛼

d(𝑤𝛼𝜉𝛼)P
d𝑡 = −𝑏P𝑐,𝛼 + 𝑏P𝛼

now successfully conserving all themoments of the NDF
▶ Alternatively one can use semi-Lagrangian schemes (Attili and Bisetti, 2013)
▶ Summarizing if the equations for themoments have large physical diffusion terms
DQMOM can be safely used (numerical diffusionwill be smaller than real diffusion and
the solutionwill contain no discontinuities and no shocks)

▶ When only the equation for themoments do not contain any physical diffusion term than
DQMOM-FC should be used
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Turbulence models
DNS, LES, RANS

Direct Numerical Simulation (DNS)
All the flow-scales are solvedwithoutmodel⇒ virtual experiments (3D and unsteady)

Large Eddy Simulation (LES)
Equations are filtered in space (or frequency). Bigger 3D unsteady scales are solved; smaller
ones aremodelled with sub-grid scale (SGS)models

RANS
Time-averaged equations⇒ only themean flow is predicted



Poly-dispersed particles
Particle Size Distribution (PSD) and Population Balance Eq. (PBE)

Particle Size Distribution 𝑛(𝐿; x, 𝑡) = ∫
ℝ3

𝑛(𝐿,U𝑝; x, 𝑡)𝑑U𝑝

St = 𝜏𝑝
𝜏𝑓

≈ 𝜌𝑝𝐷2

18𝜇𝜏𝑓

Particles of different size behave very differently with a non-linear relation
between size and relative velocity



Poly-dispersed particles
Log-normal PSD and QBMM approximation

Quadrature-basedMomentMethod (QBMM)
nodes andweights to approximate 𝑓(𝐿)

2moments→ 1 node, 1 weight
Mean size



Poly-dispersed particles
Log-normal PSD and QBMM approximation

Quadrature-basedMomentMethod (QBMM)
nodes andweights to approximate 𝑓(𝐿)

4moments→ 2 nodes, 2 weights
Volume fraction



Poly-dispersed particles
Log-normal PSD and QBMM approximation

Quadrature-basedMomentMethod (QBMM)
nodes andweights to approximate 𝑓(𝐿)

8moments→ 4 nodes, 4 weights



Real-space advection
from homogeneous model to multi-fluid model

Population balance equation:

𝜕𝑡𝑛 + 𝜕x⟨U𝑝|𝐿⟩𝑛 +����: no growth term𝜕𝐿𝑛𝐺 =����: no aggregation,breakage,nucleation𝒬(𝑛, 𝑛)

Models for conditional velocity ⟨U𝑝|𝐿⟩ = U𝑝(𝐿)

Pseudo-homogeneous model, 𝑆𝑡 ≪ 1
Particles flowwith fluid velocityU𝑝(𝐿) = U

Algebraic models (Mixture), 𝑆𝑡 ≤ 1
U𝑝(𝐿) is calculatedwith algebraic relations from the knowledge ofU

Differential models (Multi-fluid), 𝑆𝑡 > 1
U𝑝(𝐿) is solvedwith amomentum balance equation



EquilibriumModel (Ferry/Balachandar)
Drag forces and gravity

▶ similar to the classical Algebraic SlipModel
▶ expansion ofMaxey-Riley equation for small particle response time 𝜏𝑝

U𝑝 ≈ U + 𝑂(𝜏𝑝) ⇒ U𝑝 − U = −𝜏𝑝 (𝐷U

𝐷𝑡 − 𝑔)

▶ 1𝑠𝑡 order correction

U𝑝 − U = −𝜏𝑝 (I+ 𝜏𝑝∇U𝑇 )−1 (𝐷U

𝐷𝑡 − 𝑔)

▶ High𝑅𝑒𝑝 effects considered using amodified 𝜏∗
𝑝

▶ can be extended to take into account other forces and two-way coupling



SGSmodel for particles
Approximate Deconvolution Method

In Large Eddy Simulation (LES) we have only filtered velocity fieldU

Approximate DeconvolutionMethod (ADM)
To estimate the “real” unfiltered velocity we use an approximate inverse filter

𝑈∗
𝑖 =

𝑁𝑐

∑
𝑘=0

(I− G)𝑘 𝑈𝑖

▶ G is a test filter
▶ 𝑁𝑐 is the deconvolution order
▶ if𝑁𝑐 = 1 it is like an inverse dynamicmodel
▶ considered𝑁𝑐 = 1, 5with Gaussianweights



PBE approximation
Quadrature-Based Moment Method (QBMM) – DQMOM formulation

▶ Singlemomentum equation for themixture
▶ Equilibriummodel to calculate velocityU𝑝(𝐿)
▶ Population balance discretizedwith Quadrature-BasedMomentMethod
(QBMM)

▶ Solved directly in terms of nodes𝐿𝑖 andweights𝑤𝑖 (DQMOM formulation)

Single velocity model
All particles flowwith an overall mean velocityU𝑝(𝐿) = U𝑝(𝐿)

Multiple velocities model
Each node (particle class) considered as a separate phasewith its own relative
velocity



Turbulent poly-dispersed channel flow
Turbophoresis effects
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Relative velocity models
Algebraic slip model

▶ Slip velocity (based on the review ofManninen et al., 1996) solvedwith
Newton-Raphsonmethod

▶ Drag and lift forces
▶ Tomiyama relations (Tomiyama et al., 2002) for drag and lift coefficients

𝐶𝐷 = (1 − 𝛼𝑔)𝑚𝑎𝑥 [24
Re

(1 + 0.15Re0.687) , 8
3

𝐸𝑜
𝐸𝑜 + 4]

𝐶𝐿 = {
min[0.288tanh(0.121Re); 0.00105Eo3 − 0.0159Eo2 − 0.0204Eo + 0.474]; Eo<4

0.00105Eo3 − 0.0159Eo2 − 0.0204Eo + 0.474; 4 < Eo < 10
−0.27 elsewhere

▶ Lift and drag coefficients depends on Eotvos number (in our casemainly
bubble diameter)

▶ Lift changes sign at about 5.8mm (for the test case under study)

Another force has been considered close to thewall (wall-lift force) based on the
models of Tomiyama et al. (1995), Hosokawa et al. (2002), Antal et al. (1991) (see also review of
Rzehak et al., 2012)



Turbulence and collision models
Aggregation and breakage - see also work presented by Buffo et al.

Turbulencemodel must be included(either DNS, LES or RANS)
▶ PBEmodels are usually expressed only in terms of time-averaged RANS
formulation

▶ Turbulent dispersion force added as isotropic turbulent diffusivity in the
DQMOMequations

▶ Coalescence kernel (Laakkonen, 2007; Prince and Blanch, 1990; Coulaloglou and
Tavlarides 1977):

𝛼(𝜆, 𝐿) = 𝐶𝐴𝜖1/3(𝜆+𝐿)2(𝜆2/3+𝐿2/3)1/2 ���(−6 ⋅ 109 𝜇𝑙𝜌𝑙𝜖
𝜎2 ( 𝜆𝐿

𝜆 + 𝐿)
4
)

▶ Breakup kernel (Laakkonen, 2007; Alopaeus et al., 2002):

𝛽(𝐿) = 𝐶𝐵𝜖1/3erfc⎛⎜
⎝

√0.04 𝜎
𝜌𝑙𝜖2/3𝐿5/3 + 0.01 𝜇𝑙√𝜌𝑙𝜌𝑔𝜖1/3𝐿4/3

⎞⎟
⎠

▶ 𝛽−PDF Daughter distribution function (binary)
▶ constants taken from Laakkonen, 2007 and Buffo et al., 2011



Gas-liquid vertical pipe
Test case description

▶ experimental data (Szalinsky et. al.,
2008)

▶ height 6.0 [m]
▶ diameter 0.067 [m]

Test Case 1:
▶ Gas superficial velocity 0.05 [m/s]
▶ Water superficial velocity 0.25 [m/s]

Test Case 2:
▶ Gas superficial velocity 0.05 [m/s]
▶ Water superficial velocity 0.7 [m/s]

mean void fraction known from
experiments

Results analyzed in terms of void fraction
profiles at the outlet and bubble size



Flow regimes
Figure taken from Szalinsky et al. (2010)

2 test cases (red points) of bubbly flowwithmoderate gas fraction (<0.1) and
Stokes number (<10)



DQMOM initialization and BCs
DQMOM vs Classic ASM

Inlet BSD
▶ The bubbles enter the pipe through 3mmdiameter holes
▶ themodel ofMiyahara et al. (1983) and Nicholas et al. (1991) has been used to
estimate the initial bubble size distribution, based on the system and the
sparger properties

▶ a log-normal distribution has been usedwith amean diameter of 7 mm
▶ inlet lognormal parameters, mean and STD, can have strong influence on the
overall results

The ”Classic ASM”model (without population balance) instead has a fixed bubble
size derivedwith a fitting procedure



Numerical details
Commercial CFD code TransAT

▶ RANS standard 𝑘 − 𝜖model for mixture phase
▶ Coarse grid : 307 × 15
▶ Fine grid: 620 × 33
▶ Steady state 2D axisymmetric domain
▶ Convection: HLPA scheme

Model validation
▶ Mesh
▶ Pipe height (3m vs 6m)
▶ steady VS unsteady formulations

Results
▶ Experimental profile
▶ Classic ASM
▶ ASM +DQMOM4moments
▶ ASM +DQMOM6moments



Vertical pipe flow
Results - void fraction

𝑉𝐿 = 0.25 𝑉𝐿 = 0.7

𝑉 = 0.25



Vertical pipe flow
Results - Sauter diameter - at wall and in the center

𝑉𝐿 = 0.25 𝑉𝐿 = 0.7

𝑉 = 0.25



Vertical pipe flow 𝑉𝐿 = 0.25
Results - Bubble surface area

mean

total



Vertical pipe flow 𝑉𝐺 = 0.57
Slug flow test

A test for slug flow regime has also been tested

Surprisingly this model gives good results for void fraction but BSD is nomore
coherent because it cannot include slugs formation
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Boltzmann equation
Homogeneous isotropic case (HIBE)

Particle Velocity Distribution 𝑓(U𝑝; x, 𝑡) = ∫
ℛ

𝑓(𝐿,U𝑝; x, 𝑡)𝑑𝐿

Model equation
▶ scalar molecular speed 𝜉
▶ distribution of velocities 𝑓(𝜉)
▶ no spatial derivatives
▶ only collisions𝒬(𝑓, 𝑓)
▶ Hard-spheremodel
▶ 𝑥 = ���(�1∠n), 𝑦 =
���(�2∠n)

▶ collision frequency |𝜉2𝑦 − 𝜉1𝑥|



Boltzmann equation
Homogeneous isotropic case (HIBE)

HIBE evolution equation:
𝑑𝑓
𝑑𝑡 = 𝒬(𝑓, 𝑓)

𝑄 = 2 𝜋2 𝑎2 ∫
+∞

0
𝜉2

2 ∫
+1

−1
∫

+1

−1
(𝑓(𝜉′

1)𝑓(𝜉′
2) − 𝑓(𝜉1)𝑓(𝜉2)) |𝜉2𝑦−𝜉1𝑥|𝑑𝑥𝑑𝑦𝑑𝜉2

Let us introduce the evenmoments𝑀2𝑝 = Φ𝑝 (densityΦ0, energyΦ1, etc.).

After change of variable𝐸 = 𝜉2
2 and a fewmanipulations:

𝑑Φ𝑝
𝑑𝑡 = 4𝜋

√
2 ∫

∞

0
𝒬(𝑓, 𝑓)𝐸𝑝+1/2𝑑𝐸 =

16𝜋3√
2 ∫

∞

0
∫

∞

0
∫

+1

−1
∫

+1

−1
|𝑞| [(𝐶+

𝑝 ) − (𝐶−
𝑝 )] 𝑓(𝐸)𝑓(𝐸∗)(𝐸𝐸∗)1/2𝑑𝑥𝑑𝑦𝑑𝐸∗𝑑𝐸

𝑞 = 𝑦𝐸1/2
∗ − 𝑥𝐸1/2, 𝐶+

𝑝 = [𝐸(1 − 𝑥2) + 𝐸∗𝑦2]𝑝 , 𝐶−
𝑝 = 𝐸𝑝



Quadrature approximation for HIBE

Collisional integral

∫
∞

0
∫

∞

0
∫

+1

−1
∫

+1

−1
|𝑞| [(𝐶+

𝑝 ) − (𝐶−
𝑝 )] 𝑓(𝐸)𝑓(𝐸∗)(𝐸𝐸∗)1/2𝑑𝑥𝑑𝑦𝑑𝐸∗𝑑𝐸

𝑀/2
∑
𝑖=0

𝑀/2
∑
𝑗=0

∫
+1

−1
∫

+1

−1
|𝑞| [(𝐶+

𝑝 ) − (𝐶−
𝑝 )] 𝑤𝑖𝑤𝑗𝑑𝑥𝑑𝑦𝑑𝐸∗𝑑𝐸

Written in terms of pre-collisional quantities only→ quadrature approximation

̃𝑓(𝐸) ≈
𝑀/2
∑
𝑖=1

𝑤𝑖
4𝜋

√
2𝐸

𝛿(𝐸 − 𝐸𝑖) ⇒ 𝑑Φ𝑝
𝑑𝑡 ≈ 𝜋√

2

𝑀/2
∑
𝑖=1

𝑀/2
∑
𝑗=1

𝑤𝑖𝑤𝑗Λ𝑖𝑗,𝑝

at equilibrium𝑄 = 0 → 𝑑Φ𝑝
𝑑𝑡 = 0 BUT this is not guaranteedwith the

quadrature approximation

Collisions drive the flows towards thewrong steady state



Quadrature-BasedMoment Method (QBMM)
Homogeneous Isotropic Boltzmann Equation (HIBE)

𝑑Φ𝑝
𝑑𝑡 = 𝜋√

2

𝑀/2
∑
𝑖=1

𝑀/2
∑
𝑗=1

𝑤𝑖𝑤𝑗Λ𝑖𝑗,𝑝 = 𝑆𝑝

𝑤𝑖 and𝐸𝑖 calculated fromΦ𝑝 with inversion algorithms⁷
▶ QMOM fails to approach the equilibrium→ source termmust be corrected
▶ Static correction (QMOM+SC):

𝑑Φ𝑝
𝑑𝑡 = 𝑆𝑝 − 𝑆𝑒𝑞

𝑝

▶ Dynamic correction (QMOM+DC) weightedwith a distance from equilibrium:

𝑑Φ𝑝
𝑑𝑡 = 𝑆𝑝 − ∣ Φ𝑝(𝑡) − Φ𝑝(0)

Φ𝑒𝑞
𝑝 (𝑡) − Φ𝑝(0) ∣

ℎ
𝑆𝑒𝑞

𝑝 , ℎ = 1.5

⁷Product-Difference orWheeler algorithms



QMOM approximation vs DVM, Grad, oLBM
Homogeneous Isotropic Boltzmann Equation (HIBE)

Let us consider a closed box of particles far from equilibrium (initial velocity
distribution NOT Gaussian):

QMOM approximation selecting𝑀 moments
(𝑀/2 nodes and weights)

Comparison with:
▶ Discrete VelocitiesMethod (DVM): reference results with 400 discrete
velocities - HomIsBoltz open-sourceMatlab code (Asinari, 2010)

▶ Grad expansionmethod (GM) of order𝑀 with generalized Laguerre
polynomials

▶ Quadrature approximationwith𝑀 fixed Laguerre nodes→ Lattice
BoltzmannMethod (LBM)with off-lattice prescribed velocities



QMOM approximation vs DVM, Grad, oLBM – 1
Homogeneous Isotropic Boltzmann Equation (HIBE)

𝑀 = 4
Initial condition



QMOM approximation vs DVM, Grad, oLBM – 2
Homogeneous Isotropic Boltzmann Equation (HIBE)

𝑀 = 4
Relaxation to equilibrium𝑅𝑝 = Φ𝑝−Φ𝑒𝑞

𝑝
Φ𝑒𝑞

𝑝

2nd energymoment 3rd energymoment



QMOM approximation vs DVM, Grad, oLBM – 3
Homogeneous Isotropic Boltzmann Equation (HIBE)

𝑀 = 4
Relative error onΦ𝑝

2nd energymoment 3rd energymoment



HIBE steady state
Quadrature error

Comparison of steady-statemoments
𝑀 = 4 𝑀 = 6 𝑀 = 8

×108 Φ2 % Φ2 % Φ2 %
Grad (exact) 1.0034 0.0 1.0034 0.0 1.0034 0.0

oLBM 1.0033 0.01 1.0034 0.003 1.0034 0.001
QMOM 0.9704 3.29 0.9979 0.55 1.0022 0.12

QMOM+SC/DC 1.0034 0.0 1.0034 0.0 1.0034 0.0

×1011 Φ3 % Φ3 % Φ3 %
Grad (exact) 1.4921 0.0 1.4921 0.0 1.4921 0.0

oLBM 1.4919 0.02 1.4921 0.004 1.4921 0.002
QMOM 1.4707 1.44 1.4874 0.31 1.4910 0.08

QMOM+SC/DC 1.4921 0.0 1.4921 0.0 1.4921 0.0

×1014 Φ4 % Φ4 %
Grad (exact) - - 2.8529 0.0 2.8529 0.0

oLBM - - 2.8527 0.005 2.8528 0.002
QMOM - - 2.8302 0.80 2.8478 0.18

QMOM+SC/DC - - 2.8529 0.0 2.8529 0.0

×1017 Φ5 % Φ5 %
Grad (exact) - - 6.6666 0.0 6.6666 0.0

oLBM - - 6.6662 0.006 6.6665 0.002
QMOM - - 6.6244 6.34 6.6548 0.18

QMOM+SC/DC - - 6.6666 0.0 6.6666 0.0



HIBE steady state
Quadrature error - 2

Quadrature error at the true equilibrium
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Turbulence models
DNS, LES, RANS

Direct Numerical Simulation (DNS)
All the flow-scales are solvedwithoutmodel⇒ virtual experiments (3D and unsteady)

Large Eddy Simulation (LES)
Equations are filtered in space (or frequency). Bigger 3D unsteady scales are solved; smaller
ones aremodelled with sub-grid scale (SGS)models

RANS
Time-averaged equations⇒ only themean flow is predicted



Turbulent reactive flows
Closure problem

▶ 𝑁𝑠 species denoted by capital letters𝐴, 𝐵, 𝐶, … , 𝑅, 𝑆
▶ Vector of concentrations𝜙 = (𝜙1, … , 𝜙𝑁𝑠

)
▶ Consider a simple reaction

𝐴 + 𝐵 𝑘−→ 𝑅

▶ Transport equations for concentrations with source terms

𝑆𝐴 = −𝑘𝜙𝐴𝜙𝐵 = 𝑆𝐵

▶ In turbulent flows a RANS average (in time) or LES filter (in space) is performed

⟨𝑆𝐴⟩ = −𝑘⟨𝜙𝐴𝜙𝐵⟩ ≠ −𝑘⟨𝜙𝐴⟩⟨𝜙𝐵⟩

▶ In general the term ⟨S(𝜙)⟩ ≠ S(⟨𝜙⟩)



Turbulent reactive flows
PDF description (Pope, Fox)

▶ The chemical source term can be closed if we assume the existence of a joint
probability density function of the concentrations

⟨S(𝜙)⟩ = ∫ 𝑆(𝜓)𝑃(𝜓; x, 𝑡)𝑑𝜓

▶ Rigorously, when using LESwe are dealingwith a filtered-density function

𝑃(𝜓; x, 𝑡) = ∫𝛿(𝜓 − 𝜙(x, 𝑡))𝐺(r− x)𝑑r

where𝐺 is the LES filter



Turbulent reactive flows
Probability density function

▶ For the box filter this could be nomore a PDF sowe simply assume a PDF𝑃
that represents the spatial dishomogeneity in the cells such that

∫ 𝜓𝑃 (𝜓; x, 𝑡)𝑑𝜓 = ⟨𝜙⟩

is the filtered scalar and

∫(𝜓2
𝛼 − ⟨𝜓𝛼⟩2)𝑃 (𝜓𝛼; x, 𝑡)𝑑𝜓𝛼 = ⟨𝜙′2

𝛼 ⟩

the scalar fluctuation



PDF Transport Equation

▶ 𝑃 can be solved in a advection-reaction-diffusion equationwith𝑁𝑠 + 4
independent variables

▶ The turbulent diffusion term comes from the assumption that the conditional
fluctuations ⟨𝑈 ′

𝑖 |𝜓⟩𝑃 = −𝐷𝑇 𝜕𝑃
𝜕𝑥𝑖

▶ Molecular mixing term needs to bemodeled



Mixing models
Interaction by exchange with the mean (IEM)

▶ Themost simple and popular model for Eulerian simulations is the IEM

⟨𝐷∇2𝜙𝛼|𝜓⟩ = −𝐶𝜙
𝜏 (𝜓 − ⟨𝜙⟩)

▶ It is a linear relaxation of the scalars to themean valuewith time scale 𝜏 and a
parameter𝐶𝜙

▶ 𝜏 is chosen to be a turbulence time scale, 2𝑘𝜖 for RANS and 2∆2
𝐷+𝐷𝑇

whereΔ
is the filter width

▶ 𝐶𝜙 is the scalar-to-mechanical time-scale ratio and it depends on the local
Schmidt and Reynolds numbers (for gases at high𝑅𝑒 𝐶𝜙 ≈ 2)



PDF discretization
Quadrature Method of Moments - Multi environment formulation

▶ In the QuadratureMethod ofMoments (QMOM) the integrals are
approximated using a quadrature rule

∫ 𝑔(𝜓)𝑃(𝜓; x, 𝑡)𝑑𝜓 ≈
𝑀
∑
𝑖=1

𝑔(𝜙𝑖)𝑤𝑖

where𝜙𝑖 are the abscissas and𝑤𝑖 theweights of the quadrature rule
▶ For a given set of 2𝑀 moments, the𝑀 abscissas andweights can be
calculated using inversion algorithms (Wheeler or Product-Difference)

▶ This means that we are approximating the exact PDF𝑃 with a
multi-environment PDF 𝑓

𝑓𝜙(𝜓; x, 𝑡) =
𝑀
∑
𝑖=1

𝑤𝑖(x, 𝑡)𝛿[𝜓 − 𝜙𝑖(x, 𝑡)]

where 𝛿 is amulti-dimensional delta function



DQMOM-IEM
Direct Quadrature Method of Moments with IEM closure

▶ In the DQMOM transport equations for𝑤𝑖 and𝑤𝑖𝜓𝑖 are solved instead of
equations for𝜇𝑖

▶ 𝑀(1 + 𝑁) equations with some constraints (e.g.∑𝑀
𝑖=1 𝑤𝑖 = 1)

▶ The source term is such that the first𝑀(1 + 𝑁)moments are coherent with
the transported ones

▶ Let us consider a competitive reaction scheme simplified using amixture
fraction 𝜉 and a reaction progress𝑌 (linear combination of species
concentration). This results in𝑁 = 𝑀 = 2 and𝜙 = (𝜉, 𝑌 )



DQMOM-IEM
Example: set of equations (Marchisio,2009)

𝜕𝑤1
𝜕𝑡 + 𝑈𝑖

𝜕𝑤1
𝜕𝑥𝑖

− 𝜕
𝜕𝑥𝑖

(𝐷𝑇
𝜕𝑤1
𝜕𝑥𝑖

) = 0 ,

𝑤2 = 1 − 𝑤1

𝜕𝑤1𝜉1
𝜕𝑡 + 𝑈𝑖

𝜕𝑤1𝜉1
𝜕𝑥𝑖

− 𝜕
𝜕𝑥𝑖

(𝐷𝑇
𝜕𝑤1𝜉1

𝜕𝑥𝑖
)

=
𝐶𝜙
𝜏 𝑤1𝑤2[𝜉2 − 𝜉1] + 𝐷𝑇

𝜉1 − 𝜉2
(𝑤1

𝜕𝜉1
𝜕𝑥𝑖

𝜕𝜉1
𝜕𝑥𝑖

+ 𝑤2
𝜕𝜉2
𝜕𝑥𝑖

𝜕𝜉2
𝜕𝑥𝑖

) ,

𝜕𝑤2𝜉2
𝜕𝑡 + 𝑈𝑖

𝜕𝑤2𝜉2
𝜕𝑥𝑖

− 𝜕
𝜕𝑥𝑖

(𝐷𝑇
𝜕𝑤2𝜉2

𝜕𝑥𝑖
)

=
𝐶𝜙
𝜏 𝑤1𝑤2[𝜉1 − 𝜉2] + 𝐷𝑇

𝜉2 − 𝜉1
(𝑤1

𝜕𝜉1
𝜕𝑥𝑖

𝜕𝜉1
𝜕𝑥𝑖

+ 𝑤2
𝜕𝜉2
𝜕𝑥𝑖

𝜕𝜉2
𝜕𝑥𝑖

) ,



DQMOM-IEM
Example: set of equations (Marchisio,2009)

𝜕𝑤1𝑌1
𝜕𝑡 + 𝑈𝑖

𝜕𝑤1𝑌1
𝜕𝑥𝑖

− 𝜕
𝜕𝑥𝑖

(𝐷𝑇
𝜕𝑤1𝑌1

𝜕𝑥𝑖
)

= 𝑤1𝑆(𝜉1, 𝑌1) +
𝐶𝜙
𝜏 𝑤1𝑤2[𝑌2 − 𝑌1]

+ 𝐷𝑇
𝑌1 − 𝑌2

(𝑤1
𝜕𝑌1
𝜕𝑥𝑖

𝜕𝑌1
𝜕𝑥𝑖

+ 𝑤2
𝜕𝑌2
𝜕𝑥𝑖

𝜕𝑌2
𝜕𝑥𝑖

) ,

𝜕𝑤1𝑌2
𝜕𝑡 + 𝑈𝑖

𝜕𝑤1𝑌2
𝜕𝑥𝑖

− 𝜕
𝜕𝑥𝑖

(𝐷𝑇
𝜕𝑤1𝑌2

𝜕𝑥𝑖
)

= 𝑤2𝑆(𝜉2, 𝑌2) +
𝐶𝜙
𝜏 𝑤1𝑤2[𝑌1 − 𝑌2]

+ 𝐷𝑇
𝑌2 − 𝑌1

(𝑤1
𝜕𝑌1
𝜕𝑥𝑖

𝜕𝑌1
𝜕𝑥𝑖

+ 𝑤2
𝜕𝑌2
𝜕𝑥𝑖

𝜕𝑌2
𝜕𝑥𝑖

) .

Only the progress variable𝑌 has a source term𝑆
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Groundwater remediation

Zero-valent iron nano-particle injection

Objectives
▶ Develop predictivemacro-scale
transport and reactionmodels

▶ Determine unknown parameters

Challenges
▶ Limited experimental data
▶ Multi-scalemulti-physics problem



Multi-scale porous media modelling
Subsurface flows

Length/time scales
▶ field/reservoir scale: large spatial variations of material properties and
parameters

▶ core/lab scale: homogenized and averaged equations with constant effective
parameters

▶ pore/CFD scale: fluid continuum equations
▶ molecular/single-pore scale:molecular discretemodels

Pore scale
▶ governing equations: Stokes or Navier-Stokes + particle transport (Eulerian or
Lagrangian)

▶ porousmatrix is undeformable and represent domain boundaries
▶ micro-scale parameters and fluid properties are considered known and fixed
▶ particles can (sometimes) be considered of negligible size



Numerical and simulation difficulties

1 – Pre-processing
▶ extraction of porousmedia properties
▶ creation of realistic packings
▶ fix andmodify pore geometry (grain contacts, external container)

2 – Setup and simulation
▶ meshing
▶ realistic boundary conditions
▶ numerical schemes for NS and ADR

3 – Post-processing
▶ mesh convergence analysis, error estimation
▶ data analysis andmodel validation
▶ upscaling and estimation ofmacroscopic parameters



3D Geometry creation

Problem: how to get a realistic geometry representative of a generic porous
media? Given porosity and grain size distribution, infinite possible realizations exist

REAL SAMPLES
▶ Images (microCT)
▶ Detailed representation of the pore
spaces

▶ Segmentation and reconstruction of
a surfacemesh not trivial

▶ Process is hardly automatised and
result is not ”unique”

ALGORITHMIC
RECONSTRUCTION

▶ From simplemodels to
(quasi)-realistic porousmedia

▶ Easier to build different test cases
and compute statistics

▶ No need of expensive
instrumentation

▶ Choice of parameters not trivial

PACKING ALGORITHMS:
ballistic sedimentation→DEM, rigid body
dynamic/collective rearrangement→MD, random placing



Virtual porous media – Random packing

Bullet physics (Blender) MD-like (A. Donev)

Nice YouTube animations: ”Porousmedium packing (blender visualization)”



Virtual porous media – Randomwith overlaps

▶ Fully random independent placement from distribution 𝑓(𝑥, 𝑦, 𝑧)
▶ Post-processingwith Jodrey-Tory algorithm to reduce overlapping
▶ Randomization of the surfaces



Further manual post-processing
1 – Pre-processing

Surface triangular mesh (e.g., STL)
▶ Porosity: must be calculated a posteriori
▶ Contacts: if the packing algorithm is not exact there can be overlapping or
non-touching grains

▶ Non-realistic features: too sharp or smooth edges

Mesh resamplingwithMarching Cubes algorithms



Mathematical models

Assumptions: Newtonian fluids, undeformable porousmedia, isothermal, ...

Micro-scale models
u velocity

𝑝 pressure

𝑐 concentration/ volume fraction/
phase-field

D0 molecular diffusion

Macro/Meso-scale
models
V Darcy flux

𝑃 pressure

𝐶 concentration/ saturation/
phase-field

K permeability

D dispersivity

𝜕𝑥𝑝 = − 𝜇
𝐾 𝑉 Darcy’s law

𝜕𝑥𝑃 = − 𝜇
𝐾 𝑉 − 𝜌𝛽𝑉 2 Darcy-Forchheimer

𝜕𝑥𝑃 = − 𝜇
𝐾 𝑉 − 𝜇𝑒𝑓𝑓Δ𝑉 Brinkman

𝜌𝜕𝑡𝑉 + 𝜕𝑥𝑃 = − 𝜇
𝐾 𝑉 Unsteady Darcy

…



Solute transport

Twomiscible incompressible fluids, 𝜌1 ≈ 𝜌2,𝜇1 ≈ 𝜇2, one-way coupling.

Pore-scale model
Steady Navier Stokes equations in the pore space,
𝜇 = 𝜇1, 𝜌 = 𝜌1

∇ ⋅ u = 0 u ⋅ ∇u = −1
𝜌∇𝑝 + 𝜇

𝜌 Δu

Advection Diffusion Reaction:

𝜕𝑐
𝜕𝑡 + ∇ ⋅ (u𝑐 + D0∇𝑐) = 𝑟

Darcy-scale model

∇ ⋅ V = 0 V = − K

𝜇∇𝑃

Advection-Dispersion-Reaction:

𝜕𝐶𝜙
𝜕𝑡 + ∇ ⋅ (V𝐶 + D𝜙∇𝐶) = 𝑅

Pore-scale simulation of solute

transport (Icardi et. al, Phys. Rev. E,

2014)



Two phase immiscible model

Pore-scale model:
𝜕
𝜕𝑡𝜌 + ∇ ⋅ (𝜌u) = 0

𝜌 𝜕
𝜕𝑡(u)+𝜌u⋅∇(u) = −∇𝑝+𝜇Δu+∇⋅(𝜏𝑚)+𝜅𝜎n𝛿(Γ)

Advection Diffusion Reaction (unsteady):

𝜕𝑐
𝜕𝑡 + ∇ ⋅ (u𝑐) = 𝑟

Darcy-scale model (mixture)

𝜕𝜌
𝜕𝑡 +∇⋅(𝜌V) = 0 V = − K

𝜇(∇𝑃−𝜌𝜕V
𝜕𝑡 ) K = 𝐾𝑟(𝐶)K0

Advection-Dispersion-Reaction (saturation equation):

𝜕𝐶𝜙
𝜕𝑡 + ∇ ⋅ (V𝑐𝐶 + D𝜙∇𝐶) = 𝑅

Pore-scale simulation of CO2 injection

(Icardi et. al, in preparation)



Meshing
2 – Setup and simulation

Immersed boundaries VS body-fitted grids
▶ IB are accurate but not adaptable and first order near thewall
▶ BF are fully adaptable but difficult to build high quality elements
▶ Octree refinementwith adaptation on the surface (cut-cell)



Boundary conditions
2 – Setup and simulation

To estimatemacro-scale parameter, we have to choose the simplest possible
scenario: Quasi-1D flow

Flow boundary conditions
▶ Total pressure (or periodic BCwith uniform body force) imposed at the
inlet/outlet

▶ Symmetry (no normal flow) or periodic on the lateral boundaries (infinite
medium)

▶ Wall conditions to simulate experimental columns (confinedmedium)

Scalar boundary conditions
▶ Constant Dirichlet (=1) on inlet (or mixed Danckwerts condition)
▶ Homogeneous Neumann on outlet and on the grains
▶ Ad-hocmixed BCs on the grain could be derived frommicro-scale deposition
models

𝜕n𝐶 = (1 − 𝜂(𝐶))
𝜂(𝐶)



3D tests – Convergence study with IB
Random spheres packing; porosity 0.6; 600k–80M cells; ∆𝑃

∆𝑥 = 6 ⋅ 10−5

Sphere packing, 100 grains, high porosity
Tolerance on permeability set to 3%

Convergencewith standard Immersed Boundary (IB) is not satisfactory (more
finite size effects), adaptedmeshes converge faster

This is confirmed by convergence studies on BCC regular periodic sphere packing



3D tests – Convergence study with adaptedmesh

Relative error VS refinement level
uniform refinement (blue), 1:1 refinement (green), 1:2 refinement (red)

Convergencewith adaptedmesh faster if the refinement is done correctly



Realistic geometry – experimental sand



3D results – Realistic geometries
Irregular packing; porosity 0.35; >2000 grains

▶ OpenFOAM (SnappyHexMesh +
SimpleFoam)

▶ ScalarTransportFoam + new
solvers for steady perfect sink
deposition and polydispersed
particles

▶ 4 ⋅ 107 cells
▶ 𝑅 = 0
▶ ∆𝑃

∆𝑥 = 10−5 − 102

▶ 𝑅𝑒 = 10−5 − 102

▶ 𝐷 = 10−9 − 10−12

▶ 𝑃𝑒 = 10−2 − 106



3D results – Flow field

Tortuosity is estimated as ∫ |U|𝑑𝑉
∫ 𝑈𝑥𝑑𝑉

Lagrangian tracers are also computed as post-processing



Velocity PDF



3D results – Scalar transport



Breakthrough curves and parameter estimation



Upscaled parameter estimation

𝜕𝐶𝜙
𝜕𝑡 + ∇ ⋅ (V𝐶 + D𝜙∇𝐶) = 0

▶ ”brute-force” approach: non-linear least-square regression to find the best
fitting

▶ for more complexmodels, Bayesian techniques can be used assuming a data
misfitmodel

▶ in this work the upscaling can be computed in an explicit form using the
method ofmoments

𝑉𝑒𝑓𝑓 = (𝜖𝐿𝑥
𝑀1

) , 𝐷 = 𝑀2
2𝐿𝑥

(𝑉
𝜖 )

3
.

This is equivalent to the computation of themean square displacement of
Lagrangian tracers



Hydrodynamical dispersion

Left: effective transport velocity.
Right: Hydrodynamical dispersion. Computational results vs. VanMilligen and
Bons, and Bear correlations



Fickian dispersion

⟨𝑣′
𝑥𝑐′⟩ ≈ −𝐷𝐿

𝜕𝐶
𝜕𝑥 .



Outline

Kinetic and PDF equations
Smoluchowski coagulation equation
Population balance equation (PBE)
Boltzmann equation (BE)
Method ofMoments
Generalized population balance equation (GPBE)

Quadrature-basedmoment methods
Numerical Methods and Closure problem
Gaussian quadrature
QMOMand DQMOM
EQMOM
Multivariate case
Implementation in CFD codes / spatial inhomogeneity

Applications
Poly-dispersed flows / couplingwith turbulence andmultiphasemodels
Gas-liquid flows
Non-equilibrium and granular flows / non-smooth kernels
Turbulent reactive flows / PDF asmodelling tool
Porousmedia
UQ and other applications



Quadrature-based Uncertainty Quantification
Passalacqua, Hu, Fox, 2013; Attar, Vedula, 2013

The idea of QBMM is, in some sense, similar to the approach of arbitrary
Polynomial Chaos Expansion (aPC, Oladyshkin and Nowak, 2012)

▶ Input random variables 𝜉𝑖 known only bymoments
▶ Moments induce orthogonal polynomials and quadrature rule
▶ Stochastic spectral and collocation approaches for computing the response

𝑢(𝜉) =
𝑃

∑
𝑗=0

𝛼𝑗𝜓𝑗(𝜉), ⟨𝑢(𝜉)𝑛⟩ =
𝑀
∑
𝑗=0

𝑤𝑗𝑢𝑛
𝑗

▶ Multidimensional correlated variables treated directly or decomposedwith
Karhunen-Loeve (or POD/PCA)

▶ in 1D, the𝑛𝑡ℎ-moment of a random response𝑢 ∈ 𝒫𝑞, for a 𝑘𝑡ℎ-order PCE, is
exactly computedwith

𝑀 = 𝑚𝑎𝑥(𝑞 + 𝑘 + 1
2 , 𝑛𝑞 + 1

2 ) collocation points (samples)

▶ Forward propagation of uncertainty frommoments of input tomoments of
response



Non-linear filtering with QBMM

Themain advantage in using onlymoments is the possibility of adaptively
updating the quadrature rules, when the underlying PDF changes in time/space

Non-linear Fokker-Planck
▶ Attar and Vedula, 2008; Otten and Vedula, 2011
▶ Stochastic Differential equation

̇𝑥𝑖 = ℎ𝑖(x, 𝑡) + g𝑖(x, 𝑡)W𝑖, 𝑊𝑖𝑗white noise

▶ PDF discretizedwith DQMOM
▶ Applications in stochastic control and plasma physics

Non-linear filtering
▶ Xu and Vedula, 2009, 2010
▶ Propagation step through Fokker-Planck
▶ Bayesian update based on quadrature or on EnKF

Other applications of QBMMBayesian update?



Conclusions

+ QBMMare easily implementable in CFD codes
+ Handle complex physical systems, withmoderate number of r.v., even if
correlation is not known

+ the statistical accuracy is solely determined by the number of moments used
(adaptivity) and the regularity of the kernels

+ specifically designed for evolving PDFs in time and space. It can be thought as
a dynamic optimal quadrature

- High stochastic dimensions (it can become a + if an efficient inversion is found
for brute-force approach)

- Moment realizability in advection problems
- Moments-to-quadrature (QMOM) or source-term (DQMOM) inversion can be
ill-conditioned



Product-difference algorithm

A smarter way is to employ the recursive relationship for the orthogonal
polynomials:

𝜉
⎡
⎢⎢
⎣

𝑃0(𝜉)
𝑃1(𝜉)

⋮
𝑃𝑁−2(𝜉)
𝑃𝑁−1(𝜉)

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

𝑎0 1
𝑏1 𝑎1 1

⋱
⋱ 1

𝑎𝑁−1

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

𝑃0(𝜉)
𝑃1(𝜉)

⋮
𝑃𝑁−2(𝜉)
𝑃𝑁−1(𝜉)

⎤
⎥⎥
⎦

+
⎡
⎢⎢
⎣

0
0
⋮
0

𝑃𝑁(𝜉)

⎤
⎥⎥
⎦

.

(51)
The nodes of the quadrature approximation {𝜉𝛼}, are the eigenvalues of the
tridiagonal matrix appearing in the equation.
This matrix is often re-written in terms of an equivalent tridiagonal symmetric
matrix!



Product-difference algorithm

In fact thematrix can bemade symmetric (preserving the eigenvalues) by a diagonal similarity
transformation to give a Jacobi matrix:

J =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑎0 √𝑏1
√𝑏1 𝑎1 √𝑏2

√𝑏2 𝑎2 √𝑏3
√𝑏3 𝑎3 ⋱

⋱ ⋱ ⋱
⋱ 𝑎𝑁−2 √𝑏𝑁−1

√𝑏𝑁−1 𝑎𝑁−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(52)

This procedure transforms the ill-conditioned problem of finding the roots of a polynomial into
thewell-conditioned problem of finding the eigenvalues and eigenvectors of a tridiagonal
symmetric matrix.
The𝑁 weights can then be calculated as𝑤𝛼 = 𝑀0𝜑2

𝛼1 where𝜑𝛼1 is the first component
of the𝛼th eigenvector𝜑𝛼 of the Jacobi matrix.



Product-difference algorithm

1. Construct thematrix Pwith components𝑃𝛼,𝛽:

𝑃𝛼,𝛽 = 𝑃1,𝛽−1𝑃𝛼+1,𝛽−2 − 𝑃1,𝛽−2𝑃𝛼+1,𝛽−1
𝛽 ∈ 3, … , 2𝑁 + 1 and𝛼 ∈ 1, … , 2𝑁 + 2 − 𝑗. (53)

2. where the first row of thematrix is:

𝑃𝛼,1 = 𝛿𝛼1 𝛼 ∈ 1, … , 2𝑁 + 1, (54)

3. where 𝛿𝛼1 is the Kronecker delta andwhere the components in the second
column of P are

𝑃𝛼,2 = (−1)𝛼−1𝑀𝛼−1 𝛼 ∈ 1, … , 2𝑁. (55)

4. Calculate the coefficients of the continued fraction {𝜁𝛼}:

𝜁𝛼 = 𝑃1,𝛼+1
𝑃1,𝛼𝑃1,𝛼−1

𝛼 ∈ 2, … , 2𝑁. (56)



Product-difference algorithm

1. The coefficients of the symmetric tridiagonal Jacobi matrix are then obtained
from sums and products of 𝜁𝛼:

𝑎𝛼 = 𝜁2𝛼 + 𝜁2𝛼−1 𝛼 ∈ 1, … , 𝑁 (57)

𝑏𝛼 = −√𝜁2𝛼+1𝜁2𝛼 𝛼 ∈ 1, … , 𝑁 − 1. (58)

2. For example for𝑁 = 2 the Pmatrix is

⎡
⎢
⎢
⎣

1 𝑀0 𝑀1 𝑀0𝑀2 − (𝑀1)2 𝑀0 (𝑀3𝑀1 − (𝑀2)2)
0 −𝑀1 −𝑀2 − (𝑀0𝑀3 − 𝑀2𝑀1)
0 𝑀2 𝑀30 −𝑀30

⎤
⎥
⎥
⎦

.

(59)



Spatial discretization andmoment corruption

The convexity of the function ��(𝑀𝑘)with respect to 𝑘 can be easily verified by
building a difference table of ��(𝑀𝑘).
Example: VALID SET; moment of a Gaussian distribution (𝑀0 = 1,𝑀1 = 5,
𝑀2 = 26,𝑀3 = 140,𝑀4 = 778,𝑀5 = 4450,𝑀6 = 26140,
𝑀7 = 157400 )

k d0 = ��(𝑀𝑘) d1 d2 d3
0 0 1.609 0.039 -0.0043
1 1.609 1.648 0.034 -0.0033
2 3.258 1.683 0.031 -0.0027
3 4.941 1.715 0.028 -0.0022
4 6.656 1.743 0.026 -0.0019
5 8.400 1.770 0.024 0
6 10.171 1.795 0 0
7 11.966 0 0 0



Spatial discretization andmoment corruption

The convexity of the function ��(𝑀𝑘)with respect to 𝑘 can be easily verified by
building a difference table of ��(𝑀𝑘).
Example: INVALID SET; moment of a Gaussian distribution (𝑀0 = 1,𝑀1 = 5,
𝑀2 = 25,𝑀3 = 140,𝑀4 = 778,𝑀5 = 4450,𝑀6 = 26140,
𝑀7 = 157400)

k d0 = ��(𝑀𝑘) d1 d2 d3
0 0 1.609 0 0.113
1 1.609 1.609 0.113 -0.121
2 3.218 1.722 -0.007 0.036
3 4.941 1.715 0.028 -0.002
4 6.656 1.743 0.026 -0.001
5 8.400 1.770 0.024 0
6 10.171 1.795 0 0
7 11.966 0 0 0



Spatial discretization andmoment corruption

▶ When using first-order upwind spatial discretization schemes and first-order
explicit time discretization schemes the validity of themoment set should be
preserved

▶ In all the other cases it is very easy to CORRUPT themoment set and it is
anyway safe to have algorithms that DETECT CORRUPTION AND CORRECT
invalidmoment set

▶ If we transform themoment set so that d2 is positive, we are almost sure that
themoment set is valid

▶ But how positive?
▶ Themoments of a log-normal distribution have the smallest d3

𝑛(𝜉) = 𝑁𝑇
𝜎

√
2𝜋𝜉 ���(− (�� (𝜉) − 𝜇)2

2𝜎2 ) , (60)

𝑀𝑘 = 𝑁𝑇 ���(𝑘𝜇 + 𝑘2𝜎2

2 ) , (61)

▶ The log-normal distribution is the smoothest distribution!



Spatial discretization andmoment corruption

CORRECTION ALGORITHM BYMCGRAW
1. Build the difference table and check if d2 is negative

2. Identify themoment order 𝑘 that causes the biggest change in d3
3. Change themoment (bymultiplying it for a constant) in order toMINIMIZE d3
4. Go back to point 1

CORRECTION ALGORITHM BYWRIGHT
1. Build the difference table and check if d2 is negative

2. Replace themoments with those of a log-normal distributionwith

𝜇 = 𝑗
𝑖𝑗 − 𝑖2 ��( 𝑀𝑖

𝑀0
) + 𝑖

𝑖𝑗 − 𝑗2 ��( 𝑀𝑗
𝑀0

) (62)

𝜎2 = 1
1 − 𝑖/𝑗 [ 2

𝑗2 ��( 𝑀𝑗
𝑀0

) − 2
𝑖𝑗 ��( 𝑀𝑖

𝑀0
)] (63)



QBMM approximation vs DVM, Grad, oLBM – 4
Homogeneous Isotropic Boltzmann Equation (HIBE)

𝑀 = 4
Normalized relaxation rate

2nd energymoment 3rd energymoment



QMOM approximation vs DVM, Grad, oLBM – 5
Homogeneous Isotropic Boltzmann Equation (HIBE)

𝑀 = 4
BGK-equivalent relaxation time 𝜈𝑝(𝑡) = 𝑑Φ𝑝

𝑑𝑡
1

Φ𝑒𝑞
𝑝 −Φ𝑝

2nd energymoment 3rd energymoment



Analytical equations for QBMM

𝑑Φ𝑝
𝑑𝑡 = 𝜋√

2
⎛⎜
⎝

𝑀/2
∑
𝑖=1

𝑀/2
∑
𝑗=1

𝑤𝑖𝑤𝑗Λ+
𝑖𝑗,𝑝 −

𝑀/2
∑
𝑖=1

𝑀/2
∑
𝑗=1

𝑤𝑖𝑤𝑗Λ−
𝑖𝑗,𝑝

⎞⎟
⎠

𝛿𝑖𝑗 = √𝐸𝑗/𝐸𝑖; 𝑞𝑖𝑗 = 𝑞(𝑥, 𝑦, 𝐸𝑖, 𝐸𝑗); 𝐶+
𝑖𝑗,𝑝 = 𝐶+𝑝 (𝑥, 𝑦, 𝐸𝑖, 𝐸𝑗);

𝐶−
𝑖,𝑝 = 𝐶−𝑝 (𝐸𝑖); Λ+

𝑖𝑗,𝑝 = ∫+1
−1 ∫+1

−1 |𝑞𝑖𝑗|𝐶+
𝑖𝑗,𝑝 𝑑𝑥𝑑𝑦; Λ−

𝑖𝑗,𝑝 =
∫+1
−1 ∫+1

−1 |𝑞𝑖𝑗|𝐶−
𝑖,𝑝 𝑑𝑥𝑑𝑦

Λ+
𝑖𝑗,𝑝 = 2𝐸𝑝

𝑖 √𝐸+

𝑝
∑
𝛼=0

(𝑝
𝛼)

𝑝−𝛼
∑
𝛽=0

(𝑝 − 𝛼
𝛽 ) (−1)𝛾𝑖𝑗 𝐸−𝛽−𝛼

𝑖 𝐸𝛼
+ 𝐸𝛽

−

[ 2
2𝛽 + 1 (

1 − 𝑟2𝛼+2
𝑖𝑗

2𝛼 + 2 +
𝑟2𝛼+2

𝑖𝑗
2𝛼 + 2𝛽 + 3) + 1

𝛽 + 1 (
𝑟2𝛼+2

𝑖𝑗
2𝛼 + 1 −

𝑟2𝛼+2
𝑖𝑗

2𝛼 + 2𝛽 + 3)]

Λ−
𝑖𝑗,𝑝 = 2𝐸𝑝

𝑖 √𝐸+ (1 +
𝑟2

𝑖𝑗
3 )

𝛾𝑖𝑗 = {𝛼 if𝐸𝑖 ≥ 𝐸𝑗
𝛽 if𝐸𝑖 < 𝐸𝑗

𝐸+ = ���(𝐸𝑖, 𝐸𝑗) ; 𝐸− = ���(𝐸𝑖, 𝐸𝑗) ; 𝑟𝑖𝑗 =

���(√ 𝐸𝑖
𝐸𝑗

,√ 𝐸𝑗
𝐸𝑖 )
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