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Complex flow regimes WARWICK

Need of upscaled models and efficient methods

DIMENSIONLESS NUMBERS

» Reynolds number (fluid or particles) Re = UL L

> Particles Stokes number St = 22 = =207
7

» Knudsen number Kn = %

Re >> 1 — transition to turbulence
small scale and collisions, Kn > 103 — non-equilibrium effects
poly-dispersity, different St, evolving size — differential segregation

| Problem | Model | Tool |
Turbulence Large Eddy Simulation (LES)
Poly-dispersity Population Balance Eq. (PBE) QBMM'
Collisions Boltzmann Eq. QBMM
Multi-phase Eulerian/Mixture Algebraic Slip
| Random heterogeneous materials | DNS + upscaling |

'QBMM=Quadrature-Based Moment Method



Open and recent projects WARWICK

FLUID DYNAMICS AND POROUS MEDIA - APPLICATIONS

» Pore-scale simulations (single and multi-phase)

» Microfluidics, drop impacts on structured surfaces

» Particulate processes in turbulent flows, colloid deposition
» Momentum transfer closures for polydispersed flows

MULTISCALE SIMULATIONS - NUMERICS

» Numerical studies on convergence properties of flow in complex geometries

» Upscaling/model reduction of PDEs in subsurface flows and in
Lithium-ion batteries

» Multilevel Monte Carlo sampling for flows with random
geometry/parameters

» Discretization of PDF equations by quadrature-based moment methods

UQ AND STOCHASTIC MODELLING

» Bayesian inference for calibration and validation of macro-scale models

» Dynamic and static data assimilation with mean-field Ensemble Kalman Filter
» High-dimensional interpolation and surrogates for machine learning in MD

» PDF closures for turbulent and porous media flows
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Notation WA m] K

Please keep in mind the following notation:

» Probability Density function (PDF): f or P
Number Density Function (NDF): 1,
Space coordinates x, velocity U
Subscripts: p for particles, f for fluid
Statistical moments: M or p
Particle mass: m
Polynomial of order a: P,

vV vVvvyVvvyyvyy

Internal variables: general £ (or £), size L, species concentration ¢
» Quadrature nodes denoted by the internal variable with subscript %
» Quadrature weights denoted by w;
> Qg (or simply R): support for variable &
NO Einstein summation convention
This is just a modelling and numerical overview. Sorry but there will be no

mathematical details (spaces, BCs, probability spaces, proofs, etc...),
use your intuition (and ask if needed)!!
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Smoluchowski coagulation equation WARWICK

Smoluchowski, 1916

Describe particle aggregation/coagulation

G”Lt / K(L (L—i,t)n(i,t)di—/ K(L, D)n(L, tyn(L, t) d
0

» Not to be confused with the Smoluchowski equation (drift-diffusion equation)
» Integro-differential equation

» Number density n of particles with size L

» No spatial dependence

» RHS (Q) has a gain and a loss term written in terms of the aggregation
frequency K
» K isusually very complex and non-linear

Very interesting mathematical topic (stability, linearization, large-time
asymptotics), see works of Klemens Fellner (Graz)
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Population Balance Equation (PBE) WARWICK

Extension of the Smoluchowski coagulation equation, very popular in Chemical
Engineering, Biology and Social Models

on 0
E—i—a-(Un)—F—-(Gn)—Q

» n = n(&;x,t) number of particles per unit volume

» &, genericinternal variables (volume, size, area, composition, other
properties)

» U given advection velocity field

» O describe the generic particulate process with Birth (nucleation), Breakage
(Fragmentation) and Aggregation (Coagulation)?

Q =0y + 0;(n) + 95(n,n)

» G describe growth of particles (velocity in phase space &)

» Usually written for spatially inhomogeneous systems and coupled with CFD
to simulate dispersed bubbles and particles

*with frequency kernels that can be seen as upscaled jump processes
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The physical basis of Boltzmann eq. WARWICK

Binary collisions

Molecular encounters for hard-spheres potential

» dis the molecular diameter

» g = U — U, isthe pre-collision velocity
difference

> g =U — Ui is the post-collision
velocity difference

Number and momentum are conserved during a collision
— )/ ’. _ ’
m+m,=m" +mg; Uu+u,=U +U;
as well as kinetic energy (in the case of elastic collisions)

U-u+u,-u,=U U +U. U



Boltzmann Equation (BE) WARWICK

From the Liouville n-particles equation, assuming indistinguishable particle and
the "Stosszahlansatz” (molecular chaos® hypothesis), the Boltzmann equation is
obtained

on(u) 9 ) -
L+ o (Un(U) + 5 (Aan(U) =

o0
/R /s —n(U)n(u,)] B(g,x) dsdu,

» Aisthe acceleration,
» ST isthesolidangle
» 5 (g,x) is the collision kernel

Equations with similar structure: Vlasov (no collisions), Williams-Boltzmann spray
equation, ...

*particles are uncorrelated, two-particles PDF is product of one-particle PDF



Boltzmann Equation and Equilibrium WARWICK

Most of the studies and methods for BE are based on the concept of Equilibrium
Distribution

» The equilibrium distribution f,  issuchthat O(f.,, f.,) =0

» Also called "Maxwell-Boltzmann” or "Maxwellian” distribution, a Gaussian in
the standard case

» Fixing the first 2 moments (3 in case of NDF), only one Gaussian exist

» If one wants to study non-equilibrium phenomena, more moments must be
studied

» Grad's moment method is based on small deviations from equilibrium

f=feq(l+a Hy(v) +asHy(v) +...)

» Other methods (such as Lattice Boltzmann) rely on a linearized collision term
(BGK, Bhatnagar-Gross-Krook approximation)

1
O~ T_r(f_feq)

All these methods require the prior knowledge of the equilibrium distribution!



Flow regimes WARWICK

The Boltzmann Equation is not only for rarefied gases!

» The flow regime of a granular gas depends on Knudsen number Kn = f‘—
0

» The hydrodynamic description based on the Navier-Stokes-Fourier (NSF)
equation is valid only for low Kn:

» Continuous regime (Kn < 0.01): NSF with no-slip BC.
» Slipregime (0.01 < Kn < 0.1): NSFand partial slip BC at walls.
» For Kn > 0.1: Full Boltzmann equation.

Collisionless
Boltzmann equation __ Boltzmann eq.
|

Euler N-S
Kn

| | | | |
0 ‘ 001 0.1 1 10 10” o

Adapted from: G. A. Bird (1994)
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The Method of Moments WA w]c](

» MOM originatesin kinetic theory of gases®: n(t, x, U)
» The moment of order zero is related to the density:

plt) =m0 o(t) = ] :O 1t V) dU

» The moment of order one is used to define the average velocity:
() = (Ml,o,o Mo,l,o M0,0,1>

- b k)

Mo,o,o Mo,o,o Mo,o,o

» By applying the MOM to the Boltzmann equation, an infinite system of
equations (cascade) appears

» Euler, Navier-Stokes and Burnett equations are obtained by with the
Chapman-Enskog method (asymptotic expansions at different orders)

“The same name however may refer to many different methods in different fields
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The GPBE fluid-particle systems WARWICK

> n(t,x, U5, §p, Us, £f), represents the number of particles (per unit volume)
with velocity equal to Up, internal coordinate fp and see a continuous phase
with velocity Ur and internal coordinate Sf.

» The evolution of the NDF is dictated by the GPBE:

on 0 9 9
a"'a’(upn)—}'a_%'[('qu_’_'qp)] 85 (Gn)
2 +A)n]+i.<cn)zg 0
au, pf T agf f

> phase-space velocity for particle velocity: Ag, + A, (average particle
acceleration — acceleration model (drag, lift, ...)

> phase-space velocity for particle internal coordinate: G, (e.g. particle growth
rate)

» Discontinuous jump term: @ (e.g. particle collision, aggregation, breakage,
nucleation, etc.)
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GPBE and QBMM WARWICK

Generalized Population Balance Equation can be used for various applications
» Poly-dispersed® multiphase flows
» Bubbly flows, Particle-laden flows
» Granular flows, fluidized beds
» Rarefied gases

Classical CFD models such as Mixture model, two-fluid model can be recovered

In general the idea of quadrature-based moment methods (QBMM) can be used
for generic kinetic/PDF equations

» Statistical description of turbulence and turbulent reactive flows (Pope)

» Mean field limit in models of social behavior (crowd, swarms, traffic, opinion)
» Mean field equations of stochastic processes

» Fokker-Planck equation

*Fluid or solid particles of different size immersed in a continuous fluid phase



Numerical methods developed WARWICK

The mesoscale/kinetic models are highly dimensional (1 time + 3 spatial
coordinates +1size + 3 velocities + ... )

A plethora of methods have been generated:
> Interesting ways to solve it are Lagrangian / Monte Carlo methods (DSMC) or
to high-dimensional adaptive DG methods
» In PBE the distribution is often discretized into classes or sections (FD)

» Widely used among practitioners in multiphase CFD is the
multiple-size-group (MUSIG) method

» Forthe BEitis equivalent to the discrete-velocity method

» The method of moments (MOM) has been used for the solution of both PBE
and BE, but the resulting closure problem is overcome by different strategies
(e.g. Grad method, other functional assumptions, method of moments with
interpolative closure, MOMIC)



Method of Moments WA MICK

» Important advantage is that the moments correspond to quantities that have
meaningful physical interpretations and are therefore directly measurable

» Thisis a crucial point, since in many applications the NDF is not directly
measured, but is inferred from measurements of integral quantities

» Two main issues arise when using MOM: number of moments to be tracked
and closure problem

» The closure problem is the impossibility of writing a term as a function of a
finite set of moments

» When the kinetic equation contains a derivative with respect to an internal
variable, we have a cascade of equations for the moments (M, depends on
M;1)

» Oftenintegral source terms also need closure

The issues of the number of moments to be tracked and the closure adopted both
affect overall accuracy = connected and addressed together



Closure problem WAKW,ICK

When applying the moment transform (i.e. integral) closures must be assumed

THE CLOSURE PROBLEM APPEARS ALWAYS IN THE FOLLOWING
FORM:

= /Q 9(E)n(€) d€, @

3

where n(ﬁ) is the univariate NDF to be approximated and g a generic function to
be closed

PRESUMED-PDF APPROACHES

» A possible approach is to simply to assume a shape for the PDF/NDF

» Thisis reasonable when there is a fast relaxation towards equilibrium (e.g., in
Boltzmann equations the Maxwellian equilibrium is a Gaussian)

» There are many cases when the actual NDF is far from equilibrium
» How to find the best closure?



The problem is multiscale in nature! WARWICK

Microscale model
Fully resolved direct numerical simulation

Density function closure

Volume Mesoscale model
average Population balance equation
Boltzmann equation
Kinetic equation
(Lagrangian methods)

Reconstruction

Moment transform
Moment closure

Macroscale model
Moment equations
Mixture model
Two-fluid model
(Eulerian methods)
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Gaussian quadrature WARWICK

Basic idea behind QBMM

» The closure problem can be overcome by using the following quadrature

formula:
/Q

where w,, and £, are the weights and the nodes/abscissas of the quadrature
formula, and N is the number of nodes

» The degree of accuracy is equal to d if the interpolation formula is exact when
the integrand is a polynomial of order less than or equal to d and there exists
at least one polynomial of order d + 1 that makes the interpolation formula
inexact.

N
n(€)g(€)dé ~ Y wag(é,), ©)
a=1

13



Gaussian quadrature WARWICK

Basic idea behind QBMM

» The closure problem can be overcome by using the following quadrature

formula:
/95

where w,, and £, are the weights and the nodes/abscissas of the quadrature
formula, and IV is the number of nodes

n(€)g(§)de ~ Y wag(€a), @

QBMM uske A GAUSSIAN QUADRATURE
The NDF is the weight function or measure; the moments

M, = M(k) = (¢*) = / n(€)ékd¢, k=0,1,2,.. (5)
§2¢

are used to compute a Gaussian quadrature rule with a degree of accuracy of
2N —1,.



Gaussian quadrature WARWICK

Aset of polynomials { Py (§), Py (€), ..., P, (), ... } with
P, (&) =kq 0z + ko 121 + -+ k. issaid to be orthogonal in the
integration interval Qg, with respect to the weight function, if

=0 fora # g,
/ erersedE Ty fET] ©

and, of course, is said to be orthonormal if

_ {0 fora£5,
JRGEAGEICUES Fdats 0

3



Gaussian quadrature WARWICK

Basic idea behind QBMM

Any set of orthogonal polynomials { P, (§) } has a recurrence formula relating any
three consecutive polynomials in the following sequence:

Pa+1(€) = (€ —a )P (5) baPa 1(&)) a=0,1,2,.. (8)

with P_; (§) = 0and Fy(§) = 1and where
o, TMEEPA (E) P (€) 06
e fggn@)Pa(s) B *=0ba- ©
Sy MUEPL(E)Po(€) o8
A a=12,... 10)

e S P Ot O

One can calculate ag, then Py (§), then aq and by and soon...



Gaussian quadrature WARWICK

Basic idea behind QBMM

> The coefficients a,, and b, can be written in terms of the moments

> The coefficients necessary for the construction of a polynomial of order N can
be calculated from the first 2N — 1 moments of the NDF

» Forexamplewith M, M, M, and M3, itis possible to calculate the
following coefficients:

an = Ml
0 — M07

. MyM2 + M3 — 2M, M, M, o
V7 MMy + M2 —2M2M,

b MM, + M2 —2M3M,
1 — )

Mg

which suffice for the calculation of the polynomial Py ()



Gaussian quadrature WARWICK

Basic idea behind QBMM

GAUSSIAN QUADRATURE

The necessary and sufficient condition for the following formula:

N
/ n(€)9(€)dE = 3 g(n)wn + Ry (6), ®
Q a=1

3

to be a Gaussian quadrature approximation is that its nodes {&, } coincide with
the IV roots of the polynomial Py (§) of order IV orthogonal in §2, with respect
to the weight function n(§).
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History of quadrature-based moment mEthWAw_ICK

» McGraw (1997) introduced the Quadrature Method Of Moments (QMOM) in
the context of Population Balance Equation

» Marchisio and Fox (2005) developed the Direct Quadrature Method of
Moments (DQMOM) that became very popular in the Chemical Engineering
community because very easy to implement in CFD codes

» Different extensions to multivariate cases have been proposed. The more
general one is the Conditional QMOM (CQMOM) (Yuan and Fox, 2011)

» Kernel density type reconstruction have been incorporated in QMOM with the
Extended QMOM (EQMOM) (Yuan, Laurent, Fox, 2012)

» Different applications have been studied: particulate processes, dispersed
flows (gas-liquid, gas-solid, fluid-solid), turbulent micro-mixing, rarefied
gases, generic kinetic/Fokker-Planck equations, non-linear filtering, ...

» Recently proposed for Uncertainty Quantification (Passalacqua and Fox,
2012; Attar and Vedula, 2012)

» Alarge number of variants have been proposed (FCMOM, TBMM,
DuQMoGeM, SQMOM, ...)

All the closures based on Gaussian quadratures computed directly from moments
took the name of QUADRATURE-BASED MOMENT METHODS (QBMM)



Quadrature-based moment methods WARWICK

» For univariate problems things are simple: with QMOM, transport equations
for the first 2N moments are solved, the closure problem is overcome by
using a quadrature approx.

» The quadrature is very accurate in approximating integrals of smooth
functions in which the NDF appears (such as the collision integrals)

» The method implicitly assumes that the NDF is a summation of Dirac delta
functions centered on the nodes and weighted by the weights of the
quadrature approximation

» The quadrature approximation of order IV is calculated from the first 21V
moments with direct inversion algorithms: product-difference or Wheeler
algorithms



Quadrature-based moment methods WARWICK

HOW DO WE COMPUTE THE GAUSSIAN QUADRATURE
APPROX?

The IN weights and N abscissas can be determined by solving the following

non-linear system:
N
My = g Wy s
a=1
: (13)
N
— } : 2N-1
M2N—1 - Wala :
a=1

using the Newton-Raphson method, or any other non-linear equation solver (very
expensive, ill-posed and very good initial guess needed)

Much more efficient are the product-difference or Wheeler algorithms



Quadrature method of moments WARWICK

» Let us consider the following example (continuous rate of change of the
internal coordinate{ = G):

Dn 0

—=S=——(G,n)+h 14
Dt 8§< o)+ B 1
» We solve transport equations for the moment set:
DM, =
=S 15
Dt ks ( )

withk = 0,1,2,...,2N — 1 and with an initial condition
My (0) = [, n(0,£)¢" ot

» Integration of the system requires the evaluation of the source term through
the quadrature approximation



Quadrature method of moments WARWICK

» Moment equations

i) (G, n(e) at t6)
0

Dt

» The closure problem is overcome as follows:

DMk = Z (Golea)(€0)* T wy )

» where as already mentioned weights w,, and nodes &, are calculated from
the PD or Wheeler algorithm from the moments

» This method is called Quadrature Method of Moments (the variables are the
moments)



Quadrature method of moments WARWICK

In the case of standard nucleation, (positive) growth, growth dispersion,
aggregation and breakage, application of QBMM to the source term yields

DM, - ~ k-1 ~ k—2
= =T, +k> G w, +k(k Zg D_w,
a=1 a=1
1 N N
PP MRSt S N awabaNéwa—Z&ﬁbawa

where G, = (Gy[€,). Do = D(€4). Ba,y = B(€ay &) and by, = b(E,,)

and the moments of the daughter distribution function are

o= JEFN(glEq) de.



Direct quadrature method of moments WARWICK

» The fact that the closure problem is overcome with the quadrature

approximation:
/Q

» Isequivalent to the assumption that the NDF is as follows:

N
n(©)g(©)de ~ Y wag(8,), 19)
a=1

3

N
’I’L(f) = Z wad(g_éa)a (20)
a=1

» Instead of tracking the evolution for the moments, the evolution of the
weights and nodes in the quadrature approximation could be directly tracked:
Direct quadrature method of moments



Direct quadrature method of moments WARWICK

» Assuming that the weights and nodes are differentiable in space/time the
following transport equation is obtained:

> ate - €0) (22) - 3o ) (0 2B2) = 56 @

> If the weighted nodes (or weighted abscissas) s, = w,, &, are introduced:

—€) (D;U_ta) — Oﬁ:lé/(f —€a) (_fa% T %)

=5(¢). @

1=
=
I

Q
Il



Direct quadrature method of moments WARWICK

> We now define a,, and b,, to be the source terms:

Dw,, D¢,
— = {0 —_— = b . 23
Dt > Dt * &

» Using these definitions Eq. (22) can be rewritten in a simpler form:

Z o) F (€ —E)E] an—> 8/ (€—E64)by = S(£). (@8

» This equation can now be used to determine the unknown functions a ., and
b,, by applying the moment transformation.



Direct quadrature method of moments WARWICK

» DQMOM can be applied for any independent set of moments (number of
moments MUST be equal the number of unknown functions)

» Knowing that:

+oo
/ €k6(€_£a)d€: (ga)ka

res (25)
| s aoe =k,
» The moment transform of Eq. (24) yields
N N _
(1—k) D &kag+kD &1, =5, (26)
a=1 a=1

withk = ky, ko, ..., kg -



Direct quadrature method of moments WARWICK

» The linear system in Eq. (26) can be written in matrix form:

Aa = d. (27)
where
o = [al s a,N bl con bN]T = |:g:| 5 (28)
— - T
d= [Skl Skml] ) (29)
» The components of the matrix A are
1—k,)&% f1<j<N,

Gy = ( kijl) &; <j<N -

kiﬁj ifN+1<j<2N.



Direct quadrature method of moments WARWICK

» If (asin QMOM) the first 2N integer moments are chosen (i.e., k = 0, ..., 2N — 1),
the matrix of the linear system is

A=

1 1 0 0

0 0 1 1

_5% _5%\, 2§1 2§:N
21-NENT o 21-NEEN T @N-DEN 2 - 2N -1

» Adoes not depend on the weights w, and if the abscissas &, are unique, then A will be
full rank.



Direct quadrature method of moments WARWICK

» This method is called Direct quadrature method of moments and follows this
procedure:

» The evolution equations for weights and nodes of the quadrature
approximation are solved:

bW _ ,  DWaba _,

a .
Dt o’ Dt «

» The source terms are calculated by inverting the linear system and by using
the following initial condition:

w,,(0)=wl, ¢,0)=w2e fork=1,..,N. (33)

(o R}

(32)

in turn calculated from the initial moments



QMOM & DQMOM WAW_]C](

» QMOM & DQMOM are very accurate in tracking the evolution of the
moments of the NDF: 4-8 moments do the same job of many (e.g. 100) classes
or sections (see for example the work of Marchisio et al., 2003 and Vanni,2000)

» The Wheeler algorithm is very robust (if the moments are realizable) and for
particular cases the Wheeler algorithm is successful when PD fails

» QMOM & DQMOM are identical for spatially homogeneous systems (if the
nodes are distinct and if the problem is continuous in time)

» Important differences arise when treating spatially inhomogeneous systems
(discussed next)

» In general increasing the number of nodes of the quadrature approximation
and of moments to be tracked increases the accuracy

» Problems can appear when kernels and NDFs are discontinuous or when they
are localized in the phase-space (e.g. fine dissolution)
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Extended QMOM WA M]CK

» only integral representation, no localized processes in phase space,
smoothness of kernels 3, G, ...

» It failsin the computation of the entropy st flogfd&

» However smooth basis functions can be used instead of delta functions
(Extended Quadrature Method of Moments, EQMOM)

» PDF reconstructed as a mixture of Gaussians (or other distributions) like the
Kernel Density Estimation

» The choice of basis functions can be done arbitrarily or with additional
unknown parameters (e.g., mean and variance of normal distribution)

» Additional parameters must be found by additional equations (i.e., more
moments must be solved)

- Theinversion problems can become difficult to solve

An alternative is the reconstruction through Maximum Entropy Method or the
reconstruction through the orthogonal polynomials

REMARK: An underlying kinetic representation and the reconstruction of the PDF of the
velocity are also the basis of the so-called Kinetic schemes and Asymptotic Preserving
schemes (see very interesting works of S. Jin, P. Degond, ...)



Quadrature-based moment methods WARWICK

EQMOM for a dissolution problem

GAUSSIAN DISTR. SoLUTION WITH /N = 4 BETA
DISTR.
1. — 25
o
= 2 i
4 15 M :6
gu.a ;
0.6 1
o4 0.5
0.2]
0 =y ) T 3 B 4 02 04 06 08 1
g < a

%uan, C., Laurent, F., Fox, R.O. An extended quadrature method of moments for population balance equations (2012) Journal of
Aerosol Science, 51, pp. 1-23.

£ A=€q)
5o L (=€), _gota-g @ 1
* = Voro 202 )70 B(€a;0)
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QBMM - multivariate case WARWICK

The original multiivariate GPBE for M -dimensional phase space:
on 0O o on o)
E—Fa(upn)—a( E)——-(Gn)-‘rQ, (34)

is solved with DQMOM with the following (M + 1) N equations:

ow o) o) ow
e = o (w —— . (D e
ot + Ox ( p’awo‘) Ox ( < Ox ) 10 (5
ow, € o o ow, &
« — . (u ——.|D e
ot + Ox ( p,awafa) Ox ( < Ox ) tba (29)
witha € 1, ..., N and where the source terms are calculated by solving the following linear
system:
N M Mo N M P M ke
1= ks | [T 657 aat D, > g — | 1] 67 | bs.a
a=1 B=1 B=1 a=1 3= Bia \H=1




QBMM - multivariate case WARWICK

Whereas with QMOM after having defined a generic moments :
— kq LY
M= | & &p'n(t,€)dE (38)
equivalent notations My, 4 = M, = M(ky,...,kpr) = M(k), wesolve
the resulting transport equations:

6]\4k 2 k _2 k@Mk>_— _
2 (kM) (p_ _5, =

N
/Q . [—8—§ ((Gleym) + 8] de @)

and the closure problem is overcome by using the quadrature approximation.



QBMM - multivariate case WARWICK

For multivariate problems N(M -+ 1) moments ( optimal moment set) are used
to determine the quadrature approximation
Brute-force QMOM: direct solution of the following non-linear system

N M

=Mk) =Y w, [[ 5%, 1<i<NM+1)
a=1 B=1

kil 7ki2 ’-"akiM

by employing the Newton-Raphson iterative scheme:

Zni1 = 2 — A (K, X, JF(Z0).

The Jacobian A is identical to the matrix of the linear system of DQMOM!
Alternatively the Tensor-Product QMOM can be used



Optimal moment set WARWICK

» To perform calculations with both multivariate QMOM®and DQMOM the
matrix A must be non-singular (or full rank)

» For M = 1 (univariate) problems this requirement is satisfied if the nodes are
distinct

» For multivariate cases, having distinct abscissas does not guarantee that A
will be full rank

» It can be shown that for fixed /N and M, certain distinct moments are linearly
dependent when M > 1 forall possible sets of abscissas

» Itis therefore necessary to identify a moment set for which A is always
non-singular for all non-degenerate points in phase space for given values of
MandN.

» This definition is useful also when other inversion algorithms are used (e.g.
Tensor-Product QMOM)

°If the Brute-Force inversion algorithm is used.



Optimal moment set WARWICK

OPTIMAL MOMENT SET

1. Anoptimal moment set consists of N (M + 1) distinct moments.

2. Anoptimal moment set will result in a full-rank square matrix A for all possible
sets of IV distinct, non-degenerate abscissas.

3. Anoptimal moment set includes all linearly independent moments of a
particular order -y, before adding moments of higher order.

4. Anoptimal moment set must result in a perfectly symmetric treatment of the
internal coordinates.



Optimal moment set WARWICK

Table: Moments used to build a bivariate quadrature approximation (M = 2)for N = 2. In
this case M|, 5 is chosen as the third-order moment to saturate the degrees of freedom.

M(2,0)
M(1,0)
M(0,0) M(0.1) M(0,2) M(0,3)

Table: Moments used to build a bivariate quadrature approximation (M = 2)for N = 3. In
this case M5 1. M 5 and M, 5 are chosen among the third-order moments to saturate
the degrees of freedom.

M(@,0) M@QT)
M(@1,00  M@A1)  MQ,2)
M(0,0) M(01) M(0,2) M(0,3)



Optimal moment set WARWICK

Table: Optimal moment set used to build a bivariate quadrature approximation (M = 2) for

N = 4. onlywhen NY/M js an integer, there exists an optimal moment set (that fulfills the
symmetry requirement).

M(@3,0)  M@B1)
M(@2,0)  M(@Q2,))
M(1,0) M(1,1) M(1,2) M(1,3)
M(0,00  M(0) M(0.2) M(0,3)

Table: Optimal moment set used to build a bivariate quadrature approximation (M = 2) for

M(5,00  MGBD  M(52)
M(4,0)  M(4))  M(4,2)
M@B,0)  M@B1)  M@B2)
M(@2,00 M) M2 M3 M24) M5
M(1,0) mMQ,1) M(1,2) M(@1,3) M(1,4) M(1,5)
M(0,0) M(01) M(0,2) M(0,3) M(0.4) M(0,5)



Multivariate Conditional QMOM WARWICK

» Methods based on conditional density functions:
n(€1,82) = n1(&1)f21(82161) = n2(§2) f12(811€2)

» Univariate quadrature (N ) calculated from the first 2/N; — 1:

MO,O.,...,O,O PD/Wheeler Wy El.?l
;i . : 8 .
Ms3n;-1,0,..,0,0 wNy ) \&1;n,

resulting for examplein: n(&1, £5) = ZNllzl wa15 (51 - El;Oq) f21(&21€1)

«

» The generic moment becomes:

My, ke, = //n(§1,§2)511€1§§2d§1d£2

Ny
Z walflf;lal /f21(§2|£1;a)5§2 d&,

ap=1

» Conditional moment: <f§2> = f f12(§2|€1;a1)€l2€2 d€o

a1



Multivariate Conditional QMOM WARWICK

For each of these IV nodes, 2N, — 1 conditional moments are calculated, and
univariate quadratures N2 are determined (in direction 52): Conditional QMOM
or CQMOM

gtz 62:N1-1.N2(WN‘—1,N2)
{2§2vN2(W2,N2J £Z:N1-1,N2-1(WN,—1‘N2—1)

(WLN]) 62;1,%2 {2;2,N2-1 %,/ EZ;Q‘Ni,NZ(WN“NQ)

Warea)| G, -1 (W) ‘ ?{Z;Nl,wz-l
’% | iZ:Nl-l,Z ‘ Wi,iN,-1
w, | {2-22Wz»z ? Waos2f
( 1;2) {2;1.2? 12, ( : ) aszl_m ?{z;Nl,z(WNﬂ)
(w,.) fz;md:) &pz1 (W) 9 (Wyns) O 2l
é.l;l {1;2 A {I;an é;;wl fl

(Wl) (Wz) "' (WN,—l) (WN,)



Multivariate Conditional QMOM

WARWICK

Table: Moments used to build a bivariate quadrature approximation (M = 2)for
N, = N, = 3 using CQMOM with &, conditioned on &; (top) and &; conditioned on &5

(bottom).

M(5,0)
M(4,0)
M(3,0)
M(2,0)
M(1,0)
M(0,0)

M(5,0)
M(4,0)
M(3,0)
M(2,0)
M(1,0)
M(0,0)

M(2,7)
M@.1)
M(0,1)

M(5,1)
M(4,1)
M(3,7)
M(2,1)
Y IC)]
M(0,1)

M(2,2)
M(1,2)
M(0,2)

M(5,2)
M(4.2)
M(@3,2)
MQ,2)
M(1,2)
M(0,2)

M(2,3)
M(1,3)
M(0.3)

M(0,3)

M(2,4)
M(1,4)
M(0,4)

M(0,4)

M(2,5)
M(1,5)
M(0,5)

M(0,5)



QBMM - multivariate case WARWICK

Bivariate Gaussian distr. with p = 0.0and N = 9; BF-OMOM (diamond),
TP-QMOM (circle) and CQMOM (square)



QBMM - multivariate case WARWICK

Bivariate Gaussian distr. with p = 0.5and N = 9; BF-OMOM (diamond),
TP-QMOM (circle) and CQMOM (square)
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Quadrature Method of Moments WARWICK

> The spatially inhomogeneous GPBE operating on n(€) reads as follows:

= (<up|§>n)=§x-(D<§>Z—’j) ;’5 (Golehn) +8 (o)

» Theapplication of the moment transform, M}, = fn(ﬁ){k d&. generates
several closure problems:

My D gy = 2 (pn) 3
ot +8x (UpMk>_8x (D Ox + 5% 0

where of course U¥ = —Uﬁm— (similarly D¥)and

8 = J (& ((G,le)n) +5) ¢ de.

» The solution with QMOM is as usual ...




Quadrature Method of Moments WARWICK

» From {My, My, ..., M5 xn_; } the Gaussian quadrature with N nodes is
constructed resulting in the following approximation

N
My (t,) = / n(t Ok dE = 3 wa(tx) () @)
Q a=1

3

» that can be used to overcome the different closure problems, for example:

fQ§<UpI£>n(t,x, £)ek dg XN (Ul wa gk

4

Ué“ (t,x) =

» By using different velocities, Uf (t, x), for the different moments, we can
describe mixing and segregation patterns



Direct quadrature method of moments WARWICK

Moreover if w,, and &, are continuous functions of space and time, DQMOM can
also be applied (slightly different now due to the diffusion term):

ow, 0 0 ow,,
at T+ = Ox (<Up|€a>wa) = a . (D(SQ)W) =F A, (44)
8wa§o¢ 0

8 0
oo 4 2 (leawata) = 5 (DE) T2t ) 4, a9

witha € 1, ..., N and where the source terms are as usual determined by solving
the following linear system:

N N
—k)) tka,+kD ek, =85, +Cy, (46)
a=1 a=1

where

N
Cp=k(k—1)> ¢2C,, C,=w,D (65_: : 8;—;‘) . @)

a=1



Spatial discretization and moment corruptiof, 5 RWICK

» A moment set is said to be valid or realizable, if the Hankel-Hadamard determinants are
all non-negative:

My — My, .. My
Apy=Mern Mgz Megals o k=01, 1>0 @9
My Mg - Mgy

fork =0,1andl > 0.
» Forl = 1 weget:
MMy, o —M2,, >0 k=0,1,2,.... (49)
which for k = 0 becomes the constraint of positive variance
» Equivalently this becomes:

M M
( ’“)+2 (Mys2) > (M) k=0,1,2,..; (50)
orin other words convexity of the function =+ (M, ) with respect to k




Spatial discretization and moment corruptiof, 5 RWICK

Less stringent condition: convexity of function = (M)
with respect to k

In (mk)“

non-valid

Ad-hoc correction algorithms are needed!



Spatial discretization in QMOM

WARWICK

An alternative is to solve the transport equation for a generic moment M, with
discretization schemes that PRESERVE the moments ("Realizable schemes"):

oM,  OM{ o  OM,
TR - Pl Sl

After spatial discretization (finite-volume):
U, P
" de __P_i (Me —MW)
1 1 1 1 > dt — Mk Az k k
w P E X

With first-order upwind Mj, = M, and M} = M}!

Spatial discretization schemes based on first-order upwind always result in
VALID moments. Higher-order schemes (CDS, second-order upwind, QUICK,
MUSCL) can result in INVALID moments.



Spatial discretization in QMOM WARWICK

» One solution would be to evaluate the moments at the faces M7, and M7,
through the quadrature approximation
> We know the value of the moments at the center of the cells MY, M}, M},

T
U,

1 1 1 1
w P E 3

» From these moments we can evaluate the corresponding weights w’; and
; P
abscissas &,
> If weights at the center of the face are interpolated with pt"-order spatial

reconstruction and the abscissas are interpolated 1%*-order spatial the
resulting moments will be valid

» This allows to improve the numerical accuracy preserving the moments!
» Alternatively one can use semi-Lagrangian schemes (Attili and Bisetti, 2013)



Spatial discretization in DQMOM WARWICK

» In QMOM the governing equations are for the moments that are ‘conserved’
variables

» In DOMOM the governing equations are for weights and weighted abscissas
that are ‘primitive’ variables

» When QMOM is used (if proper discretization schemes are used) only the
transported 2N moments are preserved and conserved (and their linear
combination)

» When DQMOM is used only weights and weighted abscissas are conserved
and their linear combination: M and M

» One disadvantage of DQMOM is that only two moments (of the 2N selected)
are conserved and saved from numerical errors!

» Another way to look at the problem is to consider that the equations in
finite-volume codes are solved with an error called numerical diffusion whose
coefficient is unknown!



Spatial discretization in DQMOM WARWICK

» The original DQMOM requires the solution of these equations:

ow, ow,

ot "Uep T e
ow &, ow,€,
ot Uy T e
¢
oM,  OM, -
ot Ve — Sk
» When the finite-volume discretization is applied:

dw’; UP e w P
dt +E(wa_Mk) = Q4
dwaéa)” | Up ; woo_ e
dt + AZC ((waga) (waé-a) ) - ba

¢
dM?, U .
g2 (M -MY) = 5

dt Ax
failing in conserving higher-order moments (k > 2)



Spatial discretization in DQMOM WARWICK

» Solution: fully conservative version of DOMOM ( DOMOM-FQ):

oM U .
- -+,
¢
dw?
& = “%%atad
d(w P
Wabad _ 4y 4o,

now successfully conserving all the moments of the NDF
P Alternatively one can use semi-Lagrangian schemes (Attili and Bisetti, 2013)

» Summarizing if the equations for the moments have large physical diffusion terms
DQMOM can be safely used (numerical diffusion will be smaller than real diffusion and
the solution will contain no discontinuities and no shocks)

» When only the equation for the moments do not contain any physical diffusion term than
DQMOM-FC should be used
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Turbulence models WARWICK

DNS, LES, RANS

\EgiD DNS RANS
& @W7§D ------- LES

DIRECT NUMERICAL SIMULATION (DNS)

All the flow-scales are solved without model => virtual experiments (3D and unsteady)

LARGE EDDY SIMULATION (LES)

Equations are filtered in space (or frequency). Bigger 3D unsteady scales are solved; smaller
ones are modelled with sub-grid scale (SGS) models

RANS

Time-averaged equations = only the mean flow is predicted



Poly-dispersed particles WARWICK

Particle Size Distribution (PSD) and Population Balance Eq. (PBE)

Particle Size Distribution  n(L;x,t) = / n(L,Up;x,t)du,
R3

8000

/\ —Exact distribution st Tp - Pp D?
6000 / \ Ty 18uty
4000 / .
0 k

0 10 20 30 40
Particle diameter (um)
Particles of different size behave very differently with a non-linear relation
between size and relative velocity

Particle size distribution

N
o
=]
=]

St~ 1




Poly-dispersed particles WARWICK

Log-normal PSD and QBMM approximation

Quadrature-based Moment Method (QBMM)
nodes and weights to approximate f (L)

8000 e e
| —Exact distribution |
c 1
."% 6000 | P
>
2 i
® i
T 1
o 4000] ]
N !
w 1
o 1
° H
S 2000( !
o 1
1
1
1
1
0 1 I L L
0 10 20 30 40

Particle diameter (um)

2 moments — 1node, 1weight
Mean size



Poly-dispersed particles WARWICK

Log-normal PSD and QBMM approximation

Quadrature-based Moment Method (QBMM)
nodes and weights to approximate f (L)

80007
| —Exact distribution |
o
8 6000 | L PP
>
2 n
B i
T 1
© 4000 - FEP AN : ....................................
N !
n 1
© 1
o H
E 2000} !
i n]
1 1
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Particle diameter (um)

4 moments — 2 nodes, 2 weights
Volume fraction



Poly-dispersed particles WARWICK

Log-normal PSD and QBMM approximation

Quadrature-based Moment Method (QBMM)
nodes and weights to approximate f (L)

8000 e e
|—Exact distribution
o
S 6000]
j §
2
B
o
o 4000]
N
(2]
o FANY
g i i
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1 1
1 1
1 1
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Particle diameter (um)

8 moments — 4 nodes, 4 weights



Real-space advection WARWICK

from homogeneous model to multi-fluid model

Population balance equation:

no growth ter no aggregation,breakage,nucleation
Oyn +0,(Up| L)+ DpmG= Bl

Models for conditional velocity (U, |L) = U, (L)

PSEUDO-HOMOGENEOUS MODEL, St << 1
Particles flow with fluid velocity U, (L) = U

ALGEBRAIC MODELS (MixTurE), St < 1

Up (L) is calculated with algebraic relations from the knowledge of U

DIFFERENTIAL MODELS (MuLTI-FLUID), St > 1

Uy, (L) is solved with a momentum balance equation



Equilibrium Model cemysaischancan WARWICK

Drag forces and gravity

» similar to the classical Algebraic Slip Model

» expansion of Maxey-Riley equation for small particle response time Ty

Du
Up~U+O0(1,) = Up,—U=—T, (Ft_g>

» 15% order correction

_1 /DU
U= — =l (Y _
Up —U=—1, (I+7,VUT) (Dt )
» High Re,, effects considered using a modified 7,
» can be extended to take into account other forces and two-way coupling



SGS model for particles WARWICK

Approximate Deconvolution Method

In Large Eddy Simulation (LES) we have only filtered velocity field U

APPROXIMATE DECONVOLUTION METHOD (ADM)

To estimate the “real” unfiltered velocity we use an approximate inverse filter

» Gisatestfilter
» NV_is the deconvolution order

» if V. = litis like an inverse dynamic model
» considered N, = 1, 5 with Gaussian weights



PBE approximation WA

Quadrature-Based Moment Method (QBMM) - DQOMOM formulation m] CK

» Single momentum equation for the mixture
» Equilibrium model to calculate velocity Uy, (L)

» Population balance discretized with Quadrature-Based Moment Method
(QBMM)

» Solved directly in terms of nodes L, and weights w, (DQMOM formulation)

SINGLE VELOCITY MODEL

All particles flow with an overall mean velocity U,, (L) = U,, (L)

MULTIPLE VELOCITIES MODEL

Each node (particle class) considered as a separate phase with its own relative
velocity



Turbulent oly-dispersed channel flow
bulentpalyseisp i WARWICK

——PSD reconstruction
1 —¥ DQMOM nodes

CHANNEL CENTRE

: ——PSD reconstruction
1 : —¥ DOMOM nodes
08 . H 4
WALL

Particle Size Distribution
o
[+]

Particle Size Distribution
o o
N »

6 0 2 4 8
particle size [1 0° m]
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Relative velocity models WA m]c](

Algebraic slip model

» Slip velocity (based on the review of Manninen et al., 1996) solved with
Newton-Raphson method

» Drag and lift forces
» Tomiyama relations (Tomiyama et al., 2002) for drag and lift coefficients

24 8 Fo
Cp=(1—a,)mar |— (1+0.15r2-687) - ——
b= o) Re ( ), 3FEo+4
min[0.288tanh(0.121Re); 0.00105E0° — 0.0159E0% — 0.0204E0 + 0.474]; Eo<4
C'p, = 4 0.00105€0% — 0.0159E02 — 0.0204E0 + 0.474; 4 < Eo < 10

—0.27 elsewhere

» Lift and drag coefficients depends on Eotvos number (in our case mainly
bubble diameter)

» Lift changes sign at about 5.8 mm (for the test case under study)

Another force has been considered close to the wall (wall-lift force) based on the
models of Tomiyama et al. (1995), Hosokawa et al. (2002), Antal et al. (1991) (see also review of
Rzehak et al., 2012)



Turbulence and collision models WARWICK

Aggregation and breakage - see also work presented by Buffo et al

Turbulence model must be included(either DNS, LES or RANS)

» PBE models are usually expressed only in terms of time-averaged RANS
formulation

» Turbulent dispersion force added as isotropic turbulent diffusivity in the
DQMOM equations

» Coalescence kernel (Laakkonen, 2007; Prince and Blanch, 1990; Coulaloglou and
Tavlarides 1977):

_ ppie (AL }
Oé()\, L) = CA61/3()\+L>2()\2/3+L2/3)1/2 <—6 J 1097 <)\—|-—L>

» Breakup kernel (Laakkonen, 2007; Alopaeus et al., 2002):

_ 1/3 g My
B(L) = Cget/Zerfc <\/0.04—pl62/3L5/3 IF 0.01—;0“0961/3[/4/3)

» [3—PDF Daughter distribution function (binary)
» constants taken from Laakkonen, 2007 and Buffo et al., 201




Gas-liquid vertical pipe WARWICK

Test case description

Pt

Test Case:
» Gas superficial velocity 0.05 [m/s]
» Water superficial velocity 0.25 [m/s]
Test Case 2:
» Gas superficial velocity 0.05 [m/s]
| » Water superficial velocity 0.7 [m/s]

mean void fraction known from
experiments

liquid

» experimental data (Szalinsky et. al.,
2008) Results analyzed in terms of void fraction
» height 6.0 [m] profiles at the outlet and bubble size

» diameter 0.067 [m]



Flow regimes WARWICK

Figure taken from szalinsky et al. (2010)
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2 test cases (red points) of bubbly flow with moderate gas fraction (<0.1) and
Stokes number (<10)



DQMOM initialization and BCs WARWICK

DOMOM vs Classic ASM

INLET BSD

» The bubbles enter the pipe through 3mm diameter holes

» the model of Miyahara et al. (1983) and Nicholas et al. (1991) has been used to
estimate the initial bubble size distribution, based on the system and the
sparger properties

» alog-normal distribution has been used with a mean diameter of 7 mm

» inlet lognormal parameters, mean and STD, can have strong influence on the
overall results

The "Classic ASM” model (without population balance) instead has a fixed bubble
size derived with a fitting procedure



Numerical details WARWICK

Commercial CFD code TransAT

» RANS standard k — € model for mixture phase
» Coarsegrid: 307 x 15

» Finegrid: 620 x 33

» Steady state 2D axisymmetric domain

» Convection: HLPA scheme

MODEL VALIDATION
» Mesh
» Pipe height (3 mvs 6 m)
» steady VS unsteady formulations

REsSULTs
» Experimental profile
» Classic ASM
» ASM + DOMOM 4 moments
» ASM + DOMOM 6 moments



Vertical pipe ﬂOW WA WICI<

Results - void fraction
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Vertical pipe flow

e
Results - Sauter diameter - at wall and in the center WA WI CK
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Vertical plpe ﬂOW VL =0.25 WA WIC K

Results - Bubble surface area

mean surface area mA2
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Vertical pipe flow V, = 0.57 WARWICK

Slug flow test

A test for slug flow regime has also been tested
0.55

05 "e%‘B-B-lﬁ—_re
'P‘.?;_e
0.45
_ o4
T
.5 035
§ 03 .
[
.‘g 0.25 +
Z o2 + 5\
0.15
+
0.1 Experimental 4
0.05 ASM + DQMOM 4 moments —&— 4
: 0 0.005 0.01 0.015 0.02 0.025 0.03

Radius [m]

Surprisingly this model gives good results for void fraction but BSD is no more
coherent because it cannot include slugs formation



Kinetic and PDF equations

Smoluchowski coagulation equation

Population balance equation (PBE)

Boltzmann equation (BE)
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Boltzmann equation WARWICK

Homogeneous isotropic case (HIBE)

Particle Velocity Distribution  f(Up;x,1) = / J(L,Up;x,t)dL
R

MODEL EQUATION

scalar molecular speed &

distribution of velocities f(&)

no spatial derivatives

only collisions Q( f, f)

Hard-sphere model

&b = ( ]éﬂ), Y=
(24n)

collision frequency |5y — & ]

>
>
>
»
»
>

v




Boltzmann equation WARWICK

Homogeneous isotropic case (HIBE)

d
HIBE evolution equation: d—{ =9(f, f)

+o0 +1 p+1
Q=2r2a? / & / / (FEDFE) — F(E1)F(Es)) |eay—E, 2] dady de,
0 L -

1 1

Let us introduce the even moments M,,, = ©, (density @, energy @4, etc.).
After change of variable F/ = %2 and a few manipulations:
de, - 1/2
— L =anvV2 [ 0(f, )EPRE =
0

7T3 oo [eS] +1 +1 o B e "
woweva [ [0 [ [ el @) $E) £ BB A dvdya . B

q=yE? —aEY?,  Cf =[EQ-2?)+Ey} ", C,=Er



Quadrature approximation for HIBE WARWICK

COLLISIONAL INTEGRAL

/0 ) /0 ) [ jl [ jl lal [(C3) = (Cp)] (E)f(E,)(EE,)"/?dvdydE,dE

M/2 M/2

+1 1
S [ el — o) wansdadyar.is

’LOJO

Written in terms of pre-collisional quantities only — quadrature approximation

3 M/2 M/2 M/2
ey~ st E =5 -T2 T i
ad

atequilibrium @) = 0 — =52 = 0 BUT this is not guaranteed with the
quadrature approximation

Collisions drive the flows towards the wrong steady state



Quadrature-Based Moment Method (QBMM)NA RWICK

Homogeneous Isotropic Boltzmann Equation (HIBE)

M/2 M/2

dt \/_ZwaA =5,

w; and E; calculated from @, with inversion algorithms’

» QMOM fails to approach the equilibrium — source term must be corrected
» Static correction (QMOM+SQC):

d<I>p cq
2~ %r %

» Dynamic correction (QMOM+DC) weighted with a distance from equilibrium:

do,

dt =%~

Set,  h=15

’Product-Difference or Wheeler algorithms



QMOM approximation vs DVM, Grad, oLBM WARWICK

Homogeneous Isotropic Boltzmann Equation (HIBE)

Let us consider a closed box of particles far from equilibrium (initial velocity
distribution NOT Gaussian):

QMOM approximation selecting // moments
(M /2 nodes and weights)

COMPARISON WITH:
» Discrete Velocities Method (DVM): reference results with 400 discrete
velocities - HomlIsBoltz open-source Matlab code (Asinari, 2010)

» Grad expansion method (GM) of order M with generalized Laguerre
polynomials

» Quadrature approximation with M fixed Laguerre nodes — Lattice
Boltzmann Method (LBM) with off-lattice prescribed velocities



QMOM approximation vs DVM, Grad, oLBM yJ5 RWICK

Homogeneous Isotropic Boltzmann Equation (HIBE)

M =4
Initial condition
x10

. —DVM
qLLJ_, 151 “== Grad
< A QMCM
E=] —k LBM
2 10p-
3
L
c
ko]
= 5
Q
ke .
O p '%*—-———*—“

10’ 10° 10°

E, particle kinetic energy



QMOM approximation vs DVM, Grad, oLBM

Homogeneous Isotropic Boltzmann Equation (HIBE) WA MI CK

. erer e PH P
Relaxation to equilibrium Rp = _%P_
P
0 EK'S‘E—‘ [P D 0 -0
}5 44449444 A
o 005 pAq 449 R
g S 02
*% 0.1 % g
T 015 —DVMref || © ——DVM ref
14 A 4 R
" QMOM+DC Py QMOM+DC
T 02 > amom+sc | 15 0.4 D> QMOoM+SC
5 ’( <l amom 3 < amom
= -025 Grad = -~ Grad
* LBM Q_Q‘ * LBM
0 1 2 3 4 5 0 1 2 3 4 5
Time X 10'4 Time X 10-‘

2nd energy moment 3rd energy moment



QMOM approximation vs DVM, Grad, oLBM y\35 RWICK

Homogeneous Isotropic Boltzmann Equation (HIBE)

Relative erroron @,
0.02
l> NN 0.02
s . RTS8 4T
5 R**i?.&*.iah&&x l>>[>b’> 5 AAA ﬁ*ig'ﬁ‘ - LTS
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HIBE steady state WA WICK

Quadrature error

Comparison of steady-state moments
M =4 M=6

=8
x108 & % ® % > %
Grad (exact) 1.0&34 0.0 1.0834 0.0 1.0&34 0.0
oLBM 1.0033 0.01 1.0034 0.003 1.0034 0.001
QMOM 0.9704 3.29 0.9979 0.55 1.0022 0.12
QMOM+SC/DC 1.0034 0.0 1.0034 0.0 1.0034 0.0
x1011 o % o5 % o %
Grad (exact) 1.4921 0.0 1.4921 0.0 1.4321 0.0
oLBM 1.4919 0.02 1.4921 0.004 1.4921 0.002
QMOM 1.4707 1.44 1.4874 0.31 1.4910 0.08
QMOM+SC/DC 1.4921 0.0 1.4921 0.0 1.4921 0.0
x1014 @ % o %
Grad (exact) - - 2.8?29 0.0 2.8?29 0.0
oLBM = = 2.8527 0.005 2.8528 0.002
QMOM = = 2.8302 0.80 2.8478 0.18
QMOM+SC/DC = = 2.8529 0.0 2.8529 0.0
x1017 ® % > %
Grad (exact) - - 6.66566 0.0 66&66 0.0
oLBM - - 6.6662 0.006 6.6665 0.002
QMOM - - 6.6244 6.34 6.6548 0.18
QMOM+SC/DC - - 6.6666 0.0 6.6666 0.0



HIBE steady state

Quadrature error -2

WARWICK

Quadrature error at the true equilibrium

<4-QMOM p=2
2 -4 QMOM p=3
107+
g a
Ly
3 a 0
w 107+
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Turbulence models WARWICK

DNS, LES, RANS

\EgiD DNS RANS
& @W7§D ------- LES

DIRECT NUMERICAL SIMULATION (DNS)

All the flow-scales are solved without model => virtual experiments (3D and unsteady)

LARGE EDDY SIMULATION (LES)

Equations are filtered in space (or frequency). Bigger 3D unsteady scales are solved; smaller
ones are modelled with sub-grid scale (SGS) models

RANS

Time-averaged equations = only the mean flow is predicted



Turbulent reactive flows WARWICK

Closure problem

» NN species denoted by capital letters A, B, C, ..., R, S
> Vector of concentrations ¢ = (¢q, ..., ¢ _)

» Consider a simple reaction
k
A+B— R

» Transport equations for concentrations with source terms

SA =—k¢oa¢p = SB

» Inturbulent flows a RANS average (in time) or LES filter (in space) is performed

<SA> = —k<¢A¢B> + —k<¢A><¢B>

> Ingeneral the term (S(¢)) # S((¢))



Turbulent reactive flows WARWICK

PDF description (Pope, Fox)

» The chemical source term can be closed if we assume the existence of a joint
probability density function of the concentrations

/S P(t;x,t)dap

» Rigorously, when using LES we are dealing with a filtered-density function

P(ix ) = / 50— dlx,1))Clr—x)dr

where G is the LES filter



Turbulent reactive flows WARWICK

Probability density function

> For the box filter this could be no more a PDF so we simply assume a PDF P
that represents the spatial dishomogeneity in the cells such that

/ WP, t)dip = ()

is the filtered scalar and

/ (82 — (1)) P (i, )i, = (8/)

the scalar fluctuation



PDF Transport Equation WARWICK

» P can be solved in a advection-reaction-diffusion equation with [N, + 4
independent variables

Transport in physical space Transport in composition space
1
vBP U P J GP* M 0 \
— = D - DV?%¢, Sa ()] P
ot | o o ( Tﬁri) g ,I,o [} + Sa ()] 1)
Time derivative l Diffusion Mixing term
Chemical
Convection Source term

» The turbulent diffusion term comes from the assumption that the conditional
fluctuations (U; [¢)) P = —Dp 82

» Molecular mixing term needs to be modeled



Mixing models WARWICK

Interaction by exchange with the mean (IEM)

» The most simple and popular model for Eulerian simulations is the [EM
C
(DV?ali)) = ——2 (1 — ()

» Itisalinearrelaxation of the scalars to the mean value with time scale 7 and a
parameter U,

» 7 is chosen to be a turbulence time scale, 2E for RANS and D2+AD2T where A
is the filter width

> C¢ is the scalar-to-mechanical time-scale ratio and it depends on the local
Schmidt and Reynolds numbers (for gases at high Re C¢ ~ 2)




PDF discretization — ionWARWICK

Quadrature Method of Moments - Multi environment formulation

» Inthe Quadrature Method of Moments (QMOM) the integrals are
approximated using a quadrature rule

[ swp@nnds~ Y g0,

=1
where qbi are the abscissas and w, the weights of the quadrature rule

» For a given set of 2M moments, the M abscissas and weights can be
calculated using inversion algorithms (Wheeler or Product-Difference)

» This means that we are approximating the exact PDF P with a
multi-environment PDF f

o0, t) = Zw (x,t)d[p — ¢, (x, 1)]

where § is a multi-dimensional delta function



DQMOM-IEM WARWICK

Direct Quadrature Method of Moments with IEM closure

» Inthe DQMOM transport equations for w; and wiwi are solved instead of
equations for 1,

> M(1+ N) equations with some constraints (e.g.> . | w* = 1)

» The source term is such that the first M (1 + N) moments are coherent with

the transported ones

» Let us consider a competitive reaction scheme simplified using a mixture
fraction £ and a reaction progress Y (linear combination of species
concentration). Thisresultsin N = M = 2and ¢ = (£,Y)



DQMOM-IEM WARWICK

Example: set of equations (Marchisio,2009)

=0,

owy; — Owq o owq

s § ) - “ (D

5 T B G ( = s
wo = 1-— w1y

Owi&y |~ Owiéy 9 ow;&,
) _ D 20181
Bt +U1 6$z 8:1?7/ r 8$1

C D 0&1 0& &y OE
_ ¢ _ T 1981 2 082
= wiwelsa — Gl §1—&2 (wl Oz, Om; 2 Oz, 3%‘) -
Owgs | = Owgéy O Owaés
ot Vi om0z \PT o,

c D a¢, B¢ 9o OF
_ ¢ _ T 1 981 2 9&2
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DQMOM-IEM WARWICK

Example: set of equations (Marchisio,2009)

6’[1)1Y1 +f‘6w1Y1_ 8 D BwlYl
ot v 8131 Bml T BIZ
Ce
=w15(61, Y1) + —wiwa[Ys — Y1)

D Y, oY, Y, O,
+ Yl —Y2 (U)1 81‘1 81‘1 w2 Bccl aiL‘l ’

811)1Y2 — 811)1Y2 8 8’11)1Y2
. _ D212
5t " UiTos;,  oa, Bz
Co
=w35(62,Y2) + —wiwa[Y1 —Y3]

Dp (. 0Y19Y1 0Y;dYy
Y2 - Y]_ 4 8w1 8z1 2 8271 81374 ’

Only the progress variable Y has a source term S
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Groundwater remediation WARWICK

Zero-valent iron nano-particle injection

DNAPL pools.

OBJECTIVES

» Develop predictive macro-scale
transport and reaction models

» Determine unknown parameters

CHALLENGES

» Limited experimental data
» Multi-scale multi-physics problem



Multi-scale porous media modelling WARWICK

Subsurface flows

LENGTH/TIME SCALES
» field/reservoir scale: large spatial variations of material properties and
parameters

» core/lab scale: homogenized and averaged equations with constant effective
parameters

» pore/CFD scale: fluid continuum equations
» molecular/single-pore scale: molecular discrete models

PORE SCALE
» governing equations: Stokes or Navier-Stokes + particle transport (Eulerian or
Lagrangian)
» porous matrix is undeformable and represent domain boundaries
» micro-scale parameters and fluid properties are considered known and fixed
» particles can (sometimes) be considered of negligible size



Numerical and simulation difficulties WARWICK

1— PRE-PROCESSING
» extraction of porous media properties
» creation of realistic packings
» fixand modify pore geometry (grain contacts, external container)

2 — SETUP AND SIMULATION
» meshing
» realistic boundary conditions
» numerical schemes for NS and ADR

3 — POST-PROCESSING
» mesh convergence analysis, error estimation
» data analysis and model validation
» upscaling and estimation of macroscopic parameters



3D Geometry creation WARWICK

Problem: how to get a realistic geometry representative of a generic porous
media? Given porosity and grain size distribution, infinite possible realizations exist

ALGORITHMIC
REAL SAMPLES RECONSTRUCTION

> e (e » From simple models to

» Detailed representation of the pore (quasi)-realistic porous media
spaces . T
P . . » Easier to build different test cases
» Segmentation and reconstruction of and compute statistics
a surface mesh not trivial

) ) » No need of expensive
» Process is hardly automatised and instrumentation

(IR » Choice of parameters not trivial
PACKING ALGORITHMS:

ballistic sedimentation — DEM, rigid body

dynamic/collective rearrangement — MD, random placing



Virtual porous media - Random packing WARWICK

Bullet physics (Blender) MD-like (A. Donev)

Nice YouTube animations: "Porous medium packing (blender visualization)”



Virtual porous media - Random with overlaWAMICK

» Fully random independent placement from distribution f(x, y, 2)
» Post-processing with Jodrey-Tory algorithm to reduce overlapping
» Randomization of the surfaces



Further manual post-processing WARWICK

1- Pre-processing

SURFACE TRIANGULAR MESH (E.G., STL)

» Porosity: must be calculated a posteriori

» Contacts: if the packing algorithm is not exact there can be overlapping or
non-touching grains

» Non-realistic features: too sharp or smooth edges

Mesh resampling with Marching Cubes algorithms




Mathematical models WARWICK

MAcCRO/MESO-SCALE

MICRO-SCALE MODELS MODELS
U velocity V' Darcy flux
P pressure P pressure
C concentration/ volume fraction/ C ey T w———

phase-field

phase-field
D@ molecular diffusion

K permeability
D dispersivity

0,p = —%V Darcy's law
d,P= _%V — pBV? Darcy-Forchheimer
0, P = —%V — e AV Brinkman

po,V +0,P = —%V Unsteady Darcy



Solute transport

PORE-SCALE MODEL

Steady Navier Stokes equations in the pore space,
K= H[1.p=P1

1
V-u=0 u-Vu:——Vp—kEAu
P P

Advection Diffusion Reaction:

Jc
&+V-(uc+DOVC)=r

DARCY-SCALE MODEL
K
V.v=0 Vv=—--VP
w

Advection-Dispersion-Reaction:

% + V- (VC + DpVC)

Il
=y

Pore-scale simulation of solute
transport (Icardi et. al, Phys. Rev. E,
2014)




Two phase immiscible model WARWICK

PORE-SCALE MODEL:

0
&P'l‘v-(pu)—()

0
pa(uﬂ—pu-V(u) = —Vp+pAu+V-(1,, )+rond(T')
Advection Diffusion Reaction (unsteady):

dc

& + V ° (UC) =T Pore-scale simulation of CO¢ injection

(Icardi et. al, in preparation)

DARCY-SCALE MODEL (MIXTURE)

dp . K ov
E—FV-(pV)—O v_—ﬂ(VP—pat)

Advection-Dispersion-Reaction (saturation equation):
aC¢

W‘FV(VCC—FD(bVC):R



2 - Setup and simulation

IMMERSED BOUNDARIES VS BODY-FITTED GRIDS
» |Bare accurate but not adaptable and first order near the wall
» BF are fully adaptable but difficult to build high quality elements
» Octree refinement with adaptation on the surface (cut-cell)




Boundary conditions

2 - Setup and simulation WA KW,I CK

To estimate macro-scale parameter, we have to choose the simplest possible
scenario: Quasi-1D flow

FLOW BOUNDARY CONDITIONS

» Total pressure (or periodic BC with uniform body force) imposed at the
inlet/outlet

» Symmetry (no normal flow) or periodic on the lateral boundaries (infinite
medium)

» Wall conditions to simulate experimental columns (confined medium)

SCALAR BOUNDARY CONDITIONS

» Constant Dirichlet (=1) on inlet (or mixed Danckwerts condition)
» Homogeneous Neumann on outlet and on the grains
» Ad-hoc mixed BCs on the grain could be derived from micro-scale deposition

models
50— 1=1C)



3D tests — Convergence study with IB
_ G\A{AJ&W_ICK

Random spheres packing; porosity 0.6; 600k-80M cells; %

Sphere packing, 100 grains, high porosity
Tolerance on permeability set to 3%

35e-05

34e-05

3.3e-05

32605
Vel Magn

mean flow rate

0.000206
10,0002

3.1e-05

3e-05

29e-05
100

200 300 400 500 600
cells per mm

Convergence with standard Immersed Boundary (IB) is not satisfactory (more
finite size effects), adapted meshes converge faster

This is confirmed by convergence studies on BCC regular periodic sphere packing



3D tests — Convergence study with adapted 'W?QM_ICK

Relative error VS refinement level
uniform refinement (blue), 1:1 refinement (green), 1:2 refinement (red)

10°

107}

10% " " " . . . .
0.0 0.5 10 15 2.0 25 3.0 35 4.0

Convergence with adapted mesh faster if the refinement is done correctly



Realistic geometry — experimental sand WARWICK

b

| ! | - —
180 230 280 330 380
grain size, pm



3D results — Realistic geometries WARWICK

Irregular packing; porosity 0.35; >2000 grains

» OpenFOAM (SnappyHexMesh +
SimpleFoam)

» ScalarTransportFoam + new
solvers for steady perfect sink
deposition and polydispersed
particles

> 4-107 cells

» R=0

» 2P = 1075 — 102
» Re=10"5—10%
» D=10"9—-10"12
» Pe=10"2—-10°




3D results — Flow field WARWICK

4.0E-11
102
3.5E-11 4 =
2 E 10"
E 30E11 18 .
= s 10
S 25611 1 o
g 5 10°
% 20E-11 - 8
s 3 108
= 151 ~ o
g & 107
2 10EM |1 =
s E 10
5.0E-12 4 =
10°
0.0E400 | . L | | 107 100 100 102 10°  10*  10° 10° 107

1E7 1E6 1E5 1E4 1E3 1E2 1E-1  1E0  1E1 Normalized Darcy velocity (m™")
Darcy flux [m/s]

Tortuosity is estimated as ]f‘;‘%

Lagrangian tracers are also computed as post-processing



Velocity PDF WARWICK




3D results — Scalar transport WARWICK




Breakthrough curves and parameter estimatw’ﬁ{ RWICK




Upscaled parameter estimation WARWICK

aC¢
ot
» "brute-force” approach: non-linear least-square regression to find the best
fitting

» for more complex models, Bayesian techniques can be used assuming a data
misfit model

» in this work the upscaling can be computed in an explicit form using the
method of moments

el M, (VN3
- (). »=22("
vor=(5). 2=12

This is equivalent to the computation of the mean square displacement of
Lagrangian tracers

+V - (VC+D$VC) =0




Hydrodynamical dispersion WARWICK

£ OO OO

~

Left: effective transport velocity.
Right: Hydrodynamical dispersion. Computational results vs. Van Milligen and
Bons, and Bear correlations



Fickian dispersion

WARWICK
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Quadrature-based Uncertainty Quantificatiqgy, RWICK

Passalacqua, Hu, Fox, 2013; Attar, Vedula, 2013

The idea of QBMM is, in some sense, similar to the approach of arbitrary
Polynomial Chaos Expansion (aPC, Oladyshkin and Nowak, 2012)

» Input random variables &, known only by moments
» Moments induce orthogonal polynomials and quadrature rule
» Stochastic spectral and collocation approaches for computing the response

P M
u(@) = > aghi(©),  (w@") = wsul

» Multidimensional correlated variables treated directly or decomposed with
Karhunen-Loeve (or POD/PCA)

» in1D, the n*"-moment of arandom response u, € P9, fora k™ -order PCE, is
exactly computed with
q+k+1 ng+1
2 2
» Forward propagation of uncertainty from moments of input to moments of
response

M = mazx( ) collocation points (samples)



Non-linear filtering with QBMM WAMICK

The main advantage in using only moments is the possibility of adaptively
updating the quadrature rules, when the underlying PDF changes in time/space
NON-LINEAR FOKKER-PLANCK

» Attarand Vedula, 2008; Otten and Vedula, 2011

» Stochastic Differential equation

&, = h;(x,t) +9,(xt)W;, W, whitenoise

» PDF discretized with DQMOM
» Applications in stochastic control and plasma physics

NON-LINEAR FILTERING
» Xuand Vedula, 2009, 2010
» Propagation step through Fokker-Planck
» Bayesian update based on quadrature or on EnKF

Other applications of QBMM Bayesian update?



Conclusions WARWICK

+ QBMM are easily implementable in CFD codes

+ Handle complex physical systems, with moderate number of r.v., even if
correlation is not known

+ the statistical accuracy is solely determined by the number of moments used
(adaptivity) and the regularity of the kernels

+ specifically designed for evolving PDFs in time and space. It can be thought as
a dynamic optimal quadrature

- High stochastic dimensions (it can become a + if an efficient inversion is found
for brute-force approach)

- Moment realizability in advection problems

- Moments-to-quadrature (QMOM) or source-term (DQMOM) inversion can be
ill-conditioned



Product-difference algorithm WA KW,]CK

A smarter way is to employ the recursive relationship for the orthogonal

polynomials:
Py(€) ag 1 Py() 0
Plz(f) B by ay 1 N Py (f) L+ 0
Py o8| 1| | Pyo(d) 0
Pg—i(f) an-1 Px i( £) Py (§)

(51
The nodes of the quadrature approximation {fa } are the eigenvalues of the
tridiagonal matrix appearing in the equation.
This matrix is often re-written in terms of an equivalent tridiagonal symmetric
matrix!



Product-difference algorithm

WARWICK

In fact the matrix can be made symmetric (preserving the eigenvalues) by a diagonal similarity
transformation to give a Jacobi matrix:

Qg Vby
Vb1 ay by
Vb Qg vV bs

] = \/g as (52)

an_2 bn_1
by_1  an_1
This procedure transforms the ill-conditioned problem of finding the roots of a polynomial into

the well-conditioned problem of finding the eigenvalues and eigenvectors of a tridiagonal
symmetric matrix.

The N weights can then be calculatedas w,, = M, wil where ¢, 1 is the first component
of the a*" eigenvector 0, of the Jacobi matrix.



Product-difference algorithm WA KW,]CK

1. Construct the matrix Pwith components P, g

Pog=Pig1Poi1,5-2— P15 2P0t1,81

BE€S3,....,2N +1landa € 1,...,2N +2 —j. (53)
2. where the first row of the matrix is:

Py1=0q; @€1l,..,2N+1, (54)

3. where §_,; is the Kronecker delta and where the components in the second
column of Pare

P,o=(-1*1M, ; a€l,..,2N. (55)

a,2

4. Calculate the coefficients of the continued fraction {¢,, }:

Pl,ochl

(o = 50—
« Pl,apl,a—l

a€?2,..,2N. (56)



Product-difference algorithm WA KW,]CK

1. The coefficients of the symmetric tridiagonal Jacobi matrix are then obtained
from sums and products of (,,:

an = <-2a + <-204—1 o€ ]-7 ’N (57)

ba =_\/C2a+1<2a a € ]‘""’N_l' (58)

2. Forexamplefor N = 2 the P matrix s

L My, M, Mo My — (M1)2 M, (M3M1 - (M2)2)
0 —M;, —M, —(MyMz—M;M,)

0 M, M,

0 —

0 3

(59)



Spatial discretization and moment corruptiof, 5 RWICK

The convexity of the function 1 (M, ) with respect to k can be easily verified by
building a difference table of = */(M,).

Example: VALID SET; moment of a Gaussian distribution (M, = 1, M; = 5,
M, = 26, My = 140, M, = 778, My = 4450, Mg = 26140,

M., = 157400)
k| do="(My) dy do ds
0 0 1.609 0.039 -0.0043
1 1.609 1.648 0.034 -0.0033
2 3.258 1.683 0.031 -0.0027
3 4.941 1.715 0.028 -0.0022
4 6.656 1.743 0.026  -0.0019
5 8.400 1.770 0.024 0
6 10171 1.795 0 0
7 11.966 0 0 0




Spatial discretization and moment corruptiof, 5 RWICK

The convexity of the function 1 (M, ) with respect to k can be easily verified by
building a difference table of = */(M,).

Example: INVALID SET; moment of a Gaussian distribution (M, = 1, M; = 5,
M, = 25, My = 140, M, = 778, My = 4450, Mg = 26140,

M., = 157400)
k|dg= (My) dy do ds
0 0 1.609 0 0.113
1 1.609 1.609 0.113 -0.121
2 3.218 1.722 -0.007 0.036
3 4,941 1.715 0.028 -0.002
4 6.656 1.743 0.026 -0.001
5 8.400 1.770 0.024 0
6 10.171 1.795 0 0
7 11.966 0 0 0




Spatial discretization and moment corruptiof, 5 RWICK

» When using first-order upwind spatial discretization schemes and first-order
explicit time discretization schemes the validity of the moment set should be
preserved

» Inall the other cases it is very easy to CORRUPT the moment set and it is
anyway safe to have algorithms that DETECT CORRUPTION AND CORRECT
invalid moment set

» If we transform the moment set so that dy is positive, we are almost sure that
the moment set is valid

» But how positive?
» The moments of a log-normal distribution have the smallest d

n(g) = Ny <_((§>_M)Z> : (60)

NG 202
k2 2
M, = Ny (lw + 2‘7 ) : @)

» Thelog-normal distribution is the smoothest distribution!



Spatial discretization and moment corruptiowAwICK

CORRECTION ALGORITHM BY MCGRAW
Build the difference table and check if d5 is negative
Identify the moment order k that causes the biggest change in d
Change the moment (by multiplying it for a constant) in order to MINIMIZE d5

5 2 Y =

. Go back to point1

CORRECTION ALGORITHM BY WRIGHT

1. Build the difference table and check if dy is negative
2. Replace the moments with those of a log-normal distribution with

J M, i M,
= — a2 62
h= G (Mo>+ij—j2 (M0> ©

, 1 2 M\ 2 (M )
=gl ) Ta U




QBMM approximation vs DVM, Grad, oLBM

Homogeneous Isotropic Boltzmann Equation (HIBE) WA MI CK

Normalized relaxation rate
0 0
104 104
20 o
810'1 dd9494g9a9944d 810-‘ \
g 5 g
9\_{‘ —DVM ref b g:’ —DVM ref e qqa
% | 4 avowmne e s, || 4 awomnc N 44
X 107 > aMom+sC > ] © 10”4 P QMOM+sC
< QMOM g L < QMOM =
== Grad *\Q\‘ﬁ == Grad <
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QMOM approximation vs DVM, Grad, oLBM

Homogeneous Isotropic Boltzmann Equation (HIBE)

M=4
BGK-equivalent relaxation time v, (t) = a®y, 1
P T TS,
1 z 1 ;"
> B>
0.8 > 0.8 > g
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, 4 ok -
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o < B> @
\>N 0.4 < > im 0_4 4
X N 5 .
02 T4 0.2 4
< q[b
0 LaM g qaa 0 o
Y adaadq Y
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Analytical equations for QBMM

WARWICK
dd ~ M/2 M/2 M/2 M/2
pz—(ZZwiij ZwaA
i=1 j=1 i=1 j=
61] = E]/Eza qij =q(:c y,EizE'); C:rj D Cg(xa:lhEi»Ej);
C;p=Cp(Ey); Af;

+1 5
2 i3, = L1 fl |ng|CUpdwdy; Afjp=
fj fj lgi;]C5,p dzdy

L = Z ( ) Z (p IBO‘) (—1)%ii E;#~* B~ EB

9 1 _ p2ot2 p2a+2 1 2a+2 r2a+2
”Lj + 17 + (¥ 23
[2/34—1( 20+ 2 2a+2,8+3> ,3+1<2a+1 2a+26+3>:|
r2.
A =2B0VE, 1+ 7

E;, > FE
%‘j*{a |IffE iEJ Ep= (B Ej); E_= (B Bj)irig=

(/E7)
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