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Basic example : The simple exclusion process (SEP)

[Liggett]
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conservative dynamics :

I At most one particle per site : for z ∈ Z, η(z) = 0 or 1.
I From each site x , choice of y with p(y − x).
I According to an exponential clock, jump from x to y if

possible (exclusion rule).



Graphical construction [Harris]
IP = IP0 × IPH for initial configurations and Poisson processes.

 basic coupling : same clocks, different initial conditions.
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Basic coupling preserves partial order : SEP is attractive
I (I ∩ S)e = {νρ, ρ ∈ [0,1]}, Bernoulli product measures
I Euler hydrodynamics for ASEP (asymmetric SEP) :

∂tu + ∂x [γu(1− u)] = 0

γ =
∑

z zp(z) ; G(u) = u(1− u) concave flux function
Extension to other conservative dynamics ?
I Multiple particle jumps : K ≥ 1 particles per site, k ≥ 1

particles attempt to jump from x to y .
I Exclusion with speed change : at most 1 particle per site ;

the rate to jump from x to y depends also on the
occupation on sites z /∈ {x , y}

Same questions : attractiveness, (I ∩ S)e, Euler
hydrodynamics ?
Is condensation compatible with attractiveness ?



Attractiveness [Liggett]

(ηt )t≥0 : an interacting particle system of state space Ω = X S,
with X ⊂ Z, S = Zd . It is a Markov process with generator L
and semi-group T (t).

I Partial order on Ω :
∀ξ, ζ ∈ Ω, ξ ≤ ζ ⇐⇒ (∀x ∈ S, ξ(x) ≤ ζ(x))
f : W → R is monotone if :
∀l ,m ∈W , l ≤ m =⇒ f (l) ≤ f (m)
M = { bounded, monotone, continuous functions on Ω}

I Stochastic order on probability measures P(Ω) :
∀ν, ν ′ ∈ P(Ω), ν ≤ ν ′ ⇐⇒ (∀f ∈M, ν(f ) ≤ ν ′(f )).

I (ηt )t≥0 is attractive if the following equivalent conditions are
satisfied.
(a) f ∈M implies T (t)f ∈M for all t ≥ 0.
(b) For ν, ν ′ ∈ P(Ω), ν ≤ ν ′ implies νT (t) ≤ ν ′T (t) for all
t ≥ 0.



The multiple particle jump model
S = Zd ; either X ⊂ Z or X = N.
(ηt )t≥0 Markov process on Ω = X S with infinitesimal generator :

Lf (η) =
∑

x ,y∈S

∑
α,β∈X

χα,βx ,y (η)
∑
k∈N

Γk
α,β(y − x)(f (Sk

x ,yη)− f (η))

χα,βx ,y (η) =

{
1 if η(x) = α and η(y) = β

0 otherwise

(
Sk

x ,yη
)
(z) =


η(x)− k if z = x and η(x)− k ∈ X , η(y) + k ∈ X
η(y) + k if z = y and η(x)− k ∈ X , η(y) + k ∈ X
η(z) otherwise

I assumption : For all ∀z ∈ S, α, β ∈ X ,
∑

k∈N Γk
α,β(z) <∞

I This particle system is conservative :
η(x) + η(y) is a conserved quantity in the transition.



Some Classical Examples with k = 1 :

I SEP : Γ1
1,0(y − x) = p(y − x)× 1 [Liggett]

I zero range process (ZRP) : Γ1
α,β(y − x) = p(y − x)g(α)

[Andjel]

I misanthropes process (MP) : Γ1
α,β(y − x) = p(y − x)b(α, β)

[Cocozza]
misanthropes↔ attractiveness
philanthropes↔ condensation



A two species exclusion model with charge
conservation [Collet et al.]

I Ω = {−1,0,1}Z ; η(x) = ±1 means a particle with a
positive (negative) charge on x ; η(x) = 0 if x empty.

I A transition between neighboring sites x , y is allowed if
η(x) + η(y) conserved : There are possibly ten different
transition rates, with k ∈ {1,2} :
Γ1

0,−1(r), Γ2
1,−1(r), Γ1

1,−1(r), Γ1
0,0(r), Γ1

1,0(r), r = ±1
I Under the condition

Γ1
0,0(−1)Γ1

1,−1(1)− Γ1
0,0(1)Γ1

1,−1(−1)

Γ1
0,0(1) + Γ1

0,0(−1)
=∑

r=±1

r
(
Γ2

1,−1(r) + Γ1
1,−1(r)− Γ1

1,0(r)− Γ1
0,−1(r)

)
the process has a one-parameter family of stationary
product measures {µρ, ρ ∈ [−1,1]}.



A stick process
[Seppäläinen], [Ferrari & Martin]

I Ω ⊂ X S with X = N,S = Z :

Ω = {η ∈ NZ; lim
n→−∞

n−2
−1∑

x=n

η(x) = lim
n→+∞

n−2
n∑

x=1

η(x) = 0}

I Transition rates are, with p(1) + p(−1) = 1,{
Γk
α,β(r) = p(r)1{k≤α} for r = ±1,

Γk
α,β(r) = 0 otherwise

I In bijection with the generalized discrete HAD process
seen from a tagged particle, when holes (resp. positions of
particles) of the HAD are turned into particles (resp. sites)
for the stick model.

I The geometric product measures {µρ, ρ ∈ [0,+∞)} with
parameter ρ(1 + ρ)−1 are invariant for the generalized stick
process (ρ is the average particles’ density per site).



Coupling for the multiple particle jump model
Strategy : Six main steps :

1. Obtain necessary conditions on the transition rates for
attractiveness. [Massey]

2. Construct a Markovian coupling.
3. Show that it is increasing under conditions from Step 1

(thus proving their sufficiency).
4. Modify it so that discrepancies between unordered

configurations do not increase.
5. Derive irreducibility conditions for the coupled process,

under which discrepancies of opposite sign have a positive
probability to coalesce.

6. Applications :
I Determination of extremal invariant and translation invariant

probability measures of the initial process.
I Derivation of hydrodynamics under Euler scaling for

conservative processes.



Systems with denumerable state space

[Massey] [Kamae et al.],[Kamae & Krengel]

Definition
W : a set endowed with a partial order relation.

V ⊂W is increasing if : ∀l ∈ V ,m ∈W , l ≤ m =⇒ m ∈ V

V ⊂W is decreasing if : ∀l ∈ V ,m ∈W , l ≥ m =⇒ m ∈ V

f : W → R is monotone if : ∀l ,m ∈W , l ≤ m =⇒ f (l) ≤ f (m)

Examples. For l ∈W , Il = {m ∈W : l ≤ m} is increasing ;
Dl = {m ∈W : l ≥ m} is decreasing.

Remark. ∀V ⊂W ,
V is increasing ⇐⇒W \ V is decreasing ⇐⇒ 1V is monotone



Necessary conditions
(ξ, ζ) ∈ Ω× Ω, ξ ≤ ζ ; V ⊂ Ω increasing cylinder set.

If ξ ∈ V or ζ /∈ V , 1V (ξ) = 1V (ζ)

By attractiveness, since V increasing,

∀t ≥ 0, (T (t)1V )(ξ) ≤ (T (t)1V )(ζ)

Combining both, one get

t−1[(T (t)1V )(ξ)− 1V (ξ)] ≤ t−1[(T (t)1V )(ζ)− 1V (ζ)]

thus when t → 0, (L1V )(ξ) ≤ (L1V )(ζ)

This gives two sets of inequalities for the rates

ζ /∈ V =⇒
∑
η∈V

Γ(ξ, η) ≤
∑
η∈V

Γ(ζ, η)

ξ ∈ V =⇒
∑
η∈V c

Γ(ξ, η) ≥
∑
η∈V c

Γ(ζ, η)



Attractiveness conditions

Theorem
(ηt )t≥0 is attractive iff :

∀(α, β, γ, δ) ∈ X 4 with (α, β) ≤ (γ, δ), ∀(x , y) ∈ S2,

∀l ≥ 0,
∑

k ′>δ−β+l

Γk ′
α,β(y − x) ≤

∑
l ′>l

Γl ′
γ,δ(y − x)

∀k ≥ 0,
∑
k ′>k

Γk ′
α,β(y − x) ≥

∑
l ′>γ−α+k

Γl ′
γ,δ(y − x)



A Markovian increasing coupling
Proposition
L defined on Ω× Ω is the generator of a Markovian coupling

Lf (ξ, ζ) =
∑

x ,y∈S

∑
α,β∈X

∑
γ,δ∈X

χα,βx ,y (ξ)χγ,δx ,y (ζ)×

∑
(k ,l)6=(0,0)

Gk ; l
α,β; γ,δ(y − x)

(
f (Sk

x ,yξ,S
l
x ,yζ)− f (ξ, ζ)

)
with ∀(α, β, γ, δ) ∈ X 4, ∀k > 0, ∀l > 0,

Gk ; l
α,β; γ,δ =

(
Γk
α,β − Γk

α,β ∧
(
Σl
γ,δ − Σk

α,β ∧ Σl
γ,δ

))
∧
(

Γl
γ,δ − Γl

γ,δ ∧
(
Σk
α,β − Σk

α,β ∧ Σl
γ,δ

))
G0; l
α,β; γ,δ = Γl

γ,δ − Γl
γ,δ ∧

(
Σ0
α,β − Σ0

α,β ∧ Σl
γ,δ

)
Gk ; 0
α,β; γ,δ = Γk

α,β − Γk
α,β ∧

(
Σ0
γ,δ − Σk

α,β ∧ Σ0
γ,δ

)
where Σk

α,β =
∑

k ′>k Γk ′
α,β.



Remarks
I same departure and arrival sites ;
I At most one non zero rate for fixed value of k + l .
I diagonal rates : Gk ; k

α,β;α,β = Γk
α,β

I when only k = 1, reduces to basic coupling.

Proposition
Under ”Attractiveness Conditions”, this Markovian coupling is
increasing.



Evolution of discrepancies
Fix x , y ∈ S ; Lx ,y is the generator of jumps between x and y :
L =

∑
x ′,y ′ Lx ′,y ′ .

For (ξ, ζ) ∈ Ω× Ω, a measure of positive discrepancies :

f +
x ,y (ξ, ζ) = f +

y ,x (ξ, ζ) := [ξ(x)− ζ(x)]+ + [ξ(y)− ζ(y)]+

∆(ξ(x), ξ(y), ζ(x), ζ(y), k , l) := f +
x ,y (Sk

x ,yξ,S
l
x ,yζ)− f +

x ,y (ξ, ζ)

Theorem
∀(ξ, ζ) in Ω× Ω, (x , y) ∈ S2, Lx ,y f +

x ,y (ξ, ζ) ≤ 0.
For all allowed transitions between x , y, if
(α, β, γ, δ) = (ξ(x), ξ(y), ζ(x), ζ(y)),

∆(α, β, γ, δ, k , l) = 0 for (α, β), (γ, δ) ordered
∆(α, β, γ, δ, k , l) = 0 for (α, β), (γ, δ) not ordered

and k − l ∈ {0, (α− γ) + (δ − β)}
∆(α, β, γ, δ, k , l) < 0 otherwise



Definition
L allows exchange of discrepancies (E.D.) when
∃(x , y),∃(α, β, γ, δ) with (α− γ)(β − δ) < 0,
∃|k − l | > |α− γ| ∨ |β − δ| for which Gk ; l

α,β; γ,δ > 0.

extreme case : k − l = (α− γ) + (δ − β), total E.D. (otherwise
partial E.D.)

I L does not allow E.D. iff ∀(x , y), ∀(α, β, γ, δ), ∀(k , l) with
Gk ; l
α,β; γ,δ(y − x) > 0,

−
(
[α− γ]+ ∨ [δ − β]+

)
≤ l − k ≤ [γ − α]+ ∨ [β − δ]+

This condition stronger than attractiveness conditions, but
coincides with them when (α, β), (γ, δ) are ordered.



Hydrodynamic limit Theorem
The empirical measure of configuration η viewed on scale N is

πN(η)(dx) = N−1
∑
y∈Z

η(y)δy/N(dx) ∈M+(R)

(positive locally finite measures ; topology of vague cv : for
continuous test functions with compact support).

Theorem
Assume p(.) has finite third moment. There exists a Lipschitz
continuous function G on [0,K ] (depending only on p(.), b(., .))
such that :
Let (ηN

0 , N ∈ N) be a sequence of X-valued r.v. on a proba.
space (Ω0,F0, IP0) such that

lim
N→∞

πN(ηN
0 )(dx) = u0(.)dx IP0-a.s.

for some measurable [0,K ]-valued profile u0(.).



Then the IP0 ⊗ IP-a.s. convergence

lim
N→∞

πN(ηNt (α, η
N
0 (ω0), ω))(dx) = u(., t)dx

holds uniformly on all bounded time intervals, where
(x , t) 7→ u(x , t) denotes the unique entropy solution with initial
condition u0 to the conservation law

∂tu + ∂x [G(u)] = 0



The macroscopic flux function G

the microscopic flux through site 0 is

j0,1(η) =
∑

k

[Γk
η(0),η(1)(1)− Γk

η(1),η(0)(−1)]

We define :

G(ρ) = µρ[j0,1(η)] for ρ ∈ R

and G is interpolated linearly outside R, so that G is Lipschitz
continuous.

In the case X = {a, · · · ,b}, (I ∩ S)e = {µρ, ρ ∈ R}, where R is
a closed subset of [a,b] with {a,b} ∈ R, and µρ[η(0)] = ρ.



Method

[Bahadoran et al., 1,2,3] Constructive method
inspired by [Andjel & Vares] :

1. A variational formula for the entropy solution under
Riemann initial condition :
u0(x) = λ1{x<0} + ρ1{x≥0}, (λ, ρ ∈ R), then derive
hydrodynamics under this profile.

2. Extend to any u0 through an approximation scheme, which
requires

I a finite propagation property (at microscopic and
macroscopic levels) ;

I macroscopic stability [Bramson & Mountford], [MRS]
 problem with k , l > 1.

control “distance” between particle system and entropy
solution.



Proposition
When S = Z, with only nearest neighbor transitions, and L
does not allow E.D., ∀(ξ0, ζ0) ∈ X2 with∑

x∈Z[ξ0(x) + ζ0(x)] < +∞, ∀t > 0,

S(ξt , ζt ) ≤ S(ξ0, ζ0)

where

S(ξ, ζ) := sup
x∈Z

∣∣∣∣∣∣
∑
y≤x

[ξ(y)− ζ(y)]

∣∣∣∣∣∣



Irreducibility conditions

(a) For every pair of neighboring sites (x , y) and any couple
of discrepancies of opposite sign, there is a finite path of
coupled transitions on (x , y) along which f +

x ,y decreases.

(b) For every (x , y), let XR(y − x) = XL(x − y) be the set of
values ε ∈ X such that for all discrepancies (α, γ), there is a
finite path of coupled transitions on (x , y) starting from
(α, ε, γ, ε) which creates a discrepancy on y. Then for all
(x , y) ∈ EΓ, either XR(y − x) = X or XL(y − x) = X.



Irreducibility conditions

When (b) is not satisfied, we replace (b) by (b′) :
There exists a set of oriented wedges WΓ such that :

(b′0) S is WΓ-connected

(b′1) for all w = (x0, x1, x2) ∈WΓ,
XR(x1 − x0)

⋃
XR(x1 − x2) = X ;

(b′2) for all w = (x0, x1, x2) ∈WΓ, all ε1 /∈ XR(x1 − x0) and all
ε2 ∈ XR(x2 − x1), there is a finite path of coupled transitions on
(x1, x2) from (ε1, ε2, ε1, ε2) to (ε3, ε4, ε3, ε4) such that
ε3 ∈ XR(x1 − x0).



Invariant Measures

Theorem
If the process is attractive and satisfies Assumption (IC), then
1) if the state space of (ηt )t≥0 is compact, that is
X = {a, · · · ,b} for (a,b) ∈ Z2, we have (I ∩ S)e = {µρ, ρ ∈ R},
where R is a closed subset of [a,b] containing {a,b}, and µρ is
a translation invariant probability measure on Ω with
µρ[η(0)] = ρ ; the measures µρ are stochastically ordered, that
is, µρ ≤ µρ′ if ρ ≤ ρ′ ;
2) if (ηt )t≥0 possesses a one parameter family {µρ}ρ of product
invariant and translation invariant probability measures, we
have (I ∩ S)e = {µρ}ρ.



Conclusions

I Starting from basic coupling construction, we constructed
increasing Markovian couplings for more general models
under necessary and sufficient conditions for
attractiveness.

I These constructions uncover new features of increasing
couplings : crossing of discrepancies, irreducibility criteria
for the coupling, ”non-locality” of coupled jumps, · · ·

I There is a number of applications to traffic model,
stochastic lattice gas, possibly“attractive condensation”,· · ·
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