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Aggregation phenomena : motivation

Many particles of one
material dispersed in
another.
Transport is diffusive or
advective.
Particles stick together on
contact.

Applications: surface physics, colloids, atmospheric science,
earth sciences, polymers, bio-physics, cloud physics.

This talk:
Today we will focus on mean field models of the statistical
dynamics of such systems.
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Mass action kinetics for size-dependent coalescence

Wish to track the sizes distribution of the clusters:

Am1 + Am2 → Am1+m2 .

Probability rate of particles sticking should be a function,
K (m1,m2), of the particle sizes (bigger particles typically
have a bigger collision cross-section).
Micro-physics of different applications is encoded in
K (m1,m2) - the collision kernel - which is often a
homogeneous function:

K (am1,am2) = aλ K (m1,m2)

Given the kernel, objective is to determine the cluster size
distribution, Nm(t), which describes the average number of
clusters of size m as a function of time.
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The Smoluchowski equation

Assume the cloud is statistically homogeneous and well-mixed
so that there are no spatial correlations.
Cluster size distribution, Nm(t), satisfies the kinetic equation :

Smoluchowski equation :

∂Nm(t)
∂t

=

∫ ∞
0

dm1dm2K (m1,m2)Nm1Nm2δ(m −m1 −m2)

− 2
∫ ∞

0
dm1dm2K (m,m1)NmNm1δ(m2 −m −m1)

+ J δ(m −m0)

Notation: In many applications kernel is homogeneous:
K (am1,am2) = aλ K (m1,m2)

K (m1,m2) ∼ mµ
1 mν

2 m1�m2.

Clearly λ = µ+ ν.
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Some example kernels

Brownian coagulation of spherical droplets (ν = 1
3 , µ = −1

2 ):

K (m1,m2) =

(
m1

m2

) 1
3

+

(
m2

m1

) 1
3

+ 2

Gravitational settling of spherical droplets in laminar flow
(ν = 4

3 , µ = 0) :

K (m1,m2) =

(
m

1
3
1 + m

1
3
2

)2 ∣∣∣∣m 2
3
1 −m

2
3
2
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Differential rotation driven coalescence (Saturn’s rings) (ν = 2

3 ,
µ = −1

2 ) :

K (m1,m2) =

(
m
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1 + m

1
3
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)2√
m−1

1 + m−1
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Self-similar Solutions of the Smoluchowski equation

In many applications kernel
is a homogeneous function:

K (am1,am2) = aλ K (m1,m2)

Resulting cluster size
distributions often exhibit
self-similarity.

Self-similar solutions have the form

Nm(t) ∼ s(t)−2 F (z) z =
m

s(t)

where s(t) is the typical cluster size. The scaling function, F (z),
determines the shape of the cluster size distribution.
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Stationary solutions of the Smoluchowski equation
with a source of monomers

Add monomers at rate, J.
Remove those with m > M.
Stationary state is obtained for
large t which balances
injection and removal.
Constant mass flux in range
[m0,M]

Model kernel:

K (m1,m2) =
1
2
(mµ

1 mν
2+mν

1mµ
2 )

Stationary state for t →∞, m0 � m� M (Hayakawa 1987):

Nm =

√
J (1− (ν − µ)2) cos((ν − µ)π/2)

2π
m−

λ+3
2 .

Require mass flux to be local: |µ− ν| < 1.
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Violation of mass conservation: the gelation transition

Microscopic dynamics conserve mass: Am1 + Am2 → Am1+m2 .

M1(t) for K (m1,m2) = (m1m2)
3/4.

Smoluchowski equation formally
conserves the total mass,
M1(t) =

∫∞
0 m N(m, t)dm.

However for λ > 1:

M1(t) <
∫ ∞

0
m N(m,0)dm t > t∗.

(Lushnikov [1977], Ziff [1980])
Mean field theory violates mass
conservation!!!

Best studied by introducing cut-off, M, and studying limit
M →∞. (Laurencot [2004])
What is the physical interpretation?
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Instantaneous gelation

Asymptotic behaviour of the kernel controls the aggregation of
small clusters and large:

K (m1,m2) ∼ mµ
1 mν

2 m1�m2.

µ+ ν = λ so that gelation always occurs if ν is big enough.

Instantaneous Gelation
If ν > 1 then t∗ = 0. (Van Dongen & Ernst [1987])
Worse: gelation is complete: M1(t) = 0 for t > 0.

Instantaneously gelling kernels cannot describe even the
intermediate asymptotics of any physical problem.
Mathematically pathological?
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Droplet coagulation by gravitational settling: a puzzle

The process of gravitational
settling is important in the
evolution of the droplet size
distribution in clouds and
the onset of precipitation.
Droplets are in the Stokes
regime→ larger droplets
fall faster merging with
slower droplets below them.

Some elementary calculations give the collision kernel

K (m1,m2) ∝ (m
1
3
1 + m

1
3
2 )

2
∣∣∣∣m 2

3
1 −m

2
3
2

∣∣∣∣
ν = 4/3 suggesting instantaneous gelation but model seems
reasonable in practice. How is this possible?
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Instantaneous gelation in the presence of a cut-off

M(t) for K (m1,m2) = m
3
2
1 + m

3
2
2 .

With cut-off, M, regularized
gelation time, t∗M , is clearly
identifiable.
t∗M decreases as M increases.
Van Dongen & Ernst recovered in
limit M →∞.

Decrease of t∗M as M is very slow. Numerics and heuristics
suggest:

t∗M ∼
1√

log M
.

This suggests such models are physically reasonable.
Consistent with related results of Ben-Naim and Krapivsky
[2003] on exchange-driven growth.
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"Instantaneous" gelation with a source of monomers

A stationary state is reached in the regularised system if a
source of monomers is present (Horvai et al [2007]).

Stationary state (theory vs numerics)

for ν = 3/2.

Stationary state has the
asymptotic form for M � 1:

Nm =

√
J log Mν−1

M
Mm1−ν

m−ν .

Stretched exponential for small
m, power law for large m.
Stationary particle density:

N =

√
J
(

M −MM1−ν
)

M
√

log Mν−1
∼

√
J

log Mν−1 as M →∞.
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Collective oscillations: a surprise from dynamics

Total density vs time for
K (m1,m2) = m1+ε

1 + m1+ε
2 .

ν = 3/4, µ = −3/4, M = 104.

Numerics indicate that dynamics
are non-trivial.
Stationary state can be unstable
for |ν − µ| > 1 (nonlocal).
Includes instantaneous gelation
cases but gelation is not
necessary.
Observe collective oscillations of
the total density of clusters.
Heuristic explanation in terms of
“reset” mechanism.
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Instability has a nontrivial dependence on parameters

Instability growth rate vs M

Instability growth rate vs ν.

Linear stability analysis
(semi-analytic) of the stationary
state for ν > 1 reveals presence of a
Hopf bifurcation as M is increased.
Contrary to intuition, dependence of
the growth rate on the exponent ν is
non-monotonic.
Oscillatory behaviour seemingly due
to an attracting limit cycle embedded
in this very high-dimensional
dynamical system.
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Summary and conclusions

Aggregation phenomena exhibit a rich variety of
non-equilibrium statistical dynamics.
If the aggregation rate of large clusters increases quickly
enough as a function of cluster size, clusters of arbitrarily
large size can be generated in finite time (gelation).
Kernels with ν > 1 which, mathematically speaking,
undergo complete instantaneous gelation still make sense
as physical models provided a cut-off is included since the
approach to the singularity is logarithmically slow as the
cut-off is removed.
Stationary state for regularised system with a source of
monomers seems to be unstable when |ν − µ| > 1 giving
rise to persistent oscillatory kinetics.
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