
Explosive Condensation in a One-dimensional
Particle System

Bartek Waclaw and Martin R. Evans

SUPA, School of Physics and Astronomy, University of Edinburgh, U.K.

January 7, 2013

Other Collaborators:
S. N. Majumdar (LPTMS, Paris), R. K. P. Zia (Virginia Tech, USA)

M. R. Evans Explosive Condensation in a 1d Particle System



Plan

Plan:

I Real Space Condensation

Zero Range Process
Factorised Steady State (FSS)
Condensation and large deviation of sums of random
variables

II Explosive Condensation

‘Misanthrope’ process
Dynamics of condensation

References:
T Hanney and M.R. Evans, J. Phys. A 2005
M. R. Evans, S. N. Majumdar and R. K. P. Zia J. Stat. Phys. 2006

B. Waclaw and M. R. Evans, Phys. Rev. Lett. 2012

M. R. Evans Explosive Condensation in a 1d Particle System



Plan

Plan:

I Real Space Condensation

Zero Range Process
Factorised Steady State (FSS)
Condensation and large deviation of sums of random
variables

II Explosive Condensation

‘Misanthrope’ process
Dynamics of condensation

References:
T Hanney and M.R. Evans, J. Phys. A 2005
M. R. Evans, S. N. Majumdar and R. K. P. Zia J. Stat. Phys. 2006

B. Waclaw and M. R. Evans, Phys. Rev. Lett. 2012

M. R. Evans Explosive Condensation in a 1d Particle System



Plan

Plan:

I Real Space Condensation

Zero Range Process
Factorised Steady State (FSS)
Condensation and large deviation of sums of random
variables

II Explosive Condensation

‘Misanthrope’ process
Dynamics of condensation

References:
T Hanney and M.R. Evans, J. Phys. A 2005
M. R. Evans, S. N. Majumdar and R. K. P. Zia J. Stat. Phys. 2006

B. Waclaw and M. R. Evans, Phys. Rev. Lett. 2012

M. R. Evans Explosive Condensation in a 1d Particle System



Zero-Range Process

Particle:

Site:

u(1)
u(2)

u(3)

u(1)u(3) u(2)

1 2 3 4

1 2 3 4

5

5

a)
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a) “balls-in-boxes” picture

b) “Exclusion Process” picture
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Motivation for ZRP

Specific physical systems map onto ZRP

e.g. polymer dynamics, sandpile dynamics, traffic flow

Effective description of dynamics involving exchange between
domains

e.g. phase separation dynamics

Factorised Steady State (system of L sites and N particles)

P(m1.....mL) =
1

ZN,L
f (m1) . . . f (mL) δ(

∑
i

mi − N)

where the single-site weight f (m)

f (m) =
m∏

n=1

1

u(n)
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Real Space Condensation

Snapshot of ZRP u(m) = 1 +
3

m
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Real Space Condensation

Single-site mass distribution in ZRP u(m) = 1 + 5
m
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Real Space Condensation

Grand Canonical Ensemble: p(m) = Azmf (m) z < 1 z is fugacity

Constraint:
∞∑

m=0

mp(m) = ρ ≡ lim
L,N→∞

N

L

i.e. density ρ(z) as function of z

If u(m) = 1 + γ
m ⇒ f (m) ∼ m−γ

Then z → 1 gives the max allowed value of density ρmax

ρmax →∞ if γ ≤ 2

ρmax → ρc <∞ if γ > 2

Thus for γ > 2 we have condensation if ρ > ρc
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Nature of the Condensate: a large deviation effect

Canonical partition function: (computed in EMZ 2006)

ZN,L =
∞∑

{mi=0}

L∏
i

f (mi )δ

 L∑
j

mj − N



w.l.o.g. let
∞∑

mi=0

f (m) = 1 then

ZN,L = prob. that sum of L +ve iidrvs with distribution f (m) is equal to N

Condensate shows up in a large deviation of a sum of random variables

when N � µ1L with
∞∑

m=0

m f (m) ≡ µ1 <∞
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Results for condensate bump scaling laws

3 > γ > 2

pcond '
1

L

1

L1/(γ−1)
Vγ(z) z =

(m −Mex)

L1/(γ−1)

Vγ =

∫ i∞

−i∞

ds

2πi
exp(−zs + AΓ(1− γ)sγ−1)

strongly asymmetric

γ > 3

pcond '
1

L

1√
2π∆2L

exp(− z2

2∆2
) z =

(m −Mex)

L1/2

gaussian

N.B. in all cases

∫
pcond(m)dm =

1

L
.

For rigorous work see also Grosskinsky, Schutz, Spohn JSP 2003, Ferrari,
Landim, Sisko JSP 2007, Armendariz and Loukakis PTRF 2009, Beltran
and Landim 2011
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Physical Systems with Real-space Condensation:

• Traffic and Granular flow (O’Loan, Evans, Cates, 1998)

• Cluster Aggregation and Fragmentation (Majumdar et al 1998)

• Granular clustering (van der Meer et al, 2000)

• Phase separation in driven systems (Kafri et al, 2002).

• Socio-economic contexts: company formation, city formation, wealth
condensation etc. (Burda et al, 2002)

• Networks (Dorogovstev & Mendes, 2003,....)

• . . .
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II Explosive Condensation

Consider Generalisation of ZRP to dependence on target site.

u(m, n) is rate of hopping of particle from departure site containing m to
target site containing n particles sometimes called ‘misanthrope process’

We still have factorised stationary state if u(m, n) satisfy :

u(m, n) = u(n + 1,m − 1)
u(1, n)u(m, 0)

u(n + 1, 0)u(1,m − 1)

u(m, n)− u(n,m) = u(m, 0)− u(n, 0)

and the single-site weight becomes

f (m) = Azm
m∏

k=1

u(1, k − 1)

u(k, 0)
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Explosive Condensation cont.

A simple form which gives a factorised stationary state is

u(m, n) = [v(m)− v(0)]v(n)

then the single-site weight becomes

f (m) ∝
m∏

k=1

v(k − 1)

v(k)− v(0)

For f to decay as f (m) ∼ m−γ (for condensation) we now have several
possible choices of asymptotic behaviour of v(m)

v(m) ' 1 +
γ

m
‘ZRP like’

v(m) ∼ mγ ‘explosive’
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Explosive Condensation cont.

Explosive dynamics

u(m, n) = [v(m)− v(0)]v(n)

with v(m) = (ε+ m)γ and ε > 0

Get condensation for γ > 2.

c.f. Inclusion process: γ = 1 and ε→ 0
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Contrasting Dynamics

Both choices (ZRP-like, explosive) generate same stationary state
(condensed) but the dynamics are very different:

TSS ∼ L2 TSS = ?
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Explosive Dynamics

Speed of condensate v(m) ∼ mγ ‘slinky motion’
c.f. non-Markovian ZRP (Hirschberg, Mukamel, Schutz 2009)

Scattering collisions between two condensates

Almost elastic scattering
Larger condensate picks up mass
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Raindrops
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Heuristic/Approximate Picture

Initially a large number O(L) of clusters (mini-condensates) emerge
from initial condition

These grow in time - first out of these to become macroscopic
determines relaxation time T

Relaxation time for a putative condensate comes from simplistic
picture of infinite sequence of collisions where condensate accrues
mass:

mn = mn−1 + δ deterministic accretion

tn = tn−1 + ∆tn stochastic accretion times

where pn(∆tn) = λne
−λn∆tn and λn = Amγ

n (speed)

Then distribution of T =
∞∑
n=1

∆tn is given by

f (T ) =
1

2π

∫ ∞
−∞

dω e−iωT
∞∏
n=1

1

1− iω/λn
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Heuristic/Approximate Picture cont

Using the identity
∞∏
k=1

(
1− x

kn

)−1

= −xn
n−1∏
k=0

Γ(−e2πik/nx1/n) the

integral may be estimated by saddle point and one finds for small T

f (T ) ' CT
(1−3γ)
2(γ−1) exp−AT−1/(γ−1)

Extreme
value statistics for average of minimum of L iidrvs drawn from f (T )

implies L

∫ Tmin

0

f (T )dT = 1

which gives
Tmin ∼ (ln L)1−γ

Instantaneous as L→∞
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Numerical Evidence for instantaneous condensation

〈Tss〉 − 1 obtained in numerical simulations (points) and from formula
c2(c3 + ln L)1−γ fitted to data points (lines). In all cases the density ρ =
2 and γ = 3, 4, 5 (curves from bottom to top). Left: v(m) = (0.3 + m) ,
every 5th site has initially 10 particles. Right: v(m) = (1 + m) particles
are distributed randomly in the initial state. 〈Tss〉 − 1 for different γ
differ by orders of magnitude and hence they have been rescaled to plot
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Conclusions

Real space condensation — ubiquitous dynamical phase transition in
variety of contexts

Analysable within ZRP FSS

Understanding in terms of large deviations of sum of random
variables

Explosive Condensation has same stationary state as ZRP but
relaxation time T ∼ (ln L)1−γ vanishes for large L

First (?) spatially extended realisation of the instantaneous gelation
phenomenon seen in mean-field models of cluster aggregation
(Smoluchowski equation)

dNi

dt
=

1

2

∑
j+k=i

KjkNjNk −
∑
j

KijNiNj

where e.g. Kij = iν jµ + iµjν
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