Condensation in Totally Asymmetric Inclusion Process

Jiarui Cao

Joint work with Paul Chleboun and Stefan Grosskinsky

January 10, 2013

THE UNIVERSITY OF WARWICK

Jiarui Cao Condensation in Totally Asymmetric Inclusion Process

- 1. Totally Asymmetric Inclusion Process (TASIP)
- 2. Condensation in TASIP Model
- 3. Dynamics of Condensation
 - Stationary Regime
 - Saturation Regime
 - Coarsening Regime
 - Nucleation Regime

A > < > > < >

Totally Asymmetric Inclusion Process

Lattice : $\Lambda_L = \{1, 2, 3, ..., L\}$ with periodic boundary condition **State space** : $\mathbf{X} = \{0, 1, 2, ...\}^{\Lambda_L}$

Configuration : $\eta = (\eta_x)_{x \in \Lambda_L}$. Conserved particles: $\sum_{x \in \Lambda_L} \eta_x = \rho_L L = N$

$$\textbf{Generator}: \ \mathcal{L}f(\boldsymbol{\eta}) = \sum_{x,y \in \Lambda} p(x,y) \eta_x (d_L + \eta_y) (f(\boldsymbol{\eta}^{x,y}) - f(\boldsymbol{\eta}))$$

where $p(x,y) = \begin{cases} 1, & \text{if } y = x+1 \\ 0, & \text{otherwise} \end{cases}$ (nearest neighbor jump).

Stationary product measure [Grosskinsky, Redig, Vafayi, 2014],

Condensation : all particles accumulate on a single site.

In the limit $d_L \rightarrow 0$, a condensation phenomenon occurs in inclusion process :

- ► L and N are both fixed. [Grosskinsky, Redig, Vafayi. 2011]
- ▶ in the limit $L \to \infty$, $N \to \infty$ s.t. $\frac{N}{L} \to \rho > 0$. [Chleboun. 2011]
- ▶ in the limit *L* fixed, and $N \rightarrow \infty$. [Grosskinsky, Redig, Vafayi. 2012]

< 回 > < 三 > < 三 >

MOVIE $[L = 64, \rho_L = 2, d_L = \frac{1}{L^2}]$

イロト イポト イヨト イヨト

Dynamics of Condensation

Jiarui Cao Condensation in Totally Asymmetric Inclusion Process

Observable:
$$\sigma^2(t) = \mathbb{E}[\boldsymbol{\eta}^2] = \frac{1}{L} \sum_{x \in \boldsymbol{\Lambda}_L} \eta_x^2$$

$$\sigma^{2}(0) = \rho^{2} + \rho - \frac{1}{L}\rho \text{ (converges to } \rho(1+\rho) \text{ as } L \to \infty).$$

$$\sigma^{2}(t) \xrightarrow{t \to \infty} \rho^{2}L$$

・ロト ・四ト ・ヨト ・ヨト

Dynamics of Condensation

Simulation results with $d_L = 1/L^2$, averaged with 200 realizations

I : Nucleation Regime. II : Coarsening Regime. III : Saturation Regime. IV : Stationary Regime.

Jiarui Cao

Condensation in Totally Asymmetric Inclusion Process

- A particle jumps by **diffusion** with rate $d_L \rho_L L$.
- Other particles on site x follow immediately by **inclusion**.
- The single condensate moves ballistically with speed $d_L \rho_L L$.

Two condensates interaction

- N_1 , N_2 are both in order L.
- Large condensate will **penetrate** small one without macroscopic change of number of particles.

< ∃ > <

Exponential Approximation of $\sigma^2(t)$

$$rac{d}{dt}\mathbb{E}\left[f(oldsymbol{\eta}_t)
ight]=\mathbb{E}[(\mathcal{L}_L f)(oldsymbol{\eta}_t)]$$
 ,take $f(oldsymbol{\eta})=\eta_z^2$, $z\in\Lambda_L$.

Assumption : $\eta_{z-1} = \eta_{z+1} = \frac{\rho_L L - \eta_z}{L-1}$

 $\Rightarrow \sigma^2(t) \simeq \rho_L^2 L \left(1 - e^{-\frac{2}{L}t}\right)$

(日) (同) (三) (三)

Saturation Regime

Exponential fit of saturation regime

<ロ> <四> <四> <日> <日> <日</p>

æ

Coarsening Regime

n(t): number of piles. m(t): size of a typical pile. $(m(t)n(t) = \rho_L L)$

 $v \sim d_L m(t)$: **speed** of a pile. $s \sim \frac{L}{n(t)}$: average **distance** of two piles.

Differential equation

 \Rightarrow

$$\frac{d}{dt}m(t)\sim \frac{v}{s}=
ho_L d_L$$
 , initial condition : $m(0)=rac{
ho_L}{r}$

r : average ratio of occupied sites after nucleation.

$$m(t) = C_1 \rho_L d_L t + \frac{\rho_L}{r}$$

After time τ_L^{coars} , m(t) will grow to size L.

$$m(\tau_L^{coars}) \sim L \; \Rightarrow \; \tau_L^{coars} \sim rac{L}{d_L}$$

くぼう くほう くほう

I naa

Coarsening Regime

Ratio of occupied sites:

$$\frac{n(t)}{L} = \frac{1}{C_1 d_L t + 1/r} ,$$

Simulation results with $d_L = 1/L^2$, averaged with 200 realizations. Fitting constant $C_1 \approx 0.8538$

<ロト <問 > < 臣 > < 臣 >

э

Coarsening Regime

Second moment:

Simulation results with $d_L = 1/L^2$, averaged with 200 realizations. Fitting constant $C_1 \approx 0.5513$ and $\tilde{C} \approx 3.3070$

Nucleation Regime [in progress]

- Time scale of this regime is much smaller compared with coarsening regime.
- ► R: ratio of occupied sites when this regime ends. (appr. Normal distributed with mean r).
- ► *T* : **duration** of this regime. (appr. Gumbel distributed).

Jiarui Cao Condensation in Totally Asymmetric Inclusion Process

Toy model for R:

 $\eta_x = 1$, $\forall x \in \Lambda_L$. Waiting time T_x , i.i.d. r.v. Particles **merge** if they stay on the same site.

 $\dots 1111111111 \Rightarrow \dots 111111101\dots$

Absorbing state:

...1010001**0001**00...

Constructed by **blocks** (e.g.**0001**) of size X_n , where $2 \le X_n \le L$ and $\sum_n X_n = L$.

Block with '1' on fixed site x has k '0's $\iff T_{x-k} < T_{x-k+1} < ... < T_{x-1}$

 T_x are i.i.d. \implies uniform permutation.

(日) (同) (三) (三)

-

Nucleation Regime [in progress]

Toy model for *R*:

$$\mathbb{P}[X_n - 1 \ge k] = \frac{1}{k!} \implies \mathbb{E}[X_n] = \sum_{k=1}^{L-1} \frac{1}{k!} + 1 \rightarrow e \text{ , as } L \rightarrow \infty.$$

X_n forms a **renewal process** :

$$N(L) = \max\left\{n : \sum_{i=1}^n X_i \leq L\right\},$$

where N(L) is number of particles in *n* blocks. From renewal theorem:

$$rac{N(L)}{L}
ightarrow rac{1}{\mathbb{E}[X_1]} = rac{1}{e} \;, as \; L
ightarrow \infty \;$$
 almost surely

伺 と く ヨ と く ヨ と

э

Simulation results with $d_L = 1/L^2$, averaged with 200 realizations

I : Nucleation Regime. II : Coarsening Regime. III : Saturation Regime. IV : Stationary Regime.

Jiarui Cao

Condensation in Totally Asymmetric Inclusion Process

THANK YOU

Jiarui Cao Condensation in Totally Asymmetric Inclusion Process

・ロト ・四ト ・ヨト ・ヨト

æ –