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Basic example : The ASEP (without disorder)
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I K = 1, for z ∈ Z, η(z) = 0 or 1.
I From each site x , choice of y with p(y − x).
I According to (independent) exponential clocks, jump from

x to y if possible (exclusion rule).
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Graphical construction [Harris]
IP = IP0 × IPH for initial configurations and Poisson processes.
(below for ASEP)  basic coupling.
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Attractive Systems

The Markov process (ηt )t≥0 with generator L and semigroup
S(t) is attractive :

I partial order on X : η ≤ ξ ⇔ ∀x ∈ Z, η(x) ≤ ξ(x).
Extended to probabilities on X : µ1 ≤ µ2

I basic coupling :
(ηt , ξt )t≥0 on X× X ; ηt and ξt obey the same clocks.
η0 ≤ ξ0 a.s.⇒ ηt ≤ ξt a.s. ∀t > 0.
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The Misanthrope type model (without disorder)
State space X = {0, · · · ,K}Z, η ∈ X, 0 ≤ η(x) ≤ K , ∀x ∈ Z

Lf (η) =
∑

x ,y∈Z
p(y − x)b(η(x), η(y)) [f (ηx ,y )− f (η)]

I (A1) Irreducibility : ∀z ∈ Z,
∑

n∈N[p∗n(z) + p∗n(−z)] > 0 ;
I (A2) finite mean :

∑
z∈Z |z|p(z) < +∞ ;

I (A3) K -exclusion rule : b(0, .) = 0, b(.,K ) = 0 ;
I (A4) non-degeneracy : b(1,K − 1) > 0 ;
I (A5) attractiveness : b(i , j) nondecreasing in i ,

nonincreasing in j .
Some Classical Examples :

I Simple Exclusion : K = 1, b(1,0) = 1 [Liggett]

I T.A. K -exclusion : p(1) = 1, b(i , j) = I{i>0,j<K}
[Seppäläinen]

I Misanthropes : + algebraic relations on b’s [Cocozza]
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The model in random environment

Disorder α = (α(x), x ∈ Z) ∈ A = (c,1/c)Z, for c ∈ (0,1).
The dist. Q of α on A is ergodic w.r.t. τx (on Z).
For α ∈ A, quenched process (ηt )t≥0 on X = {0, · · · ,K}Z :

Lαf (η) =
∑

x ,y∈Z
α(x)p(y − x)b(η(x), η(y)) [f (ηx ,y )− f (η)] (1)

Our method is robust w.r.t. the model and disorder (e.g. no
restriction to site or bond disorder).
We detail the misanthropes’ process with site disorder, then
explain how to deal with other models.
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Graphical construction

Let V = Z× [0,1], (Ω,F , IP) proba. space of locally finite point
measures ω(dt ,dx ,dv) on R+ × Z× V, where F is generated
by the mappings ω 7→ ω(S) for Borel sets S of R+ × Z× V, and
IP makes ω a Poisson process with intensity

M(dt ,dx ,dv) = λR+(dt)λZ(dx)m(dv)

where λ denotes either the Lebesgue or the counting measure.
IE denotes expectation with respect to IP.
For the case (1) we take V := Z× [0,1], v = (z,u) ∈ V,

m(dv) = c−1||b||∞p(dz)λ[0,1](du) (2)
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(A2)⇒ for IP-a.e. ω, ∃ a unique mapping

(α, η0, t) ∈ A× X× R+ 7→ ηt = ηt (α, η0, ω) ∈ X (3)

satisfying : (a) t 7→ ηt (α, η0, ω) is right-continuous ; (b)
η0(α, η0, ω) = η0 ; (c) the particle configuration is updated at
points (t , x , v) ∈ ω (and only at such points - where (t , x , v) ∈ ω
means ω{(t , x , v)} = 1) according to the rule

ηt (α, η0, ω) = T α,x ,vηt−(α, η0, ω) (4)

where, for v = (z,u) ∈ V,

T α,x ,vη =

 ηx ,x+z if u < α(x)
b(η(x), η(x + z))

c−1||b||∞
η otherwise

(5)

Shift commutation property

T τxα,y ,vτx = τxT α,y+x ,v (6)

where τx on the r.h.s. acts only on η.
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Attractiveness

By (A5),
T α,x ,v : X→ X is nondecreasing (7)

Hence,

(α, η0, t) 7→ ηt (α, η0, ω) is nondecreasing w.r.t. η0 (8)

Thus for any t ∈ R+ and continuous function f on X,
IE[f (ηt (α, η0, ω))] = Sα(t)f (η0), where Sα denotes the
semigroup generated by Lα. From (8), for µ1, µ2 ∈ P(X),

µ1 ≤ µ2 ⇒ ∀t ∈ R+, µ1Sα(t) ≤ µ2Sα(t) (9)

Property (9) is usually called attractiveness. Condition (7)
implies the stronger complete monotonicity property : existence
of a monotone Markov coupling for an arbitrary number of
processes with generator (1).
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Hydrodynamic scaling
N ∈ N : scaling parameter for the hydrodynamic limit (i.e.
inverse of the macroscopic distance between two consecutive
sites, and time rescaling).

micro
yNxN

x y
macro
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Hydrodynamic limit Theorem
The empirical measure of configuration η viewed on scale N is

πN(η)(dx) = N−1
∑
y∈Z

η(y)δy/N(dx) ∈M+(R) (10)

(positive locally finite measures ; topology of vague cv : for
continuous test functions with compact support).

Theorem
Assume p(.) has finite third moment. Let Q be an ergodic
proba. dist. on A. Then there exists a Lipschitz continuous
function GQ on [0,K ] (depending only on p(.), b(., .) and Q)
such that :
Let (ηN

0 , N ∈ N) be a sequence of X-valued r.v. on a proba.
space (Ω0,F0, IP0) such that

lim
N→∞

πN(ηN
0 )(dx) = u0(.)dx IP0-a.s. (11)

for some measurable [0,K ]-valued profile u0(.).
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Then for Q-a.e. α ∈ A, the IP0 ⊗ IP-a.s. convergence

lim
N→∞

πN(ηNt (α, η
N
0 (ω0), ω))(dx) = u(., t)dx (12)

holds uniformly on all bounded time intervals, where
(x , t) 7→ u(x , t) denotes the unique entropy solution with initial
condition u0 to the conservation law

∂tu + ∂x [GQ(u)] = 0 (13)

We have now to precise what we mean by
I having a strong density profile and hydrodynamic limit ;
I what is an entropy solution of (13).
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Hydrodynamics vs a.s. hydrodynamics

The sequence (ηN)N has
I (weak) density profile u(.) if : ∀ε > 0, ψ,

lim
N→∞

IP
(∣∣∣∣∫

R
ψ(x)πN(ηN)(dx)−

∫
R
ψ(x)u(x)dx

∣∣∣∣ > ε

)
= 0

I strong density profile u(.) if : ∀ψ,

IP
(

lim
N→∞

∫
R
ψ(x)πN(ηN)(dx) =

∫
R
ψ(x)u(x)dx

)
= 1,

The sequence (ηN
t , t ≥ 0)N has

I hydrodynamic limit (resp. a.s. hydrodynamic limit) u(., .) if :
∀t ≥ 0, (ηN

Nt )N has weak (resp. strong) density profile
u(., t).
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Entropy solution

u = u(., .) : R× R+∗ → R has locally bounded space variation
if : ∀J ⊂ R+∗, I = [a,b] ⊂ R,

sup
t∈J

sup
x0=a<x1···<xn=b

n−1∑
i=0

|u(xi+1, t)− u(xi , t)| < +∞

Let u be a weak solution to (13) with locally bounded space
variation. Then u is an entropy solution to (13) iff, for a.e. t > 0,
all discontinuities of u(., t) are entropy shocks.
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Oleı̆nik’s entropy condition

A discontinuity (u−,u+), with u± := u(x ± 0, t), is an entropy
shock, iff :

The chord of the graph of G between u− and u+ lies
above (below) the graph if u+ < u− (u− < u+).
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The macroscopic flux function GQ

the microscopic flux through site 0 is

j(α, η) = j+(α, η)− j−(α, η) (14)

j+(α, η) =
∑

y ,z∈Z: y≤0<y+z

α(y)p(z)b(η(y), η(y + z))

j−(α, η) =
∑

y ,z∈Z: y+z≤0<y

α(y)p(z)b(η(y), η(y + z))

We will see below that :
∃RQ ⊂ [0,K ] closed, ∃ÃQ ⊂ A with Q(ÃQ) = 1 (both
depending also on p(.) and b(., .)), and ∃ a family of proba.
measures (νQ,ρ

α : α ∈ ÃQ, ρ ∈ RQ) on X, such that
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∀ρ ∈ RQ :
I (B1) ∀α ∈ ÃQ, νQ,ρ

α is an invariant measure for Lα.
I (B2) ∀α ∈ ÃQ, νQ,ρ

α -a.s.,

lim
l→∞

(2l + 1)−1
∑

x∈Z: |x |≤l

η(x) = ρ

I (B3)

GQ
α (ρ) :=

∫
j(α, η)νQ,ρ

α (dη) (15)

does not depend on α ∈ ÃQ.
Hence we define GQ(ρ) as (15) for ρ ∈ RQ and extend it by
linear interpolation on the complement of RQ, which is a finite
or countably infinite union of disjoint open intervals.
Lipschitz constant V of GQ :

V = 2c−1||b||∞
∑
z∈Z
|z|p(z) (16)

Remark. νQ,ρ
α not explicit =⇒ GQ(ρ) not explicit.

 influence of disorder not visible in GQ(ρ).
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Examples without disorder
Invariant measures

I Simple exclusion processes : [Liggett]
R = [0,1], (I ∩ S)e = {νρ, ρ ∈ [0,1]}, Bernoulli product.

I T.A. K -Exclusion : [BGRS2]
Known : 0 and K are limit points of R and
R∩ [1

3 ,K −
1
3 ] 6= ∅.

Macroscopic flux
I Exclusion Process : G(u) = γu(1− u), u ∈ [0,1]

I T.A. K -Exclusion : G(u) = G(K − u), u ∈ [0,K ].

Hydrodynamics : The TASEP

∂tu + ∂x [u(1− u)] = 0

G(u) = u(1− u) concave flux function
Riemann problem : Initial condition (λ, ρ)
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I case λ < ρ : shock
ρ

vc = 1− λ− ρλ

I case λ > ρ : rarefaction fan

1
2

(
1− x

t

)

(1− 2λ)t (1− 2ρ)t

ρ

λ



The model and its construction Hydrodynamic The disorder-particle process Other ModelsTheorem Flux Previous results

Previous results (in random environment)

under attractiveness ;
i. i.d. site disorder ; quenched hydrodynamic limit ;

I [Benjamini, Ferrari & Landim] (’96) : Asymmetric
ZRP on Zd (an extension of [Evans] (’96)).

I [Seppäläinen] (’99) : TA K -exclusion on Z.

Our results : ergodic disorder ; no restriction to site disorder.
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Our method

I Since the quenched process lacks translation invariance,
an essential ingredient in proving hydrodynamics, we study
a joint disorder-particle process with its invariant measures.

I then follow the scheme of proof of a.s. hydrodynamics in
[BGRS3] (without disorder) :

I hydrodynamics for the Riemann problem

Rλ,ρ(x ,0) = λ1{x<0} + ρ1{x≥0} (17)

I it implies the result for general u0 by an approximation
scheme.
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The disorder-particle process

Lf (α, η) =
∑

x ,y∈Z
α(x)p(y − x)b(η(x), η(y)) [f (α, ηx ,y )− f (α, η)]

(18)
(S(t), t ∈ R+) is the semigroup generated by L. Given α0 = α,
this means that αt = α for all t ≥ 0, while (ηt )t≥0 is a Markov
process with generator Lα given by (1).
L is translation invariant :

τxL = Lτx (19)

where τx acts jointly on (α, η). This is equivalent to a
commutation property for the quenched dynamics :

Lατx = τxLτxα (20)

where the first τx on the r.h.s. acts only on η.



The model and its construction Hydrodynamic The disorder-particle process Other Models

A conditional stochastic order
Define

O = O+ ∪ O−
O+ = {(α, η, ξ) ∈ A× X2 : η ≤ ξ}
O− = {(α, η, ξ) ∈ A× X2 : ξ ≤ η} (21)

Lemma
For µ1 = µ1(dα,dη), µ2 = µ2(dα,dη) proba. measures on
A× X, the following properties (denoted by µ1 � µ2) are
equivalent :
(i) ∀f bounded measurable local function on A× X, such that
f (α, .) is nondecreasing for all α ∈ A, we have∫

f dµ1 ≤
∫

f dµ2.
(ii) µ1 and µ2 have a common α-marginal Q, and
µ1(dη|α) ≤ µ2(dη|α) for Q-a.e. α ∈ A.
(iii) ∃µ(dα,dη,dξ) coupling measure supported on O+, under
which (α, η) ∼ µ1 and (α, ξ) ∼ µ2.
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Invariant Measures

IL, S and SA : the sets of proba. measures respectively
invariant for L, shift-invariant on A× X and shift-invariant on A.

Proposition
For every Q ∈ SA

e , there exists a closed subset RQ of [0,K ]
containing 0 and K , such that

(IL ∩ S)e =
{
νQ,ρ, Q ∈ SA

e , ρ ∈ RQ
}

where index e denotes the set of extremal elements, and
(νQ,ρ : ρ ∈ RQ) is a family of shift-invariant measures on A× X,
weakly continuous with respect to ρ, such that
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∫
η(0)νQ,ρ(dα,dη) = ρ

lim
l→∞

(2l + 1)−1
∑

x∈Z:|x |≤l

η(x) = ρ, νQ,ρ − a.s.

ρ ≤ ρ′ ⇒ νQ,ρ � νQ,ρ′

For ρ = 0 ∈ RQ (resp. ρ = K ∈ RQ) we get the invariant dist.
δ⊗Z

0 (resp. δ⊗Z
K ), the deterministic dist. of the configuration with

no particles (resp. with maximum number of particles K
everywhere).
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Corollary
(i) The family νQ,ρ

α (.) := νQ,ρ(.|α) on X satisfies properties
(B1)–(B3) on page 27 ;
(ii) for ρ ∈ RQ, GQ(ρ) =

∫
j(α, η)νQ,ρ(dα,dη).

Remark
By (ii), and shift-invariance of νQ,ρ(dα,dη),

GQ(ρ) =

∫
j(α, η)νQ,ρ(dα,dη) =

∫
̃(α, η)νQ,ρ(dα,dη) (22)

∀ρ ∈ RQ, where

̃(α, η) := α(0)
∑
z∈Z

zp(z)b(η(0), η(z)) (23)

 alternatively take ̃(α, η) as microscopic flux function.
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The properties used to prove Theorem 1

I The set of environments is a proba. space (A,FA,Q), for A
a compact metric space. On A we have a group of space
shifts (τx : x ∈ Z), w.r.t. which Q is ergodic. ∀α ∈ A, Lα is
the generator of a Feller process on X (by (A3)) satisfying
the commutation property (20). It is equivalent to L
translation-invariant on A× X.

I For Lα, ∃ (by (A2)) a graphical construction on a
space-time Poisson space (Ω,F , IP) such that Lα is given
by some mapping T α,z,v satisfying the shift commutation
and strong attractiveness properties (6) and (7).

I Irreducibility and non-degeneracy (A1), (A4) (combined
with attractiveness (A5)) ( for Proposition 3.1).
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In our examples, particle jumps : T α,z,vη = ηx(α,z,v),y(α,z,v). So

Lαf (η) =
∑

x ,y∈Z
cα(x , y , η) [f (ηx ,y )− f (η)] (24)

cα(x , y , η) =
∑
z∈Z

m ({v ∈ V : T α,z,vη = ηx ,y}) (25)

shift-commutation property (6) =⇒

cα(x , y , η) = cτxα(0, y − x , τxη) (26)

(is equivalent to (20) for (24)). Micro. fluxes (14), (23) write

j+(α, η) =
∑

y ,z∈Z: y≤0<y+z

cα(η(y), η(y + z))

j−(α, η) =
∑

y ,z∈Z: y+z≤0<y

cα(η(y), η(y + z))

̃(α, η) =
∑
z∈Z

zcα(0, z, η) (27)
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Generalized misanthropes’ process

c ∈ (0,1), and p(.), P(.) proba. dist. on Z satisfying (A1), resp.
(A2). A : functions B : Z2 × {0, . . . ,K}2 → R+ such that
∀(x , z) ∈ Z2, B(x , z, ., .) satisfies (A3)–(A5) and

B(x , z,1,K − 1) ≥ cp(z) (28)
B(x , z,K ,0) ≤ c−1P(z) (29)

The shift operator τy on A : (τyB)(x , z,n,m) = B(x + y , z,n,m).

Lαf (η) =
∑

x ,y∈Z
B(x , y − x , η(x), η(y)) [f (ηx ,y )− f (η)] (30)

where the dist. Q of B(., ., ., .) is ergodic w.r.t. τy .
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For v = (z,u), set m(dv) = c−1P(dz)λ[0,1](du) in (2), and
replace (5) with

T α,x ,vη =

 ηx ,x+z if u <
B(x , z, η(x), η(x + z))

c−1P(z)
η otherwise

(31)

microscopic flux (27) writes

̃(α, η) =
∑
z∈Z

zB(0, z, η(0), η(z))

Lipschitz constant V = 2c−1∑
z∈Z |z|P(z) for GQ
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Examples
I The basic model (1) : B(x , z,n,m) = α(x)p(z)b(n,m), for

p(.) a proba. dist. on Z satisfying (A1)–(A2), α(.) an
ergodic (c,1/c)-valued random field, b(., .) a function
satisfying (A3)–(A5). (28)–(29) hold with P(.) = p(.).

I bond-disorder version of (1) :
B(x , z,n,m) = α(x , x + z)b(n,m) for a positive random
field α = (α(x , y) : x , y ∈ Z) on Z2, bounded away from 0,
ergodic w.r.t. space shift τzα = α(.+ z, .+ z). Sufficient
assumptions replacing (A1), (A2) are

c p(y − x) ≤ α(x , y) ≤ c−1P(y − x) (32)

for c > 0, and proba. dist. p(.), P(.) on Z, satisfying (A1)
resp. (A2).

I Switch between two rate functions according to
environment : (α(x), x ∈ Z) is an ergodic {0,1}-valued
field, p(.) satisfies (A1), and b0, b1 (A3)–(A5),
B(x , z,n,m) = p(z)[(1− α(x))b0(n,m) + α(x)b1(n,m)].
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Generalized k -step K -exclusion process
The k -step exclusion process
k ∈ N, p(.) a jump kernel on Z satisfying (A1), (A2).
A particle at x performs a random walk with p(.) and jumps to
the first vacant site it finds along this walk, unless it returns to x
or does not find an empty site within k steps, in which case it
stays at x .
Generalization without disorder : the (q, β)-k step K -exclusion
K ≥ 1, c ∈ (0,1) ; D is the set of functions
β = (β1, . . . , βk ) : Zk → (0,1]k s.t.

β1(.) ∈ [c,1] (33)
β i(.) ≥ β i+1(.), ∀i ∈ {1, . . . , k − 1} (34)

q is a proba. dist. on Zk , and β ∈ D.
A particle at x picks a q-dist. random vector Z = (Z1, . . . ,Zk ),
and jumps to the first site x + Zi (i ∈ {1, . . . , k}) with strictly less
than K particles along the path (x + Z1, . . . , x + Zk ), if such a
site exists, with rate β i(Z ). Otherwise, it stays at x .
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This extends k -step exclusion in different directions (apart from
K ≥ 1) :

I The random path followed by the particle need not be a
Markov process.

I The dist. q is not necessarily supported on paths absorbed
at 0.

I Different rates can be assigned to jumps according to the
number of steps, and the collection of these rates may
depend on the path realization.
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Generalization with disorder

The environment is a field
α = ((qx , βx ) : x ∈ Z) ∈ A := (P(Zk )×D)Z. For a given α, the
dist. of the path Z picked by a particle at x is qx , and the rate at
which it jumps to x + Zi is β i

x (Z ).
The corresponding generator is given by (24) with
cα =

∑k
i=1 c i

α, where (with the convention that an empty
product is equal to 1)

c i
α(x , y , η) = 1{η(x)>0,η(y)<K}

∫
[β i

x (z)1{x+zi =y}

i−1∏
j=1

1{η(x+zj )=K}]dqx (z)

dist. Q on A is ergodic w.r.t. space shift τy , where
τyα = ((qx+y , βx+y ) : x ∈ Z).
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replace (A1)–(A2) by

inf
x∈Z

q1
x (.) ≥ cp(.) (35)

sup
i=1,...,k

sup
x∈Z

qi
x (.) ≤ c−1P(.) (36)

for c > 0, qi
x : i-th marginal of qx , p(.), resp. P(.) proba. dist.

satisfying (A1), resp. (A2).
For (x , z, η) ∈ Z× Zk × X, β ∈ D and u ∈ [0,1],

N(x , z, η) = inf {i ∈ {1, . . . , k} : η (x + zi) < K} with inf ∅ = +∞

Y (x , z, η) =

{
x + zN(x ,z,η) if N(x , z, η) < +∞
x if N(x , z, η) = +∞

T0
x ,z,β,uη =

{
ηx ,Y (x ,z,η) if η(x) > 0 and u < βN(x ,z,η)(z)
η otherwise

(where the definition of β+∞(z) has no importance).
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cα(x , y , η) = 1{η(x)>0}IEq0

[
β

N(x ,Z ,η)
0 1{Y (x ,Z ,η)=y}

]
(37)

̃(α, η) = 1{η(0)>0}IEq0

[
β

N(0,Z ,η)
0 Y (0,Z , η)

]
(38)

where expectation is w.r.t. Z .
for GQ Lipschitz constant V = 2k2c−1∑

z∈Z |z|P(z). Let
V = [0,1]× [0,1], m = λ[0,1] ⊗ λ[0,1]. ∀ proba. dist. q on Zk , ∃ a
mapping Fq : [0,1]→ Zk s.t. Fq(V1) has distribution q if V1 is
uniformly distributed on [0,1]. Then T in (4) is defined by (with
v = (v1, v2) and α = ((qx , βx ) : x ∈ Z))

T α,x ,vη = T x ,Fqx (v1),βx (Fqx (v1)),v2
0 η (39)

Strong attractiveness by

Lemma
∀(x , z,u) ∈ Z× Zk × [0,1], T x ,z,β,u

0 is an increasing mapping
from X to X.
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Examples

Let c ∈ (0,1).
I A disordered k -step exclusion with jump kernel r :

K = 1, (αx : x ∈ Z) is an ergodic [c,1/c]-valued random
field, and r(.) is a proba. measure on Z satisfying (A1),
(A2).
Multiply the rate of any jump from x by αx .
qx = qk

RW (r), and βx (z) = (αx , . . . , αx ) for every z ∈ Zk .
I (γx , ιx )x∈Z is an ergodic [c,1]2k -valued random field, where
γx = (γn

x , 1 ≤ n ≤ k) and ιx = (ιnx , 1 ≤ n ≤ k).
qx = 1

2δ(1,2,...,k) + 1
2δ(−1,−2,...,−k)

β i
x (1,2, . . . , k) = γ i

x , β
i
x (−1,−2, . . . ,−k) = ιix
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K -exclusion process with speed change and traffic
flow model
K := {−k , . . . , k} \ {0} ; α = ((υ(x), β1

x ) : x ∈ Z) is an ergodic
[0,+∞)2k × (0,+∞)-valued field, with υ(x) = (υz(x) : z ∈ K).

Θ(x , η) := {y ∈ Z : y − x ∈ K, η(y) < K}
Z (α, x , η) :=

∑
z∈Θ(x ,η)

υz−x (x)

In configuration η, if Z (α, x , η) > 0, a particle at x picks a site y
at random in Θ(x , η) with proba. Z (α, x , η)−1υy−x (x), and jumps
to this site at rate β1

x . If Z (α, x , η) = 0, nothing happens. For
instance, if υz(x) ≡ 1, the particle uniformly chooses a site with
strictly less than K particles. Generator is given by (24), with

cα(x , y , η) = 1{η(x)>0}1{Z (α,x ,η)>0}1Θ(x ,η)(y)Z (α, x , η)−1υy−x (x)

microscopic flux (23) writes

̃(α, η) = β1
01{η(0)>0}Z (α,0, η)−1

∑
z∈K

zυz(0)1{η(z)<K}
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Totally asymmetric case with K = 1 : υz(x) = 0 for z < 0 : It is a
traffic-flow model with maximum overtaking distance k .

True also for Example 2 above in the totally asymmetric setting
ιix = 0,1 ≤ i ≤ k . But there an overtaking car has only one
choice for its new position.

This dynamics is a 2k -step model, thus strongly attractive :
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βx = (β1
x , . . . , β

1
x ), qx := q(υ(x)), where q(υz : z ∈ K) is the

dist. of a random self-avoiding path (Z1, . . . ,Z2k ) in K such that

P(Z1 = y) =
υy∑

z∈K υz

P (Zi = y |Z1, . . . ,Zi−1) =
υy∑

z∈K\{Z1,...,Zi−1} υz
for 2 ≤ i ≤ 2k

Lemma
Assume (Z1, . . . ,Z2k ) ∼ q(υz : z ∈ K). Let Θ be a nonempty
subset of {z ∈ K : υz 6= 0}, τ := inf{i ∈ {1, . . . ,2k} : Zi ∈ Θ},
and Y = Zτ . Then

P (Y = y) = 1Θ(y)
υy∑

y ′∈Θ υy ′
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Other examples
I k -step misanthrope process

c i
α(x , y , η) = 1{η(y)<K}

∫
[bi

x (z, η(x), η(x + zi))×

1{x+zi =y}

i−1∏
j=1

1{η(x+zj )=K}] dqx (z)

∀j = 2, . . . , k , bj(.,K ,0) ≤ bj−1(.,1,K − 1) (40)

I Generalized k -step misanthrope process
A particle at x picks a q-dist. random vector
Z = (Z1, ...,Zk ) and moves to the first site x + Zi (i ≤ k )
that has strictly less particles than x and which carries the
minimal number of particles among the sites of the random
path x + Z1, ..., x + Zk , if such a site exists, with rate
b(Z , η(x), η(x + Zi)) ; otherwise it stays at x .
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