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Chosing parameters in MCMC

Target density π on statespace X (= Rd)

Most MCMC algorithms offer the user choices upon which
convergence properties depend crucially.

Random walk Metropolis (RWM) might propose moves fromn x
to Y ∼ N(x , σ2Id), accepting it with probability

min

{
1,
π(Y )

π(x)

}
otherwise remaining at x .

This is both a problem and an opportunity!



Adaptive MCMC

The Goal: Given a model (i.e., X and π(·)), the computer:

efficiently and cleverly tries out different MCMC algorithms;

automatically “learns” the good ones;

runs the algorithm for “long enough”;

obtains excellent estimates together with error bounds;

reports the results clearly and concisely, while user unaware of
the complicated MCMC and adaption that was used.

Easier said than done . . .



A surprising example

Let Y = {−1,+1}, π(x) ∝ (1 + x2)−1, x > 0. Then if X ∼ π then
X−1 ∼ π.

If Γ = 1 the algorithm carries out a RWM step with proposal
N(0, 1). If Γ = −1 the algorithm carries out a RWM step for X−1,
ie given a standard normal Z , we propose to move to (x−1 + Z )−1.

Now consider the adaptive strategy:

If Γ = 1, change to Γ = −1 if and only if Xn < n−1.

If Γ = −1, change to Γ = 1 if and only if Xn > n.

stationarity and diminishing adaptation certainly hold for this
adaptive schemes in this example.



How does it do?

For any set A bounded away from both 0 and ∞, P(Xn ∈ A)→ 0
as n→∞!

For any set containing an open neighbourhood of 0,
P(Xn ∈ A)→ 1/2 as n→∞

The algorithm has a null recurrent character, always returning to
any set of positive Lebesgue measure, but doing so with a
probabiity that recedes to 0.

There are only TWO strategies.

They BOTH have identical convergence properties.



When Does Adaptation Preserve Stationarity?

Regeneration times [Gilks, Roberts, and Sahu, 1998;
Brockwell and Kadane, 2002]. Some success, but difficult to
implement.

“Adaptive Metropolis” (AM) algorithm [Haario, Saksman,
and Tamminen, 2001]: proposal distribution
N(x, (2.38)2 Σn / d), where Σn = (bounded) empirical
estimate of covariance of π(·) . . .

Generalisations of AM [Atchadé and R., Andrieu and
Moulines, Andrieu and Robert, Andrieu and Atchadé, Kohn].
Require technical conditions.

We need simple conditions guaranteeing ‖L(Xn)− π(·)‖ → 0.



Simple Adaptive MCMC Convergence Theorem

Theorem [R and Rosenthal]: An adaptive scheme on {Pγ}γ∈Y will
converge, i.e. limn→∞ ‖L(Xn)− π(·)‖ = 0, if:

Stationarity π(·) is stationary for each Pγ . [Of course.]

Diminishing Adaptation
limn→∞ supx∈X ‖PΓn+1(x , ·)− PΓn(x , ·)‖ = 0 (at least, in
probability). [Either the adaptations need to be small with
high probability or adaptation takes place with probability
p(n)→ 0.]

Containment Times to stationary from Xn, with transitions
PΓn , remain bounded in probability as n→∞.

Proof: Couple adaptive chain to another chain that eventually
stops adapting . . .



Ergodicity

Under stationarity, adaptation and containment also get

limt→∞
∑t

n=1 f (Xn)

t
= π(f ) in probability

for any bounded function f .

However convergence for all L1 functions does not follow
(counterexample by Chao, Toronto).



Satisfying containment

Diminishing adaptation and stationarity are straighforward to
ensure. However containment is more complicated.
Here are some conditions which imply containment.

Simultaneous Uniform Ergodicity For all ε > 0, there is
N = N(ε) ∈ N such that ‖PN

γ (x , ·)− π(·)‖ ≤ ε for all x ∈ X
and γ ∈ Y;

Simultaneous geometrically ergodicity (Roberts,
Rosenthal, and Schwartz, 1998, JAP). There is C ∈ Y,
V : X → [1,∞), δ > 0, λ < 1, and b <∞, such that
supC V = v <∞, and

1 for each γ ∈ Y, there exists a probability measure νγ(·) on C
with Pγ(x , ·) ≥ δ νγ(·) for all x ∈ C ; and

2 (Pγ)V ≤ λV + b 1C .

A polynomnial version of the above..



Common drift function conditions

Simultaneous geometric ergodicity and simultaneous polynomial
ergodicity are examples of common drift function conditions.

Such conditions say that all Markov kernels can be considered to
be pushing towards the same small set as measured by the
common drift condition.

When different chains have different ways of moving towards π,
disaster can occur!



A surprising example (cont)

Let Y = {−1,+1}, π(x) ∝ (1 + x2)−1, x > 0. Then if X ∼ π then
X−1 ∼ π.

If Γ = 1 the algorithm carries out a RWM step with proposal
N(0, 1). If Γ = −1 the algorithm carries out a RWM step for X−1,
ie given a standard normal Z , we propose to move to (x−1 + Z )−1.

Now consider the adaptive strategy:

If Γ = 1, change to Γ = −1 if and only if Xn < n−1.

If Γ = −1, change to Γ = 1 if and only if Xn > n.

Thus stationarity and diminishing adaptation certainly hold for
this adaptive schemes.



What goes wrong?

Containment must fail. But how?

For Γ = 1, any set bounded away from ∞ is small. [P(x , ·) ≥ εν(·)
for all x ∈ the small set.]

For Γ = −1, any set bounded away from 0 is small.

A natural drift function for Γ = 1 diverges at x →∞, and is
bounded on bounded regions. A natural drift function for Γ = −1
is unbounded as x → 0, and is bounded on regions bounded away
from zero.

Cannot do both with a single drift function!



Common drift functions for RWM

If {Pγ} are a class of full-dimensional RWMs, a natural drift
function is often π(x)−1/2. For instance if the contours of π are
sufficiently regular in the tails, and Pγ represents RWM with
proposal variance matrix γ such that there exists a constant ε with

εId ≤ γ ≤ ε−1Id

(with the inequalities understood in a positive-definite sense).
This is useful for the adaptive Metropolis (AM) example later.
[This is based on recent work by R + Rosenthal extending
R+Tweedie, 1996, Biometrika.]



Common drift functions for single component Metropolis
updates

Consider single component Metropolis updates.
Easiest to prove for random scan Metropolis which just chooses a
component to update at random, and then updates according to a
1-dimensional Metropolis.

Again we can use V (x) = π(x)−1/2.

[This is based on recent work by Latuszynski, R + Rosenthal
extending R+Rosenthal, 1998, AnnAP.]



Scaling proposals

π is a d-dimensional probability density function with respect to
d-dimensional Lebesgue measure. Consider

RWM Propose new value Y ∼ N(x, γ) [γ is a matrix here.]

MwG Choose a component at random, i say, and update
Xi |X−i according to a one-dimensional Metropolis update
with proposal N(xi , γi ). [γ is a vector here!]

Lang Langevin update: propose new value from
N(x + γ∇ log π(x)/2, γ). [γ is a matrix here!]



What scaling theory tells us, RWM case ...

R, Rosenthal, Sherlock, Pete Neal, Bedard, Gelman, Gilks...
For RWM, we set γ = δ2 × V for a scalar δ.

For continuous densities, and for fixed V , the scalar
optimisation is often achieved by finding the algorithm which
achieves an acceptance rate somewhere between 0.15 and 0.4.
In many limiting cases (as d →∞) the optimal value is 0.234.

”0.234” breaks down only when V is an extremely poor
approximation to the target distribution covariance Σ.

For Gaussian targets, when V = Σ, the optimal value of δ is

δ = 2.38/d1/2 .



In the Gaussian case we can exactly quantify the cost of
having V different to Σ:

R =
(
∑
λ2

i /d)1/2∑
λi/d

=
L2

L1

where {λi} denote the eigenvalues of V 1/2Σ−1/2.

For densities with discontinuities, the problem is far more
complex. For certain problems, the optimal limiting
acceptance probability is 0.13.

Optimal scaling is robust to transience.



What scaling theory tells us, MwG case ...

R, Pete Neal

Sensibly scaled MwG is �least as good as RWM in virtually all
cases.

Moreover it is often more natural (conditional independence
structure) and/or easier to implement.

In the Gaussian case, it is right to tune each component to
have acceptance rate 0.44

The optimal scaling is γi = ξi × 2.42 where ξi is the target
conditional variance.



What scaling theory tells us, Lang case ...

R + Rosenthal
Again set γ = δ2 × V .

Generally Lang much more efficient than RWM or MwG
(convergence time of optimal algorithm is O(d1/3) rather
than O(d) for the other two).

Somewhat less robust to light tails, zeros of the target,
discontinuous densities, etc.., not robust to transience

Single component at a time Langevin methods are very
sub-optimal in general.

”Optimal acceptance rate” is around 0.574.

In Gaussian case, can quantify the penalty for V being
different from Σ

R =
(
∑
λ6

i /d)1/6∑
λi/d

=
L6

L1



Adaptive Metropolis (AM) Example

Dim d = 100, π(·) = randomly-generated, eratic MV normal.
So covariance is 100× 100 matrix (5,050 different entries).
Do Metropolis, with proposal distribution given by:

Qn(x , ·) = (1−β) N
(

x , (2.38)2 Σn / d
)

+ β N
(

x , (0.1)2 Id / d
)
,

(for n > 2d , say).
Here Σn = current empirical estimate of covariance of π(·).
Also β = 0.05 > 0 to satisfy Containment condition.



Adaptive Metropolis Example (cont’d)
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Figure: Plot of first coordinate Takes about 300,000 iterations, then
“finds” good proposal covariance and starts mixing well.



Adaptive Metropolis Example (cont’d)
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Figure: Plot of sub-optimality factor

Rn ≡ d
(∑d

i=1 λ
−2
in / (

∑d
i=1 λ

−1
in )2

)
, where {λin} eigenvals of

Σ
1/2
n Σ−1/2. Starts large, converges to 1.



Adaptive Metropolis-within-Gibbs Strategies

Possible strategies for each component separately:

1 adapt proposal variance in particular component to match the
empirical variance (SCAM);

2 adapt component acceptance probability to be around 0.44
(AMwG);

3 try to estimate some kind of average conditional variance
empirically and fit to proposal variance.

Our empirical evidence suggests that AMwG uusally beats SCAM,
but all strategies can be tested by problems for which
heterogenous variances are required.

In the Gaussian case, can show that (2) and (3) converge to
“optimal” MwG.



Adaptive Metropolis-within-Gibbs Example

Propose move for each coordinate separately.
Propose increment N(0, e2 lsi ) for i th coord.

Start with lsi ≡ 0 (say).
Adapt each lsi , in batches, to seek 0.44 acceptance ratio
(approximately optimal for one-dim proposals).

Test on Variance Components Model, with K = 500 location
parameters (so dim = 503), and data Yij ∼ N(µi , 102) for
1 ≤ i ≤ K and 1 ≤ j ≤ Ji , where the Ji are chosen between 5 and
500.



Metropolis-within-Gibbs (cont’d)
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Figure: Adaptation finds “good” values for the lsi values.



Metropolis-within-Gibbs: Comparisons

Variable Ji Algorithm lsi ACT Avr Sq Dist

θ1 5 Adaptive 2.4 2.59 14.932
θ1 5 Fixed 0 31.69 0.863
θ2 50 Adaptive 1.2 2.72 1.508
θ2 50 Fixed 0 7.33 0.581
θ3 500 Adaptive 0.1 2.72 0.150
θ3 500 Fixed 0 2.67 0.147

Adaptive much better than Fixed, even in dimension 503.



Adaptive Langevin
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Figure: Adaptive Langevin R value, d = 20
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Figure: Adaptive Langevin traceplot, d = 20



Heterogenous scaling

Instead of random-walk Metropolis with fixed proposal increment
distribution (e.g. N(0, σ2)), allow σ2 = σ2

x to depend on x , e.g.

σ2
x = ea (1 + |x |)b

(with suitably modified M-H acceptance probabilities).

Adjust a and b by ± 1/i , once every 100 (say) iterations, by:

Decrease a if too few acceptances; increase it if too many.

Decrease b if fewer acceptances when |x | large; increase it if
fewer when |x | small.



Heterogenous scaling: how does it perform?

Example: π(·) = N(0, 1). We are interested in estimating
π
(

log(1 + |x |)
)

Estimate converges quickly to true value (0.534822):
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One-Dimensional Adaption: Parameter ‘a’

a moves to near 0.7, but keeps oscillating:
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One-Dimensional Adaption: Parameter ‘b’

b moves to near 1.5, but keeps oscillating:
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One-Dimensional Adaption: Comparisons

Algorithm Acceptance Rate ACT Avr Sq Dist

σ2 = exp(−5) 0.973 55.69 0.006
σ2 = exp(−1) 0.813 8.95 0.234

σ2 = 1 0.704 4.67 0.450
σ2 = exp(5) 0.237 7.22 0.305
σ2 = (2.38)2 0.445 2.68 0.748

σ2
x = e0.7 (1 + |x |)1.5 0.458 2.55 0.779

Adaptive (as above) 0.457 2.61 0.774

Conclusion: heterogenous adaptation is much better than
arbitrarily-chosen RWM, appears slightly better than wisely-chosen
RWM, and nearly as good as an ideally-chosen variable-σ2

x scheme.

The story is much more clear-cut where heavy tailed targets.



Some conclusions

Good progress has been made towards finding simple usable
conditions for adaptation, at least for standard algorithms.
Further progress is subject of joint work with Krys Latuszynski
and Jeff Rosenthal.

Algorithm families with different small sets and drift
conditions are dangerous!

In practice, Adaptive MCMC is very easy. Current
implentation in some forms of BUGS.

More complex adaptive schemes often require individual
convergence results (eg for adaptive Gibbs samplers and its
variants in work with Krys and Jeff, and work by Atchade and
Liu on the Wang Landau algorithm.


