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What is...?

Soft matter Interfaces
@ liquids, liquid crystals, polymers, @ liquid-liquid, liquid-gas
colloids, surfactants T
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@ soft (energies~ kgT)
@ fluidity
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Nanoparticles at soft interfaces

@ Nanoparticles

» quantum dots, fullerenes, macromolecules, proteins...
@ Soft interfaces

» liquid-liquid (oil-water), polymer blends, membranes....

Nanopart|cle monolayer Nanopatrticle stabilised droplet

@ Adhesion of nanopartlcles onto soft interfaces
» for ~nm particles detachment energy 10 kg T

A Boker et al Soft Matter 2007; S Bon et al Langmuir 2007
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Nanoparticle-interface interaction

@ Nanoparticle self-assembly
» dynamics/kinetics

» capillary forces between nanoparticles: structure formation

@ Adhesion strength not measured experimentally
» often estimated from continuum models
@ Many contributions to interaction

» difficult to isolate different effects experimentally

RP Sear et al PRE 1999
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Model

@ Solvent

» non-additive hard sphere (Widom-Rowlinson) mixture
2 components A and B

Vags(r) = (1 — dap)Vns(r, o)

(diameter o =~ 0.3 nm)
» demixes above critical density
@ Nanoparticle
» hard-sphere (diameter 3-6 o)
@ Grand-canonical Monte Carlo simulations
» Free-energy profile (effective NP-interface interaction)

BF(z) = —logP(2)

» Wang-Landau sampling

B Widom & JS Rowlinson JCP 1970; FG Wang & DP Landau PRL 2001
DL Cheung Wniversiyorwarwicy | [ G G



Why do we need Wang-Landau?
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T T @ Detachment energy~ 10 kg T

. @ To accurately determine free
energy profile need to sample
uniformly across interface

P@2)
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Interface structure

@ Interface broadened by capillary waves

» interface width comparable to nanoparticle size (1-2 nm)
» bridging between nanoparticle and interface

DLC & SAF Bon PRL 2009
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Nanoparticle-interface interaction

@ Free energy profile
7

» long-range interaction (> R¢)
» detachment energy: 1-10 kg T

DLC & SAF Bon PRL 2009
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Nanoparticle-interface interaction

@ Free energy profile

7 L L

» long-range interaction (> R¢)
» detachment energy: 1-10 kg T
» detachment energy: « R2

DLC & SAF Bon PRL 2009
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Can we use continuum theory?

@ Free energy profile: F(z) = myz? (z < Rc)
7 T T T T T T T

@ Continuum theory in poor agreement with simulation
» underestimates interaction range — flat interface approximation

DLC & SAF Bon PRL 2009
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More complex particles: Janus spheres

@ Hemispheres of different (A-philic/B-philic) functionality
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@ Stability increases with Ay
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More complex particles: Janus spheres

@ Hemispheres of different (A-philic/B-philic) functionality
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@ Stability increases with Ay
@ Continuum theory: overestimates detachment energy

DLC & SAF Bon Soft Matter 2009; BP Binks et al Langmuir 2000
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Nanoparticles rotate

@ Theory assumes fixed particle orientation
@ nm-sized particles have significant orientation freedom
@ Angle between particle orientation and z

DLC & SAF Bon Soft Matter 2009
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Fixing the orientation

@ Stability increased ~50% for fixed orientation

» fix orientation experimentally (E or B field?)

DLC & SAF Bon Soft Matter 2009
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Nanoparticle-interface interactions

@ Have used molecular simulation to study interaction of nanoparticle with
liquid interfaces

» interaction is longer ranged than expected - capillary waves
» detachment energy is 1 — 10 kgT
» detachment energy « R?

@ Comparison with continuum theory (Pieranski approximation)

» underestimates detachment energy
» underestimates range of interaction - neglect of capillary waves

@ Janus particles
» more stable on interfaces, although orientational freedom important
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Polymer vesicles

Polymer bilayers forming a fluid-filled
sac

@ polymersomes - analogous to
liposomes

@ synthetic minimal cells

Use of polymers enhances the
mechanical stability compared to
liposomes

@ reaction vessels
@ drug delivery vehicles

V Ortiz et al, JPCB, 2005
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Armoured vesicles

The stability of polymer vesicles may
be further enhanced by a coating of
nanoparticles

This occurs in many naturally occuring
systems

@ bacterial S-layers

@ nanopatterned calcium carbonate
coating on coccolithophorids

Can this be mimicked in synthetic,
polymeric systems?

Y. Shiraiwa, University of Tsukuba
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Experimental system (Bon group, UoW)

Vesicle: poly(n-butyl methacrylate)-b-(N,N-dimethylaminoethyl methacrylate)
block co-polymer (1 pm radius)

Nanoparticles: 120 nm and 200 nm diameter anionic polystyene latex
particles

Distinct packing patterns of nanoparticles on vesicle surface
@ can we reproduce/predict these packings from simulations?

DL Cheung (University of Warwick) MC simulation of Interfaces

MIR@W 18/31



Simulations

Monte Carlo simulations

@ nanoparticles interact through modified
LJ+Yukawa potential

v =e|() " -2 () RS :

A is related to the charge density on the
particle surface
@ model vesicle as large sphere
» gradually add particles onto vesicle - NPs
irreversibly adsorbed
» NPs move on the surface (modify normal
move acceptance to ensure uniform
sampling on spherical surface)

DL Cheung (University of Warwick) MC simulation of Interfaces MIR@W 19/31



Comparison

simulations (insets)

Packing patterns on polymer vesicles (after 14 hours annealing) and from

particle attaching to vesicle)

@ 56%, 78%, and 91% encounter probabilities (relative likelihood of smaller

Good agreement between experimental and simulation packing patterns

=} A
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Controlling the pattern

Study the effect of changing the the surface charge density
56 % small particles

Increasing charge density—

L 1 2 2 4

79 % small particles

OB e

91 % small particles

DOEO®
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Adsorption on polymer vesicles

@ Experimentally it has been shown that it is possible to coat polymer
vesicles in 'nanoparticle-armour’

@ Using simple MC simulations can reproduce experimentally observed
packing patterns on polymer vesicles

@ Find changes in packing patterns with increasing surface charge density

@ Further work is to quantify the simulation and experimental packing
patterns
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Conclusions

@ Molecular simulation provides a powerful tool for the investigation of
interfacial systems
@ Gives molecular insight that is complementary to experimental studies
» test/refine theories

» study molecular details difficult/impossible to resolve experimentally
» gives precise control over the system parameters
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Model & method

@ Study system using grand-canonical MC simulations

» simulations at different (solvent) chemical potentials S = 0.15...0.35

(Buc =~ 0.04)
» confine system in z-direction: localises the interface near cell centre

@ Calculate free energy profile

> [F(zc) = —log P(zc)
» find probability distribution using Wang-Landau sampling
» divide separation into overlapping windows

@ Calculate interfacial tension

FG Wang & DP Landau, PRL, 2001
T R



System-size dependence

@ System-size dependence (lateral box length Ly)
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@ Consistent with decrease in v
» interaction range increases
» barrier decreases
DLC & SAF Bon PRL 2009
MIR@W
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Varying wettabilities

@ Stability controlled by changing surface
tensions
» Experimental systems:
different ~ for two components
» polystyrene-water:
~=32mN m™?
polystyrene-hexadecane: y=14.6 mN
m—l
@ Simulate non-symmetric case
» use different radii for the two
components
Rae =Rc FA
» R. =250 and A <0.1R.
» Bu=0.15
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Diversion: calculating ~p

@ To make contact with continuum theories need to calculate vap and ~gp
@ Bresme & Quirke
» free energy change from change in nanoparticle radius

AF = (47R2AR)P + (87R:AR)y

@ Ay<8mNm!

F Bresme & N Quirke, PRL 1998
MiRGW 297l



Towards the continuum limit

@ As particle size increases continuum theory becomes more accurate

1.5 T T T T T T

DLC & SAF Bon PRL 2009
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Not just hard spheres

@ Binary Lennard-Jones fluid
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@ Qualitative results same as for WR mixture
@ Attractive NP-fluid interactions decrease NP stability
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