Monte Carlo Simulation of Interfaces

David L. Cheung

Department of Chemistry & Centre for Scientific Computing University of Warwick

MIR@W day Monte Carlo: 07/03/2011

What is ...?

Soft matter

• liquids, liquid crystals, polymers, colloids, surfactants

- soft (energies $\approx k_{\rm B}T$)
- fluidity
- order
- self-organization

Interfaces

• liquid-liquid, liquid-gas

- solid-liquid
- membranes

< < >> < <</p>

Outline

Introduction

- 2 Nanoparticles at soft interfaces
- 3 Adsorption on polymer vesicles

글 🕨 🖌 글

Nanoparticles at soft interfaces

- Nanoparticles
 - quantum dots, fullerenes, macromolecules, proteins...
- Soft interfaces
 - liquid-liquid (oil-water), polymer blends, membranes....

Nanoparticle monolayer

Nanoparticle stabilised droplet

- Adhesion of nanoparticles onto soft interfaces
 - for \approx nm particles detachment energy 10 $k_{\rm B}T$

A Böker et al Soft Matter 2007; S Bon et al Langmuir 2007

DL Cheung (University of Warwick)

MC simulation of Interfaces

MIR@W 4/31

Nanoparticle-interface interaction

- Nanoparticle self-assembly
 - dynamics/kinetics
 - capillary forces between nanoparticles: structure formation

- Adhesion strength not measured experimentally
 - often estimated from continuum models
- Many contributions to interaction
 - difficult to isolate different effects experimentally

RP Sear et al PRE 1999

Model

Solvent

 non-additive hard sphere (Widom-Rowlinson) mixture 2 components A and B

$$V_{\alpha\beta}(r) = (1 - \delta_{\alpha\beta}) V_{hs}(r, \sigma)$$

(diameter $\sigma \approx 0.3$ nm)

- demixes above critical density
- Nanoparticle
 - hard-sphere (diameter 3-6 σ)
- Grand-canonical Monte Carlo simulations
 - Free-energy profile (effective NP-interface interaction)

$$\beta F(z) = -\log \mathcal{P}(z)$$

Wang-Landau sampling

B Widom & JS Rowlinson JCP 1970; FG Wang & DP Landau PRL 2001 < 🔿 🔍 🖘 🔹 🛌

Why do we need Wang-Landau?

- Detachment energy $\approx 10 k_{\rm B} T$
- To accurately determine free energy profile need to sample uniformly across interface

Interface structure

Interface broadened by capillary waves

- interface width comparable to nanoparticle size (1-2 nm)
- bridging between nanoparticle and interface

DLC & SAF Bon PRL 2009

DL Cheung (University of Warwick)

MC simulation of Interfaces

MIR@W 8/31

Nanoparticle-interface interaction

• Free energy profile

- ► long-range interaction (> R_c)
- detachment energy: 1-10 k_BT

DLC & SAF Bon PRL 2009

Nanoparticle-interface interaction

• Free energy profile

- ► long-range interaction (> *R_c*)
- detachment energy: 1-10 k_BT
- detachment energy: $\propto R_c^2$

DLC & SAF Bon PRL 2009

DL Cheung (University of Warwick)

Can we use continuum theory?

• Free energy profile: $F(z) = \pi \gamma z^2$ ($z \le R_c$)

• Continuum theory in poor agreement with simulation

 \blacktriangleright underestimates interaction range \rightarrow flat interface approximation

DLC & SAF Bon PRL 2009

DL Cheung (University of Warwick)

More complex particles: Janus spheres

• Hemispheres of different (A-philic/B-philic) functionality

• Stability increases with $\Delta \gamma$

DLC & SAF Bon Soft Matter 2009

DL Cheung (University of Warwick)

MC simulation of Interfaces

MIR@W 11/31

More complex particles: Janus spheres

• Hemispheres of different (A-philic/B-philic) functionality

- Stability increases with $\Delta \gamma$
- Continuum theory: overestimates detachment energy

DLC & SAF Bon Soft Matter 2009; BP Binks et al Langmuir 2000 🛶 🖙 🐗

DL Cheung (University of Warwick)

MC simulation of Interfaces

Nanoparticles rotate

- Theory assumes fixed particle orientation
- nm-sized particles have significant orientation freedom
- Angle between particle orientation and z

DLC & SAF Bon Soft Matter 2009

Fixing the orientation

● Stability increased ≈50% for fixed orientation

fix orientation experimentally (*E* or *B* field?)

DLC & SAF Bon Soft Matter 2009

DL Cheung (University of Warwick)

Nanoparticle-interface interactions

• Have used molecular simulation to study interaction of nanoparticle with liquid interfaces

- interaction is longer ranged than expected capillary waves
- detachment energy is $1 10 k_B T$
- detachment energy $\propto R_c^2$
- Comparison with continuum theory (Pieranski approximation)
 - underestimates detachment energy
 - underestimates range of interaction neglect of capillary waves
- Janus particles
 - more stable on interfaces, although orientational freedom important

< □ > < □ > < □ > < □ > < □ >

Outline

Introduction

2 Nanoparticles at soft interfaces

- Nanoparticle-interface interactions
- Janus particles

3 Adsorption on polymer vesicles

Onclusions

TH 1.

Polymer vesicles

Polymer bilayers forming a fluid-filled sac

- polymersomes analogous to liposomes
- synthetic minimal cells

Use of polymers enhances the mechanical stability compared to liposomes

- reaction vessels
- drug delivery vehicles

V Ortiz et al, JPCB, 2005

Armoured vesicles

Y. Shiraiwa, University of Tsukuba

The stability of polymer vesicles may be further enhanced by a coating of nanoparticles This occurs in many naturally occuring systems

- bacterial S-layers
- nanopatterned calcium carbonate coating on coccolithophorids

Can this be mimicked in synthetic, polymeric systems?

Experimental system (Bon group, UoW)

Vesicle: poly(*n*-butyl methacrylate)-*b*-(*N*,*N*-dimethylaminoethyl methacrylate) block co-polymer (1 μ m radius) Nanoparticles: 120 nm and 200 nm diameter anionic polystyene latex particles

Distinct packing patterns of nanoparticles on vesicle surface

• can we reproduce/predict these packings from simulations?

< □ > < 同 > < 回 > < 回

Simulations

Monte Carlo simulations

 nanoparticles interact through modified LJ+Yukawa potential

$$V(r) = \epsilon \left[\left(\frac{r_{eq}}{r} \right)^{24} - 2 \left(\frac{r_{eq}}{r} \right)^{12} \right] + A \frac{\exp(-r/\xi)}{r/\xi}$$

A is related to the charge density on the particle surface

- model vesicle as large sphere
 - gradually add particles onto vesicle NPs irreversibly adsorbed
 - NPs move on the surface (modify normal move acceptance to ensure uniform sampling on spherical surface)

Comparison

Packing patterns on polymer vesicles (after 14 hours annealing) and from simulations (insets)

 56%, 78%, and 91% encounter probabilities (relative likelihood of smaller particle attaching to vesicle)

Good agreement between experimental and simulation packing patterns

< □ > < 同 > < 回 > <

Controlling the pattern

Study the effect of changing the the surface charge density

56 % small particles

Increasing charge density \rightarrow

79 % small particles

91 % small particles

DL Cheung (University of Warwick)

MC simulation of Interfaces

• • • • • • • • • •

Adsorption on polymer vesicles

- Experimentally it has been shown that it is possible to coat polymer vesicles in 'nanoparticle-armour'
- Using simple MC simulations can reproduce experimentally observed packing patterns on polymer vesicles
- Find changes in packing patterns with increasing surface charge density
- Further work is to quantify the simulation and experimental packing patterns

< ロト < 同ト < ヨト < ヨト

Conclusions

- Molecular simulation provides a powerful tool for the investigation of interfacial systems
- Gives molecular insight that is complementary to experimental studies
 - test/refine theories
 - study molecular details difficult/impossible to resolve experimentally
 - gives precise control over the system parameters

References:

Nanoparticle-interface interactions DLC & S. Bon, *Phys. Rev. Lett.*, **102**, 066103 (2009) DLC & S. Bon, *Soft Matter*, **5**, 3969 (2009) Armoured vesicles R Chen *et al*, *J. Am. Chem. Soc.*, **133**, 2151 (2011)

< ロト < 同ト < ヨト < ヨト

Acknowledgements

Collaborators

Warwick

Ale Troisi, Sara Fortuna, Dan Jones, Natalie Martsinovich, David McMahon, Jack Sleigh Stefan Bon, Rong Chen, Daniel Pearce Rebecca Notman Mike Allen, Paul O'Brien

- Paola Carbone, Andrew Masters (Manchester), Mark Wilson (Durham), Phil Cox (B'ham)
- Martin Oettel, Friederike Schmid (Mainz), Matthias Schmidt (Bayreuth/Bristol)

Computers

• Centre for Scientific Computing, UoW

Funding

• EPSRC, ERC, Leverhulme Trust, University of Warwick

< □ > < □ > < □ > < □ > < □ >

DL Cheung (University of Warwick)

・ロト・日本・日本・日本・日本・日本

Model & method

- Study system using grand-canonical MC simulations
 - ► simulations at different (solvent) chemical potentials $\beta \mu = 0.15...0.35$ ($\beta \mu_c \approx 0.04$)
 - ► confine system in z-direction: localises the interface near cell centre
- Calculate free energy profile
 - $\blacktriangleright \ \beta F(z_c) = -\log \mathcal{P}(z_c)$
 - find probability distribution using Wang-Landau sampling
 - divide separation into overlapping windows
- Calculate interfacial tension

FG Wang & DP Landau, PRL, 2001

System-size dependence

• Consistent with decrease in γ

- interaction range increases
- barrier decreases

DLC & SAF Bon PRL 2009

Varying wettabilities

- Stability controlled by changing surface tensions
 - Experimental systems: different γ for two components
 - polystyrene-water: γ=32 mN m⁻¹ polystyrene-hexadecane: γ=14.6 mN m⁻¹
- Simulate non-symmetric case
 - use different radii for the two components
 R_{A/B} = R_c ∓ Δ
 - $R_c = 2.5\sigma$ and $\Delta < 0.1R_c$
 - ▶ $\beta \mu = 0.15$

Diversion: calculating γ_{iP}

- To make contact with continuum theories need to calculate γ_{AP} and γ_{BP}
- Bresme & Quirke
 - free energy change from change in nanoparticle radius

$$\Delta F = (4\pi R_c^2 \Delta R) P + (8\pi R_c \Delta R) \gamma$$

• $\Delta \gamma < 8 \text{ mN m}^{-1}$

F Bresme & N Quirke, PRL 1998

DL Cheung (University of Warwick)

MIR@W 29/31

Towards the continuum limit

• As particle size increases continuum theory becomes more accurate

DLC & SAF Bon PRL 2009

Not just hard spheres

• Binary Lennard-Jones fluid

• Qualitative results same as for WR mixture

Attractive NP-fluid interactions decrease NP stability