Monte Carlo Solution of Integral Equations (of the second kind)

Adam M. Johansen
a.m.johansen@warwick.ac.uk
www2.warwick.ac.uk/fac/sci/statistics/staff/academic/johansen/talks/

March 7th, 2011
MIRaW - Monte Carlo Methods Day

Outline

- Background
- Importance Sampling (IS)
- Fredholm Equations of the 2nd Kind
- Sequential IS and 2nd Kind Fredholm Equations
- Methodology
- A Path-space Interpretation
- MCMC for 2nd Kind Fredholm Equations
- Results
- A Toy Example
- An Asset-Pricing Example

The Monte Carlo Method

- Consider estimating:

$$
I_{\varphi}=\mathbb{E}_{f}[\varphi(X)]=\int f(x) \varphi(x) d x
$$

- Given $X_{1}, \ldots, X_{N} \stackrel{\text { iid }}{\sim} f$:

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} \varphi\left(x_{i}\right) \rightarrow I_{\varphi}
$$

- Alteratively, approximate:

$$
\widehat{f}(x)=\frac{1}{N} \sum_{1=1}^{N} \delta\left(x-x_{i}\right)
$$

The Monte Carlo Method

- Consider estimating:

$$
I_{\varphi}=\mathbb{E}_{f}[\varphi(X)]=\int f(x) \varphi(x) d x
$$

- Given $X_{1}, \ldots, X_{N} \stackrel{\text { iid }}{\sim} f$:

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} \varphi\left(x_{i}\right) \rightarrow I_{\varphi}
$$

- Alteratively, approximate:

$$
\widehat{f}(x)=\frac{1}{N} \sum_{1=1}^{N} \delta\left(x-x_{i}\right)
$$

and use

$$
\mathbb{E}_{\widehat{f}}\left[\varphi \mid X_{1}, \ldots, X_{N}\right] \approx \mathbb{E}_{f}[\varphi] .
$$

Importance Sampling

- If $f \ll g$ (i.e. $g(x)=0 \Rightarrow f(x)=0)$:

$$
\begin{aligned}
I \varphi & =\int g(x) \frac{f(x)}{g(x)} \varphi(x) d x \\
& =\mathbb{E}_{g} \underbrace{\left[\frac{f(X)}{g(X)}\right.}_{w(X)} \varphi(X)]
\end{aligned}
$$

- Given $X_{1}, \ldots, X_{N} \stackrel{\text { iid }}{\sim} g$:

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} w\left(X_{i}\right) \varphi\left(x_{i}\right) \rightarrow I_{\varphi}
$$

- Alteratively, approximate:

Importance Sampling

- If $f \ll g$ (i.e. $g(x)=0 \Rightarrow f(x)=0)$:

$$
\begin{aligned}
I \varphi & =\int g(x) \frac{f(x)}{g(x)} \varphi(x) d x \\
& =\mathbb{E}_{g} \underbrace{\left[\frac{f(X)}{g(X)}\right.}_{w(X)} \varphi(X)]
\end{aligned}
$$

- Given $X_{1}, \ldots, X_{N} \stackrel{\text { iid }}{\sim} g$:

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} w\left(X_{i}\right) \varphi\left(x_{i}\right) \rightarrow I_{\varphi}
$$

- Alteratively, approximate:

$$
\widehat{f}(x)=\frac{1}{N} \sum_{1=1}^{N} w\left(X_{i}\right) \delta\left(x-X_{i}\right) \quad \mathbb{E}_{\widehat{f}}\left[\varphi \mid X_{1} \ldots X_{N}\right] \approx \mathbb{E}_{f}[\varphi]
$$

Fredholm Equations of the Second Kind

- Consider the equation:

$$
f(x)=\int_{E} f(y) K(x, y) d y+g(x)
$$

- in which
- source $g(x)$ and
- transition $K(x, y)$
are known, but
- $f(x)$ is unknown.
- This is a Fredholm equation of the second kind.
- Finding $f(x)$ is an inverse problem.

The Von Neumann Expansion

- We have the expansion:

$$
\begin{aligned}
f(x) & =\int_{E} f(y) K(x, y) d y+g(x) \\
= & \int_{E}\left[\int_{E} f(z) K(y, z) d x+g(y)\right] K(x, y) d y+g(x) \\
& \vdots \\
= & g(x)+\sum_{n=1}^{\infty} \int K^{n}(x, y) f(y) d y
\end{aligned}
$$

where:

$$
K^{1}(x, y)=K(x, y) \quad K^{n}(x, y)=\int_{E} K^{n-1}(x, z) K(z, y) d z
$$

- For convergence, it is sufficient that:

$$
|g(x)|+\sum_{n=1}^{\infty} \int\left|K^{n}(x, y) g(y) d y\right|<\infty
$$

A Sampling Approach

- Choose μ a pdf on E.
- Define

$$
E^{\prime}:=E \cup\{\dagger\}
$$

- Let $M(x, y)$ be a Markov transition kernel on E^{\prime} such that:
- \dagger is absorbing
- $M(x, \dagger)=P_{d}$ and
- $M(x, y)>0$ whenever $K(x, y)>0$.
- The pair (μ, M) defines a Markov chain on E^{\prime}.

Sequential Importance Sampling (SIS) Algorithm

- Simulate N paths $\left\{X_{0: k^{(i)}+1}^{(i)}\right\}_{i=1}^{N}$ until $X_{k^{(i)}+1}^{(i)}=\dagger$.
- Calculate weights:

$$
W\left(X_{0: k}^{(i)}\right)= \begin{cases}\left.\frac{1}{\mu\left(X_{0}^{(i)}\right)}\left(\prod_{k=1}^{k^{(i)}} \frac{K\left(X_{k-1}^{(i)}, X_{k}^{(i)}\right)}{M\left(X_{k-1}^{(i)}, X_{k}^{(i)}\right)}\right) \frac{g\left(X_{k}^{(i)}\right)}{P_{d}}\right) & \text { if } k^{(i)} \geq 1, \\ \frac{g\left(X_{0}^{(i)}\right)}{\mu\left(X_{0}^{(i)}\right) P_{d}} & \text { if } k^{(i)}=0 .\end{cases}
$$

- Approximate $f\left(x_{0}\right)$ with:

$$
\widehat{f}\left(x_{0}\right)=\frac{1}{N} \sum_{i=1}^{N} W\left(X_{0: k^{(i)}}^{(i)}\right) \delta\left(x_{0}-X_{0}^{(i)}\right)
$$

Von Neumann Representation Revisited

- Starting from

$$
f\left(x_{0}\right)=g\left(x_{0}\right)+\sum_{n=1}^{\infty} \int_{E} K^{n}\left(x_{0}, x_{n}\right) f\left(x_{n}\right) d x_{n}
$$

- We have directly:

$$
\begin{aligned}
& \qquad \begin{aligned}
f\left(x_{0}\right) & =g\left(x_{0}\right)+\sum_{n=1}^{\infty} \int_{E^{n}}\left[\prod_{p=1}^{n} K\left(x_{p-1}, x_{p}\right)\right] g\left(x_{n}\right) d x_{1} \ldots d x_{n} \\
& =f_{0}\left(x_{0}\right)+\sum_{n=1}^{\infty} \int_{E^{n}} f_{n}\left(x_{0: n}\right) d x_{1} \ldots d x_{n}
\end{aligned} \\
& \text { with } f_{n}\left(x_{0: n}\right):=g\left(x_{n}\right) \prod_{p=1}^{n} K\left(x_{p-1}, x_{p}\right) \text {. }
\end{aligned}
$$

A Path-Space Interpretation of SIS

- Define:

$$
\pi\left(n, x_{0: n}\right)=p_{n} \pi_{n}\left(x_{0}: n\right) \quad \text { on } F=\cup_{k=0}^{\infty}\{k\} \times E^{\prime k+1}
$$

where

$$
\begin{aligned}
p_{n} & =\mathbb{P}\left(X_{0: n} \in E^{n+1}, X_{n+1}=\dagger\right)=\left(1-P_{d}\right)^{n} P_{d} \\
\pi_{n}\left(x_{0: n}\right) & =\frac{\mu\left(x_{0}\right) \prod_{k=1}^{n} M\left(x_{k-1}, x_{k}\right)}{\left(1-P_{d}\right)^{n}}
\end{aligned}
$$

- Define also:

$$
f\left(k, x_{0: k}\right)=f_{0}\left(x_{0}\right) \delta_{0, k}+\sum_{n=1}^{\infty} f_{n}\left(x_{0: n}\right) \delta_{n, k}
$$

- Approximate with:

$$
\hat{f}\left(x_{0}\right)=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(k^{(i)}, X_{0: k^{(i)}}^{(i)}\right)}{\pi\left(k^{(i)}, X_{0: k^{(i)}}^{(i)}\right)} \delta\left(x_{0}-X_{0}^{(i)}\right)
$$

Limitations of SIS

- Arbitary geometric distribution for k.
- Arbitary initial distribution.
- Importance weights

$$
\frac{1}{\mu\left(X_{0}^{(i)}\right)}\left(\prod_{k=1}^{k^{(i)}} \frac{K\left(X_{k-1}^{(i)}, X_{k}^{(i)}\right)}{M\left(X_{k-1}^{(i)}, X_{k}^{(i)}\right)}\right) \frac{g\left(X_{k^{(i)}}^{(i)}\right)}{P_{d}}
$$

- Resampling will not help.

Limitations of SIS

- Arbitary geometric distribution for k.
- Arbitary initial distribution.
- Importance weights

$$
\frac{1}{\mu\left(X_{0}^{(i)}\right)}\left(\prod_{k=1}^{k^{(i)}} \frac{K\left(X_{k-1}^{(i)}, X_{k}^{(i)}\right)}{M\left(X_{k-1}^{(i)}, X_{k}^{(i)}\right)}\right) \frac{g\left(X_{k^{(i)}}^{(i)}\right)}{P_{d}}
$$

- Resampling will not help.

Optimal Importance Distribution

- Minimize variance of absolute value of weights.
- Consider choosing

$$
\begin{array}{rlrl}
\pi\left(n, x_{0: n}\right) & =\sum_{i=k}^{\infty} p_{k} \delta_{k, n} \pi_{k}\left(x_{0: k}\right) & & \\
\pi_{n}\left(x_{0: n}\right) & =c_{n}^{-1}\left|f_{n}\left(x_{0: n}\right)\right| & c_{n} & =\int_{E^{n+1}}\left|f_{n}\left(x_{0: n}\right)\right| d x_{0: n} \\
p_{n} & =c_{n} / c & c & =\sum_{n=0}^{\infty} c_{n} .
\end{array}
$$

- We have:

$$
\begin{aligned}
f\left(x_{0}\right)= & c \operatorname{sgn}\left(f_{0}\left(x_{0}\right)\right) \pi\left(0, x_{0}\right)+ \\
& c \sum_{n=1}^{\infty} \int_{E^{n}} \operatorname{sgn}\left(f_{n}\left(x_{0: n}\right)\right) \pi\left(n, x_{0: n}\right) d x_{1: n}
\end{aligned}
$$

That's where the MCMC comes in

- Obtain a sample-approximation of $\pi \ldots$
- using your favourite sampler,
- Reversible Jump MCMC (2), for instance
- Use the samples to approximate the optimal proposal.
- Combine with importance sampling.
- Estimate 'normalising constant', c.

A Simple RJMCMC Algorithm

Initialization.

- Set $\left(k^{(1)}, X_{0: k^{(1)}}^{(1)}\right)$ randomly or deterministically.

Iteration $i \geq 2$.

- Sample $U \sim \mathrm{U}[0,1]$
- If $U \leq u_{k^{(i-1)}}$
- $\left(k^{(i)}, x_{0: k^{(i)}}^{(i)}\right) \leftarrow$ Update Move.
- Else If $U \leq u_{k^{(i-1)}}+b_{k^{(i-1)}}$:
- $\left(k^{(i)}, x_{0: k^{(i)}}^{(i)}\right) \leftarrow$ Birth Move.
- Else
- $\left(k^{(i)}, x_{0: k^{(i)}}^{(i)}\right) \leftarrow$ Death Move.

Very Simple Update Move

- Set $k^{(i)}=k^{(i-1)}$, sample $J \sim \mathcal{U}\left(\left\{0,1, \ldots, k^{(i)}\right\}\right)$ and $X_{J}^{*} \sim q_{u}\left(X_{J}^{(i-1)}, \cdot\right)$.
- With probability

$$
\begin{aligned}
& \min \left\{1, \frac{\pi\left(k^{(i)},\left(X_{0: J-1}^{(i-1)}, X_{J}^{*}, X_{J+1: k^{(i)}}^{(i-1)}\right)\right) q_{u}\left(X_{J}^{*}, X_{J}^{(i-1)}\right)}{\pi\left(k^{(i)}, X_{0: k^{(i)}}^{(i-1)}\right) q_{u}\left(X_{J}^{(i-1)}, X_{J}^{*}\right)}\right\} \\
& \operatorname{set} X_{0: k^{(i)}}^{(i)}=\left(X_{0: J-1}^{(i-1)}, X_{J}^{*}, X_{J+1: k^{(i)}}^{(i-1)}\right)
\end{aligned}
$$

- otherwise set $X_{0: k^{(i)}}^{(i)}=X_{0: k^{(i-1)}}^{(i-1)}$.

Acceptance probabilities involve:

$$
\frac{\pi\left(l, x_{0: l}\right)}{\pi\left(k, x_{0: k}\right)}=\frac{c_{l} \pi_{l}\left(x_{0: l}\right)}{c_{k} \pi_{k}\left(x_{0: k}\right)}=\left|\frac{f_{l}\left(x_{0: l}\right)}{f_{k}\left(x_{0: k}\right)}\right|
$$

Very Simple Update Move

- Set $k^{(i)}=k^{(i-1)}$, sample $J \sim \mathcal{U}\left(\left\{0,1, \ldots, k^{(i)}\right\}\right)$ and

$$
X_{J}^{*} \sim q_{u}\left(X_{J}^{(i-1)}, \cdot\right)
$$

- With probability

$$
\begin{aligned}
& \min \left\{1, \frac{\pi\left(k^{(i)},\left(X_{0: J-1}^{(i-1)}, X_{J}^{*}, X_{J+1: k^{(i)}}^{(i-1)}\right)\right) q_{u}\left(X_{J}^{*}, X_{J}^{(i-1)}\right)}{\pi\left(k^{(i)}, X_{0: k^{(i)}}^{(i-1)}\right) q_{u}\left(X_{J}^{(i-1)}, X_{J}^{*}\right)}\right\} \\
& \text { set } X_{0: k^{(i)}}^{(i)}=\left(X_{0: J-1}^{(i-1)}, X_{J}^{*}, X_{J+1: k^{(i)}}^{(i-1)}\right)
\end{aligned}
$$

- otherwise set $X_{0: k^{(i)}}^{(i)}=X_{0: k^{(i-1)}}^{(i-1)}$.

Acceptance probabilities involve:

$$
\frac{\pi\left(l, x_{0: l}\right)}{\pi\left(k, x_{0: k}\right)}=\frac{c_{l} \pi_{l}\left(x_{0: l}\right)}{c_{k} \pi_{k}\left(x_{0: k}\right)}=\left|\frac{f_{l}\left(x_{0: l}\right)}{f_{k}\left(x_{0: k}\right)}\right|
$$

Very Simple Birth Move

- Sample $J \sim \mathcal{U}\left\{0,1, \ldots, k^{(i-1)}\right\}$, sample $X_{J}^{*} \sim q_{b}(\cdot)$.
- With probability

$$
\min \left\{1, \frac{\pi\left(k^{(i-1)}+1,\left(X_{0: J-1}^{(i-1)}, X_{J}^{*}, X_{J: k^{(i-1)}}^{(i-1)}\right)\right) d_{k^{(i-1)}+1}}{\pi\left(k^{(i-1)}, X_{0: k^{(i-1)}}^{(i-1)}\right) q_{b}\left(X_{J}^{*}\right) b_{k^{(i-1)}}}\right\}
$$

set $k^{(i)}=k^{(i-1)}+1, X_{0: k}^{(i)}=\left(X_{0: J-1}^{(i-1)}, X_{J}^{*}, X_{J: k^{(i-1)}}^{(i-1)}\right)$,

- otherwise set $k^{(i)}=k^{(i-1)}, X_{0: k^{(i)}}^{(i)}=X_{0: k^{(i-1)}}^{(i-1)}$.

Very Simple Death Move

- Sample $J \sim \mathcal{U}\left\{0,1, \ldots, k^{(i-1)}\right\}$.
- With probability
$\min \left\{1, \frac{\pi\left(k^{(i-1)}-1,\left(X_{0: J-1}^{(i-1)}, X_{J+1: k^{(i-1)}}^{(i-1)}\right)\right) q_{b}\left(X_{J}^{(i-1)}\right) b_{k^{(i-1)}-1}}{\pi\left(k^{(i-1)}, X_{0: k^{(i-1)}}^{(i-1)}\right) d_{k^{(i-1)}}}\right\}$

$$
\text { set } k^{(i)}=k^{(i-1)}-1, X_{0: k^{(i)}}^{(i)}=\left(X_{0: J-1}^{(i-1)}, X_{J+1: k^{(i-1)}}^{(i-1)}\right),
$$

otherwise set $k^{(i)}=k^{(i-1)}, X_{0: k^{(i)}}^{(i)}=X_{0: k^{(i-1)}}^{(i-1)}$.

Estimating the Normalising Constant

- Estimate p_{n} as:

$$
\widehat{p_{n}}=\frac{1}{N} \sum_{i=1}^{n} \delta_{n, k^{(i)}}
$$

- Estimate directly, also,

$$
\widetilde{c_{0}} \approx \int g(x) d x
$$

and hence

$$
\widehat{c}=\widetilde{c_{0}} / \widehat{p_{0}} \quad \widehat{c_{n}}=\widehat{c} \widehat{p_{n}}
$$

Toy Example

- The simple algorithm was applied to

$$
f(x)=\int_{0}^{1} \underbrace{\frac{1}{3} \exp (x-y)}_{K(x, y)} f(y) d y+\underbrace{\frac{2}{3} \exp (x)}_{g(x)} .
$$

- The solution $f(x)=\exp (x)$.
- Birth, death and update probabilities were set to $1 / 3$.
- A uniform distribution over the unit interval was used for all proposals.

Point Estimation for the Toy Example

Point Estimates and their Standard Deviations

(Fix x_{0} and simulate everything else).

Estimating $f(x)$ from Samples

- Given $\hat{f}(x)=\frac{1}{N} \sum_{i=1}^{N} W^{(i)} \delta\left(x-X_{0}^{(i)}\right)$,
- such that

$$
\mathbb{E}\left[\int \hat{f}(x) \varphi(x)\right]=\int f(x) \varphi(x) d x
$$

- Simple option: histogram $\left(\varphi(x)=\mathbb{I}_{A}(x)\right)$.
- More subtle option:

$$
\begin{aligned}
\tilde{f}(x) & \left.=\int K(x, y) \hat{(} f\right)(y) d y+g(x) \\
& =g(x)+\frac{1}{N} \sum_{i=1}^{N} W^{(i)} K\left(x, X_{0}^{(i)}\right) .
\end{aligned}
$$

Estimating $f(x)$ from Samples

- Given $\hat{f}(x)=\frac{1}{N} \sum_{i=1}^{N} W^{(i)} \delta\left(x-X_{0}^{(i)}\right)$,
- such that

$$
\mathbb{E}\left[\int \hat{f}(x) \varphi(x)\right]=\int f(x) \varphi(x) d x
$$

- Simple option: histogram $\left(\varphi(x)=\mathbb{I}_{A}(x)\right)$.
- More subtle option:

$$
\begin{aligned}
\widetilde{f}(x) & \left.=\int K(x, y) \hat{(} f\right)(y) d y+g(x) \\
& =g(x)+\frac{1}{N} \sum_{i=1}^{N} W^{(i)} K\left(x, X_{0}^{(i)}\right)
\end{aligned}
$$

Estimated $f(x)$ for the Toy Problem

An Asset-Pricing Problem

- The rational expectation pricing model (cf. (4)) requires:
- the price, $V(s)$ of an asset
- in some state $s \in E$
satisfies

$$
V(s)=\pi(s)+\beta \int_{E} V(t) p(t \mid s) d t
$$

- Where:
- $\pi(s)$ denotes the return on investment,
- β is a discount factor and
- $p(t \mid s)$ is a Markov kernel which models the state evolution.
- Simple example:

$$
E=[0,1] \quad \beta=0.85 \quad p(t \mid s)=\frac{\phi\left(\frac{t-|a s+b|}{\sqrt{\lambda}}\right)}{\Phi\left(\frac{1-[a s+b]}{\sqrt{\lambda}}\right)-\Phi\left(-\frac{a s+b}{\sqrt{\lambda}}\right)}
$$

with $a=0.05, b=0.85$ and $\lambda=100$.

Estimated $f(x)$ for asset pricing case.

Simulated Chain Lengths for Different Starting Points

Conclusions

- Many Monte Carlo methods can be viewed as importance sampling.
- Many problems can be recast as calculation of expectations.
- Approximate solution of Fredholm equations.
- Also applicable to Volterra Equations (3).
- Any Monte Carlo method could be used.
- Some room for further investigation of this method.

References

[1] A. Doucet, A. M. Johansen, and V. B. Tadić. On solving integral equations using Markov Chain Monte Carlo. Applied Mathematics and Computation, 216:2869-2889, 2010.
[2] P. J. Green. Reversible jump Markov Chain Monte Carlo computation and Bayesian model determination. Biometrika, 82:711-732, 1995.
[3] G. W. Peters, A. M. Johansen, and A. Doucet. Simulation of the annual loss distribution in operational risk via Panjer recursions and Volterra integral equations for value at risk and expected shortfall estimation. Journal of Operational Risk, 2(3):29-58, Fall 2007.
[4] J. Rust, J. F. Traub, and H. Wózniakowski. Is there a curse of dimensionality for contraction fixed points in the worst case? Econometrica, 70(1):285-329, 2002.

