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Background

e Networks (e.g. genes, proteins,
metabolites) important notion in
current biology.

¢ Probabilistic Graphical Models
(PGM) are a key approach.

e RTK is an example of a signalling (Weinberg 2007, Yarden &
network. Sliwkowski 2001)
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Bayesian Networks

e Stochastic Models where a graph is
used to describe probabilistic
relationships between components.

e Graph specifies conditional
independence statements.

e In some frameworks the graph must be
directed and acyclic (DAG).

Special cases include HMMs, Bayesian
Networks (BN), Dynamic BNs.



Structural Inference

Interested in inference of graph G given some observed data X.

Posterior probability over graphs G give by Bayes' Theorem

P(G|X) x P(X|G)P(G)
Has closed form up to proportionality constant for certain choices of
underlying models.

Maximising P(G|X) can have robustness problems; If posterior has
several highly scoring graphs how do we choose between them?

e For this reason we use model averaging.
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Model Averaging

Probability E(e) of seeing an edge e averaged over all graphs G is
more robust.

e Edges which repeatedly appear in likely graphs have high E(e).

Knowledge of proportionality constant requires enumeration of whole
p-node DAG space G.

e G grows super-exponentially with p.

Thus we must use MCMC to estimate the posterior probabilities
P(G|X).
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Monte Carlo

e Move around G by performing elementary C%O >

moves on current graph G.

® Accept or reject new graphs G’ based on MH Addition

acceptance probability; O O O
_ P(XIG)In(G)| %

P(X| G) |77( GI) | Deletlon Reversal
(for uniform priors) Neighbourhood 7(G) is all
Called MC3 (Madigan & York 1995)  graphs reachable from G.

Estimate of posterior probability given by

tmax

t)_

P(GIX) =

k]
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Sample Size

Mean Entropy - <H[pl>

(4 Nodes)
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Having more data is clearly a good thing.

e High throughput experiments, FACS,
social science, etc...

Caution!

In certain situations large sample size N
can cause problems.

Convergence to correct stationary
distribution can be slow.
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Motivation

0.25

* Posterior for p=4 node system with two
different sample sizes N =5 and N = 10
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Posterior - P(G|X)
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Tempering

e Aim is to allow the Markov chain (

to move between high scoring graphs
e Natural idea is to use tempering. J\Jm
e Couple higher temperature MCs to the

one with the desired posterior. Temperature analogy

achieved by raising
posterior score to 3 =

il

P(GIX)" < (P(X|G)P(G))"
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Tempering Scheme

Set up m MCs at temperatures Ty, ... Tp.
MCs at higher temperature can explore the space more freely.

e Each chain simulated using often used MH scheme.

Every iteration with probability pswap swap graphs between randomly
chosen neighbouring chains i and j

e Accept the swap with probability p.

Swapping probability

£
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Simulation

First we examine performance on synthetic data generated from the
known network shown earlier.

Data is generated using

e A~ N(0,0) for parent nodes.

e C~ N(A+ B+ ~vAB, o) for child nodes.
(with parents A and B)

Since we know the underlying graph from which the data were
generated we can draw ROC curves...
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-
ROC Curves

Curves parametrised by threshold t; keep in output graph all edges with
E(e) > t.

N=5000

Number of true positives

/ —PT

/ —— MH
/ X _CB

10 15 20 25
Number of false positives

Tempering has picked up fewer false positive edges compared to standard

MC3 for the same number of true edges. .
(Xie & Geng, JMLR 2008)
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ROC Curves

N=5000
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Proteomic Data

We examine here the application to inferring the underlying DBN from a set
of proteomic data.

Due to certain factorisation for DBNs we can calculate exact edge
probabilities.

e Gives us gold standard comparison!

We examine;

e Correlation p between the exact and MC estimated edge
probabilities.

e Normalised sum difference s between the exact and MC
estimated edge probs.
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Edge Probabilities

—FPT

09 MH 0.14 PT

0.4

T =1.0,1.25,1.5,1.75,2.0 and pswap = 0.1, averaged over 4 runs.
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Edge Probabilities

If we look at the individual edge probabilities we see better performance
(closer to x = y) for tempering:
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Toughest edges to infer are significantly better estimated by using tempering.‘.’.'«.ii'
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Conclusions

As sample size increases posterior mass can concentrate around several
hard to move between graphs.

e Widely employed MCMC schemes can fail to estimate edges properly in
these increasingly common situations.

e Counter this by using higher temperature chains coupled to desired
posterior: PT.

e |mportant to draw robust conclusions from data in a wide range of fields.
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