Stochastic numerics for the gas-phase synthesis of nanoparticles

Shraddha Shekar ${ }^{1}$, Alastair J. Smith ${ }^{1}$, Markus Sander ${ }^{1}$, Markus Kraft ${ }^{1}$ and Wolfgang Wagner ${ }^{2}$
${ }^{1}$ Department of Chemical Engineering and Biotechnology University of Cambridge
${ }^{2}$ Weierstrass Institute for Applied Analysis and Stochastics, Berlin

March 2011

Outline

1 Introduction
■ Motivation

2 Model

- Type space
- Particle processes
- Algorithm

3 Numerical study

4 Conclusion

Motivation

■ What are nanoparticles? Why are they important?

- Particles sized between 1-100 nm.
- Both inorganic and organic nanoparticles find wide applications in various fields.
- Why model nanoparticle systems?
- To optimise industrial operations and to obtain products of highly specific properties for sensitive applications.
- To understand the molecular level properties that are difficult to be observed experimentally.

Motivation II

Salient features of the current model:
■ Fully-coupled multidimensional stochastic population balance model.
■ Describing various properties of nanoparticles at an unprecedented level of detail.

- Tracking properties not only at macroscopic level but also at a molecular level.

Applications of silica nanoparticles

Silica nanoparticles are amorphous and have $\mathrm{Si}: \mathrm{O}=1: 2$.

Their applications include:

- Catalysis
- Bio-medical applications

■ Support material for functional nanoparticles

- Fillers/Binders

■ Optics

Physical system

To describe the system at a macroscopic level it is essential to understand it at a molecular level.

Type space I

■ Each particle is represented as:

$$
P_{q}=P_{q}\left(p_{1}, \ldots, p_{n\left(P_{q}\right)}, \mathbf{C}\right)
$$

- Particle P_{q} consists of $n\left(P_{q}\right)$ primary particles p_{i} with $i \in\left\{1, \ldots, n\left(P_{q}\right)\right\}$ and $q \in\{1, \ldots, N\}$, where N is the total number of particles in the system.

Figure: Type Space.

Type space II

■ Each primary particle p_{i} is represented as:

$$
p_{i}=p_{i}\left(\eta_{\mathrm{Si}}, \eta_{\mathrm{O}}, \eta_{\mathrm{OH}}\right)
$$

where $\eta_{x}\left(\eta_{x} \in \mathbb{Z}\right.$ with $\left.\eta_{x} \geq 0\right)$ is the number of chemical units of type $x \in\{\mathrm{Si}, \mathrm{O}, \mathrm{OH}\}$.

Type space III

C is a lower diagonal matrix of dimension $n\left(P_{q}\right) \times n\left(P_{q}\right)$ storing the common surface between two primary particles:

$$
\mathrm{C}\left(P_{q}\right)=\left(\begin{array}{ccccc}
0 & \cdots & 0 & \cdots & 0 \\
C_{21} & \ddots & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \cdots & \vdots \\
C_{i 1} & \cdots & C_{i j} & \ddots & \vdots \\
\vdots & \cdots & \vdots & \cdots & \vdots
\end{array}\right)
$$

The element $C_{i j}$ of matrix \mathbf{C} has the following property:

$$
C_{i j}=\left\{\begin{array}{l}
0, \text { if } p_{i} \text { and } p_{j} \text { are non-neighbouring } \\
C_{i j}>0, \text { if } p_{i} \text { and } p_{j} \text { are neighbouring }
\end{array}\right.
$$

Particle processes

Particles are transformed by the following processes:

- Inception
- Surface reaction
- Coagulation
- Sintering
- Intra-particle reaction

Particle processes

Particles are transformed by the following processes:

- Inception
- Surface reaction
- Coagulation
- Sintering
- Intra-particle reaction

Inception

- Two molecules in gas phase collide to form a particle consisting of one primary.

Figure: Inception of primary particles from gas-phase monomers.

- An inception event increases the number of particles in the system

$$
\begin{gathered}
\text { molecule }+ \text { molecule } \rightarrow P_{N}\left(p_{1}, \mathbf{C}\right), \\
\mathbf{C}=\mathbf{0}
\end{gathered}
$$

- Initial state of primary p_{1} given by:

$$
p_{1}=p_{1}\left(\eta_{\mathrm{Si}}=2, \eta_{\mathrm{O}}=1, \eta_{\mathrm{OH}}=6\right)
$$

Inception rate

■ Inception rate for each particle $\left(P_{q}\right)$ calculated using the free molecular kernel:

$$
R_{\mathrm{inc}}\left(P_{q}\right)=\frac{1}{2} K^{\mathrm{fm}} N_{\mathrm{A}}^{2} C_{\mathrm{g}}^{2},
$$

N_{A} is Avogadro's constant, C_{g} is the gas-phase concentration of the incepting species $\left(\mathrm{Si}(\mathrm{OH})_{4}\right)$,

$$
K^{\mathrm{fm}}=4 \sqrt{\frac{\pi k_{\mathrm{B}} T}{m_{\mathrm{g}}}}\left(d_{\mathrm{g}}^{2}\right),
$$

k_{B} is the Boltzmann constant, T is the system temperature, m_{g} and d_{g} are the mass and diameter respectively of the gas-phase molecule $\mathrm{Si}(\mathrm{OH})_{4}$.

Particle processes

Particles are transformed by the following processes:

- Inception
- Surface reaction
- Coagulation
- Sintering
- Intra-particle reaction

Surface reaction

- Dehydration reaction between gas-phase monomer and particle surface:

Figure: Surface reaction between a particle and a gas-phase molecule.

■ Surface reaction transforms particle as:

$$
\begin{aligned}
& P_{q}+\text { molecule } \rightarrow P_{q}\left(p_{1}, ., p_{i}^{\prime}, . ., p_{n\left(P_{q}\right)}, \mathbf{C}^{\prime}\right), \\
& \quad p_{i}^{\prime} \rightarrow p_{i}\left(\eta_{\mathrm{Si}}+1, \eta_{\mathrm{O}}+1, \eta_{\mathrm{OH}}+2\right) .
\end{aligned}
$$

Particle rounding due to surface reaction

■ Surface reaction also alters the common surface ($\mathbf{C} \rightarrow \mathbf{C}^{\prime}$).

- Net common surface area of p_{i} changes due to volume addition:

$$
\Delta s\left(p_{i}\right)=\left(v\left(p_{i}^{\prime}\right)-v\left(p_{i}\right)\right) \frac{2 \sigma}{d_{\mathrm{p}}\left(p_{i}\right)}
$$

where σ is the surface smoothing factor $(0 \leq \sigma \leq 2)$.

- C^{\prime} is given by:

$$
C_{i j}^{\prime}=\left\{\begin{array}{l}
0, \text { if } p_{i} \text { and } p_{j} \text { are non-neighbouring } \\
C_{i j}+\Delta s\left(p_{i}\right), \text { if } p_{i} \text { and } p_{j} \text { are neighbouring. }
\end{array}\right.
$$

Surface reaction rate

■ Surface reaction rate calculated using equation of Arrhenius form:

$$
R_{\text {surf }}\left(P_{q}\right)=A_{\text {surf }} \exp \left(-\frac{E_{\mathrm{a}}}{R T}\right) \eta_{\mathrm{OH}}\left(P_{q}\right) N_{\mathrm{A}} C_{\mathrm{g}}
$$

$A_{\text {surf }}$ is pre-exponential factor (obtained from collision theory), E_{a} is activation energy, $\eta_{\mathrm{OH}}\left(P_{q}\right)$ is the total number of -OH sites on particle P_{q}.

Particle processes

Particles are transformed by the following processes:

- Inception
- Surface reaction
- Coagulation
- Sintering
- Intra-particle reaction

Coagulation

- Two particles collide and stick to each other:

Figure: Coagulation between two particles.

- Coagulation of particles P_{q} and P_{r} forms new particle P_{s} as:

$$
P_{q}+P_{r} \rightarrow P_{s}\left(p_{1}, \ldots, p_{n\left(P_{q}\right)}, p_{\left(n\left(P_{q}\right)+1\right)}, \ldots, p_{n\left(P_{q}\right)+n\left(P_{r}\right)}, \mathrm{C}\right) .
$$

Coagulation II

■ Primary p_{i} from particle P_{q} and primary p_{j} from P_{r} are assumed to be in point contact.

- The matrix $\mathrm{C}\left(P_{s}\right)$ is calculated as:

$$
\mathrm{C}\left(P_{s}\right)=\left(\begin{array}{ccccc}
& & & \vdots & \\
& \mathrm{C}\left(P_{q}\right) & \cdots & C_{i j} & \cdots \\
& \vdots & & \vdots & \\
\cdots & C_{j i} & \ldots & \mathrm{C}\left(P_{r}\right) & \\
& \vdots & & &
\end{array}\right)
$$

and has dimension $n\left(P_{s}\right) \times n\left(P_{s}\right)$, where $n\left(P_{s}\right)=n\left(P_{q}\right)+n\left(P_{r}\right)$.

Coagulation rate

■ Coagulation rate between P_{q} and P_{r} calculated using transition coagulation kernel:

$$
K^{\mathrm{tr}}\left(P_{q}, P_{r}\right)=\frac{K^{\mathrm{sf}}\left(P_{q}, P_{r}\right) K^{\mathrm{fm}}\left(P_{q}, P_{r}\right)}{K^{\mathrm{sf}}\left(P_{q}, P_{r}\right)+K^{\mathrm{fm}}\left(P_{q}, P_{r}\right)},
$$

where the slip-flow kernel is:

$$
\begin{aligned}
K^{\mathrm{sf}}\left(P_{q}, P_{r}\right)=\frac{2 k_{\mathrm{B}} T}{3 \mu}\left(\frac{1+1.257 K n\left(P_{q}\right)}{d_{\mathrm{c}}\left(P_{q}\right)}\right. & \left.+\frac{1+1.257 K n\left(P_{r}\right)}{d_{\mathrm{c}}\left(P_{r}\right)}\right) \\
& \times\left(d_{\mathrm{c}}\left(P_{q}\right)+d_{\mathrm{c}}\left(P_{r}\right)\right)
\end{aligned}
$$

and the free molecular collision kernel is:

$$
K^{\mathrm{fm}}\left(P_{q}, P_{r}\right)=2.2 \sqrt{\frac{\pi k_{\mathrm{B}} T}{2}}\left(\frac{1}{m\left(P_{q}\right)}+\frac{1}{m\left(P_{r}\right)}\right)^{\frac{1}{2}}\left(d_{\mathrm{c}}\left(P_{q}\right)+d_{\mathrm{c}}\left(P_{r}\right)\right)^{2}
$$

Particle processes

Particles are transformed by the following processes:

- Inception
- Surface reaction
- Coagulation
- Sintering
- Intra-particle reaction

Sintering

- Sintering described using viscous-flow model.

Figure: Evolution of sintering process with time.

■ Sintering between p_{i} and p_{j} of a single particle P_{q} calculated on a primary particle-level.

Sintering level

- Sintering level defined to represent degree of sintering between p_{i} and p_{j} :

$$
s\left(p_{i}, p_{j}\right)=\frac{\frac{S_{\mathrm{sph}}\left(p_{i}, p_{j}\right)}{C_{i j}}-2^{\frac{1}{3}}}{1-2^{\frac{1}{3}}}
$$

$S_{\text {sph }}\left(p_{i}, p_{j}\right)$ is the surface area of a sphere with the same volume as the two primaries.
■ P_{q} conditionally changes depending on the sintering level $s\left(p_{i}, p_{j}\right)$.

- Two types are defined depending upon a threshold (95\%):

Partial sintering $s\left(p_{i}, p_{j}\right)<0.95$
Complete sintering $s\left(p_{i}, p_{j}\right) \geq 0.95$

Partial sintering

- Surface areas of primaries are reduced by a finite amount.

■ - OH sites at contact surface react to form $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ bonds:

Figure: Dehydration reaction due to sintering.

Partial sintering II

■ Surface density of -OH sites assumed constant throughout sintering.

- The change in the internal variables of primaries p_{i} and p_{j} given by:

$$
\begin{gathered}
\Delta \eta_{\mathrm{OH}}\left(p_{i}\right)=\Delta \eta_{\mathrm{OH}}\left(p_{j}\right)=\rho_{\mathrm{s}}\left(P_{q}\right) \Delta C_{i j} / 2 \\
\Delta \eta_{\mathrm{O}}\left(p_{i}\right)=\Delta \eta_{\mathrm{O}}\left(p_{j}\right)=-0.5 \times \Delta \eta_{\mathrm{OH}}\left(p_{i}\right)
\end{gathered}
$$

$$
\Delta \eta_{\mathrm{Si}}\left(p_{i}\right)=\Delta \eta_{\mathrm{Si}}\left(p_{j}\right)=0
$$

Partial sintering III

- Particle continuously transforms due to partial sintering as:

$$
P_{q}\left(p_{1}, \ldots, p_{n\left(P_{q}\right)}, \mathbf{C}\right) \rightarrow P_{q}\left(p_{1}, . ., p_{i}^{\prime}, p_{j}^{\prime}, . ., p_{n\left(P_{q}\right)}, \mathbf{C}^{\prime}\right)
$$

where,

$$
\begin{aligned}
p_{i}^{\prime} & =p_{i}\left(\eta_{\mathrm{Si}}, \eta_{\mathrm{O}}-\Delta \eta_{\mathrm{O}}\left(p_{i}\right), \eta_{\mathrm{OH}}-\Delta \eta_{\mathrm{OH}}\left(p_{i}\right)\right), \\
p_{j}^{\prime} & =p_{j}\left(\eta_{\mathrm{Si}}, \eta_{\mathrm{O}}-\Delta \eta_{\mathrm{O}}\left(p_{j}\right), \eta_{\mathrm{OH}}-\Delta \eta_{\mathrm{OH}}\left(p_{j}\right)\right) .
\end{aligned}
$$

■ Element of C^{\prime} given by:

$$
C_{i j}^{\prime}=C_{i j}-\frac{\Delta t}{\tau\left(p_{i}, p_{j}\right)}\left(C_{i j}-S_{\mathrm{sph}}\left(p_{i}, p_{j}\right)\right)
$$

where Δt is a time interval.

Complete sintering

- p_{i} and p_{j} replaced by new primary $p_{k}^{\prime \prime}$.

■ Particle transforms due to complete sintering as:

$$
P_{q}\left(p_{1}, \ldots, p_{n\left(P_{q}\right)}, \mathbf{C}\right) \rightarrow P_{q}\left(p_{1}, . ., p_{k}^{\prime \prime}, . ., p_{n\left(P_{q}\right)}, \mathbf{C}^{\prime \prime}\right)
$$

where new primary:

$$
p_{k}^{\prime \prime}=p_{k}^{\prime \prime}\left(\eta_{\mathrm{Si}}\left(p_{i}\right)+\eta_{\mathrm{Si}}\left(p_{j}\right), \eta_{\mathrm{O}}\left(p_{i}\right)+\eta_{\mathrm{O}}\left(p_{j}\right), \eta_{\mathrm{OH}}\left(p_{i}\right)+\eta_{\mathrm{OH}}\left(p_{j}\right)\right)
$$

Complete sintering II

■ C is changed by removing columns and rows i and j and adding new column and row k :

$$
\mathbf{C}^{\prime \prime}=\left(\begin{array}{ccccc}
0 & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots \\
C_{k 1}^{\prime \prime} & \cdots & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
C_{\left(n\left(P_{q}\right)-1\right) 1} & \cdots & C_{\left(n\left(P_{q}\right)-1\right) k}^{\prime \prime} & \cdots & 0
\end{array}\right) .
$$

Sintering rate

■ Sintering rate between p_{i} and p_{j} equivalent to rate of change of their common surface $\Delta C_{i j}$ in time Δt :

$$
\frac{\Delta C_{i j}}{\Delta t}=-\frac{1}{\tau\left(p_{i}, p_{j}\right)}\left(C_{i j}-S_{\mathrm{sph}}\left(p_{i}, p_{j}\right)\right)
$$

$S_{\text {sph }}\left(p_{i}, p_{j}\right)$ is the surface area of a sphere with the same volume as the two primaries.

Characteristic sintering time

■ Characteristic sintering time of p_{i} and p_{j} is:

$$
\tau\left(p_{i}, p_{j}\right)=A_{\mathrm{s}} \times d_{\mathrm{p}}\left(p_{i}, p_{j}\right) \times \exp \left(\frac{E_{\mathrm{s}}}{T}\left(1-\frac{d_{\mathrm{p}, \text { crit }}}{d_{\mathrm{p}}\left(p_{i}, p_{j}\right)}\right)\right)
$$

where $d_{\mathrm{p}}\left(p_{i}, p_{j}\right)$ is the minimum diameter of p_{i} and p_{j}, and $A_{\mathrm{s}}, E_{\mathrm{s}}$ and $d_{\mathrm{p}, \text { crit }}$ are sintering parameters.

Particle processes

Particles are transformed by the following processes:

- Inception
- Surface reaction
- Coagulation

■ Sintering

- Intra-particle reaction

Intra-particle reaction

- Reaction of two adjacent - OH sites on one particle:

Figure: Intra-particle reaction.

- Intra-particle reaction transforms particle as:

$$
P_{q}\left(p_{1}, . ., p_{i}, . ., p_{n\left(P_{q}\right)}, \mathbf{C}\right) \rightarrow P_{q}\left(p_{1}, . ., p_{i}^{\prime}, . ., p_{n\left(P_{q}\right)}, \mathbf{C}\right)
$$

where

$$
p_{i}^{\prime} \rightarrow p_{i}\left(\eta_{\mathrm{Si}}, \eta_{\mathrm{O}}+1, \eta_{\mathrm{OH}}-2\right) .
$$

Intra-particle reaction rate

- Deduce rate of intra-particle reaction from surface reaction rate and avergae sintering rate such that Si / O ratio of $1 / 2$ is attained:

$$
\begin{aligned}
R_{\mathrm{int}}\left(P_{q}\right) & =A_{\mathrm{surf}} \exp \left(-\frac{E_{\mathrm{a}}}{R T}\right) \eta_{\mathrm{OH}}\left(P_{q}\right) N_{\mathrm{A}} C_{\mathrm{g}} \\
& -\frac{\rho_{\mathrm{s}}\left(P_{q}\right)}{2}\left[\sum_{i, j=1}^{n\left(P_{q}\right)} \frac{C_{i j}-S_{\mathrm{sph}}\left(p_{i}, p_{j}\right)}{\tau\left(p_{i}, p_{j}\right)}\right],
\end{aligned}
$$

where $\rho_{\mathrm{s}}\left(P_{q}\right)=\eta_{\mathrm{OH}}\left(P_{q}\right) / S\left(P_{q}\right)$ is the surface density of active sites.

Algorithm

Input: State of the system Q_{0} at initial time t_{0} and final time t_{f}.
Output: State of the system Q at final time t_{f}.
$t \longleftarrow t_{0}, Q \longleftarrow Q_{0} ;$
while $t<t_{\mathrm{f}}$ do
Calculate an exponentially distributed waiting time τ with parameter;

$$
R_{\mathrm{tot}}(Q)=R_{\mathrm{inc}}(Q)+R_{\mathrm{coag}}(Q)+R_{\mathrm{surf}}(Q)+R_{\mathrm{int}}(Q)
$$

Choose a process m according to the probability

$$
P(m)=\frac{R_{m}(Q)}{R_{\mathrm{tot}}(Q)}
$$

where R_{m} is the rate of the process $m \in\{$ inc, coag, surf, int $\}$;
Perform process m;
Update sintering level of all particles; Increment $t \longleftarrow t+\tau$;

Numerical study

- For a given property of the system ξ calculated using $N_{\text {sp }}$ computational particles and L number of independent runs, the empirical mean is:

$$
\mu_{1}^{\left(N_{\mathrm{sp}}, L\right)}(t)=\frac{1}{L} \sum_{l=1}^{L} \xi^{\left(N_{\mathrm{sp}}, l\right)}(t)
$$

- The empirical variance is:

$$
\mu_{2}^{\left(N_{\mathrm{sp}}, L\right)}(t)=\frac{1}{L} \sum_{l=1}^{L} \xi^{\left(N_{\mathrm{sp}}, l\right)}(t)^{2}-\mu_{1}^{\left(N_{\mathrm{sp}}, L\right)}(t)^{2}
$$

Confidence interval

■ The confidence interval I_{P} within which there is a probability P of finding the true solution is then given by:

$$
\begin{gathered}
I_{P}=\left[\mu_{1}^{\left(N_{\mathrm{sp}}, L\right)}(t)-c_{P}, \mu_{1}^{\left(N_{\mathrm{sp}}, L\right)}(t)+c_{P}\right] \\
c_{P}=a_{P} \sqrt{\frac{\mu_{2}^{\left(N_{\mathrm{sp}}, L\right)}(t)}{L}}
\end{gathered}
$$

■ We use $a_{P}=3.29$ which corresponds to $P=0.999(99.9 \%)$

Error

- The error e is:

$$
e^{\left(N_{\mathrm{sp}}, L\right)}(t)=\left|\mu_{1}^{\left(N_{\mathrm{sp}}, L\right)}(t)-\zeta^{\infty}(t)\right|
$$

- $\zeta^{\infty}(t)$ is an approximation for the true solution which is obtained from a "high-precision calculation" with a very large number of particles.
- The average error over the entire simulation time is:

$$
\bar{e}\left(N_{\mathrm{sp}}, L\right)=\frac{1}{M} \sum_{j=1}^{M} e^{\left(N_{\mathrm{sp}}, L\right)}\left(t_{j}\right)
$$

where the M time steps t_{j} are equidistant.

M_{0}

■ The zeroth moment is the particle number density:

$$
M_{0}(t)=\frac{N(t)}{V_{\mathrm{smpl}}}
$$

Figure: Convergence of zeroth moment ($N_{\mathrm{sp}} \times L=65536$). Solid line indicates slope of -1 .

March 2011
$39 / 45$

Volume

- The average particle volume:

$$
V(t)=\frac{1}{N(t)} \Sigma_{q=1}^{N(t)} V\left(P_{q}(t)\right)
$$

Figure: Convergence of average volume ($N_{\mathrm{sp}} \times L=65536$). Solid line indicates slope of -1 .

Collision diameter

- The average collision diameter of a particle:

$$
D_{\mathrm{c}}(t)=\frac{1}{N(t)} \Sigma_{q=1}^{N(t)} d_{\mathrm{c}}\left(P_{q}(t)\right)
$$

Figure: Convergence of average average collision diameter ($N_{\mathrm{sp}} \times L=65536$). Solid line indicates slope of -1 .

Computational time

Figure: Computational time for different N_{sp}.

Computer-generated TEM

Figure: TEM images generated by projecting particles onto a plane. Experimental values from Seto et al. (1995).

Conclusion

■ Description of a detailed population balance model.

- Numerical studies performed.

■ Demonstrated feasibility of using first-principles to model complex nanoparticle synthesis processes.

Thank You!

Welcome from the CoMo Group!

Welcome to the website of the Computational Modelling Group! We develop and apply modern numerical methods to problems arising in Chemical Engineering. The overall aim is to shorten the development period from research bench to the industrial production stage by providing insight into the underlying physics and supporting the scale-up of processes to industrial level.
The group currently consists of 25 members from various backgrounds. We are keen to collaborate with people from both within industry and academia, so please get in touch if you think you have common interests.
The group's research divides naturally into two inter-related branches. The first of these is research into mathematical methods, which consists of the development of stochastic particle methods, computational fluid dynamics and quantum chemistry. The other branch consists of research into applications, using the methods we have developed in addition to well established techniques. The main application areas are reactive flow, combustion, engine modelling, extraction, nano particle synthesis and dynamics. This research is sponsored on various levels by the UK. EU. and industry.

$$
N \cdot k_{r a}+
$$

