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Motivation

m What are nanoparticles? Why are they important?
m Particles sized between 1-100 nm.
m Both inorganic and organic nanoparticles find wide applications in
various fields.
m Why model nanoparticle systems?
m To optimise industrial operations and to obtain products of highly
specific properties for sensitive applications.
m To understand the molecular level properties that are difficult to be
observed experimentally.
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Salient features of the current model:

m Fully-coupled multidimensional stochastic population balance model.

m Describing various properties of nanoparticles at an unprecedented
level of detail.

m Tracking properties not only at macroscopic level but also at a
molecular level.
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Silica nanoparticles are amorphous and have Si:O = 1:2.

Their applications include:
m Catalysis
m Bio-medical applications
m Support material for functional nanoparticles
m Fillers/Binders
m Optics
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Physical system

To describe the system at a macroscopic level it is essential to understand
it at a molecular level.

Precursor (TEOS) Flame reactor Silica nanoparticles
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m Each particle is represented as:

Pq = Pq(pl, ce ,pn(pq), C)

m Particle P, consists of n(Pg) primary particles p; with
ie{l,...,n(Pg)} and g € {1,..., N}, where N is the total number
of particles in the system.

Oy #°H
HO,%,’ é\\O"'hSi" :Si\.,l//
s "0
D /OG) O‘Si.o
Owsi4 si., SN
s 5 B8 0 OH
; HO. O %
----------------------- Pn(Tlsi,T]o,TIOH)

- 5 Py = Py(P1s-sPn(Pg),:C)

Figure: Type Space.
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m Each primary particle p; is represented as:

pi = pi(nsi, 10, MoH)

where 7y (nx € Z with 1, > 0) is the number of chemical units of
type x € {Si, O, OH}.
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C is a lower diagonal matrix of dimension n(Py) x n(Pg) storing the
common surface between two primary particles:

O --- 0 --- 0
Cy - 0 -+ 0
C(Pq)= :

Ci -~ G
The element Cj; of matrix C has the following property:

C. = 0, if p; and p; are non-neighbouring,
v Cij > 0, if pj and p; are neighbouring.
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Particles are transformed by the following processes:

Inception
Surface reaction
Coagulation

Sintering

Intra-particle reaction
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m Two molecules in gas phase collide to form a particle consisting of one

primary.
OH OH OH OH OH OH
S| “OH + HO-sSi “OH HOy OHHO 14 Si
\ 2HO \ \
HO/ / \OH Ho/FN / / - OH
[monomers] [primary particle]

Figure: Inception of primary particles from gas-phase monomers.

m An inception event increases the number of particles in the system
molecule 4+ molecule — Py(p1, C),
c=o0.
m Initial state of primary p; given by:

p1 = p1(nsi = 2,m0 = 1,01 = 6),
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Inception rate

m Inception rate for each particle (Pg) calculated using the free
molecular kernel: )
fm gy 2 ~2
Rinc(Pgq) = EKmNA Gy

Ny is Avogadro's constant, C, is the gas-phase concentration of the
incepting species (Si(OH)4),

71'/(BT
Mg

Km — 4

(dg),

kg is the Boltzmann constant, T is the system temperature, mg and
dy are the mass and diameter respectively of the gas-phase molecule
Si(OH)s.
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Particles are transformed by the following processes:

Inception
Surface reaction
Coagulation

Sintering

Intra-particle reaction
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m Dehydration reaction between gas-phase monomer and particle
surface:

OH
Ho., |

Si
oo +Si(OH)s S ‘l’/ Nor
\O /Si\O /Si\o / -H,0 \O /Si‘\o /Si\o /

Figure: Surface reaction between a particle and a gas-phase molecule.

m Surface reaction transforms particle as:
Pg + molecule — Pqy(p1, ., pi’, .., Pn(Pg)» ch,
pi = pi(nsi + 1,10 + 1,101 + 2).
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Particle rounding due to surface reaction

m Surface reaction also alters the common surface (C — C').

m Net common surface area of p; changes due to volume addition:

20
dp(Pi)7

where ¢ is the surface smoothing factor (0 < o < 2).

As(pi) = (v(pi') — v(pi))

m C is given by:

ij:

, 0, if p; and p; are non-neighbouring,
Cij + As(p;), if pj and p; are neighbouring.
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m Surface reaction rate calculated using equation of Arrhenius form:

E.
Rsurf(Pq) = Asurt €Xp ( RT)nOH(P )NACga

Asurf is pre-exponential factor (obtained from collision theory),
E, is activation energy,
nou(Pq) is the total number of —OH sites on particle Py.
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Particles are transformed by the following processes:

Inception
Surface reaction
Coagulation

Sintering

Intra-particle reaction
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m Two particles collide and stick to each other:

Pq P Ps
+ I .

Figure: Coagulation between two particles.

m Coagulation of particles P, and P, forms new particle P as:

Pq + Pr — Ps(P1; s Pa(Py)s P(n(Pq)+1)s > Pn(Pq)+n(Pr)» C)-
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m Primary p; from particle Pq and primary p; from P, are assumed to be
in point contact.

m The matrix C(Ps) is calculated as:

ey G
C(Ps)= :
Ci ... C(P)

and has dimension n(Ps) x n(Ps), where n(Ps) = n(Pq) + n(P;).
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Coagulation rate

m Coagulation rate between P, and P, calculated using transition
coagulation kernel:

__K*(Pg, P)K™(Pg, Pr)
-~ Kst(Pg, P) + KIm(Pg, P,)’

where the slip-flow kernel is:

K" (Pq, Pr)

2k T (1 +1.257Kn(P,) 1+ 1.257Kn(P,)>
K (Pg, P) = =+
( q ) 3M CI'C(Pq) dc(Pr)
x (de(Pgq) + de(Pr)),

and the free molecular collision kernel is:

. o [mkeT (1 1 \: >
Kin(Pg, Pr) =22y 2T (s ) (AP + (P)
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Particles are transformed by the following processes:

Inception
Surface reaction
Coagulation

Sintering

Intra-particle reaction
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m Sintering described using viscous-flow model.

i - P«
Pi .pJ Pi lp] .

No Sintering Partial Sintering Complete Sintering

>

Figure: Evolution of sintering process with time.

m Sintering between p; and p; of a single particle Pq calculated on a
primary particle-level.

UNIVERSITY OF

vv4><‘°* CoMo
. Byt



Sintering level

m Sintering level defined to represent degree of sintering between p; and
pj:
Ssph(phpj) _ 2%
s(pi, py) = —

; —

T 1- 2%
Ssph(pi, pj) is the surface area of a sphere with the same volume as
the two primaries.

m P, conditionally changes depending on the sintering level s(pj, p;).
m Two types are defined depending upon a threshold (95%):

Partial sintering s(pj, pj) < 0.95
Complete sintering s(pj, pj) > 0.95
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m Surface areas of primaries are reduced by a finite amount.

m —OH sites at contact surface react to form Si—O-Si bonds:

Pj Pi
Reactions at particle neck
_OH-OH. ¢, OH‘OHOHOH
pi aoH “OH i 7 oH
OH R K
OH-gH G OH /
o= T ofHoLy |
HOY, 4 S, S OH
[0S 0y or S !
Okt ~Si i~ st O OH
. 0 STHO B . ' 2H:0
OH. . ‘Si :'CSH O‘ap o OH
OFt= 51 N -OH
OH OH"-OH

Figure: Dehydration reaction due to sintering.

UNIVERSITY OF

CoMo '
o SRS EE] B CAMBRIDGE



m Surface density of —OH sites assumed constant throughout sintering.

m The change in the internal variables of primaries p; and p; given by:

Anon(pi) = Anoun(p;) = ps(Pg)AC;/2,
Ano(pi) = Ano(p;) = —0.5 x Anou(pi),

Ansi(pi) = Ansi(p;) = 0.
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m Particle continuously transforms due to partial sintering as:
Pq(ph ce 7pn(Pq)7 C) — Pq(p17 o) p;a pJ/a oy pn(Pq)7 C/)
where,
pi = pi(nsi,no — Ano(pi); non — Anou(pi)),
p; = pi(nsi,no — Ano(p;), non — Anon(py))-
m Element of C’ given by:
At
7(pis pj)

where At is a time interval.

Cl=GCj—

y

(CIJ - Ssph(pia pj)) 3
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m p; and p; replaced by new primary pj/.
m Particle transforms due to complete sintering as:

Pq(pl; <5 Pn(Pyg)> C) - Pq(pla ) pZa 3 Pn(Pyg)» CN)?
where new primary:

pi = Pl (nsi(pi) + 1si(pj) no(pi) + no(pj)s nou(pi) + nou(p;)) -
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m C is changed by removing columns and rows i and j and adding new
column and row k:

0 0 0
c’ = CI/<,1 R 0 ... 0
Cntpg)-11 * Clapgy-1ye -+ O
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m Sintering rate between p; and p; equivalent to rate of change of their
common surface ACj; in time At:

AG 1
At - T(Pi,PJ)(CU sph(plapj))

Ssph(pi, pj) is the surface area of a sphere with the same volume as
the two primaries.
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m Characteristic sintering time of p; and p; is:

E. dy. crit
T\Pi, Pj :Ast i, Pj) X €X (—S(l—ﬁ)),
(P pJ) P(p pJ) P T dp(Pi,Pj)

where d,,(pj, pj) is the minimum diameter of p; and p;, and
As, Es and d,, ;i¢ are sintering parameters.
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Particles are transformed by the following processes:

Inception
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m Reaction of two adjacent —OH sites on one particle:

Oy
‘\Si‘

\ /SI / \O/

Figure: Intra-particle reaction.

m Intra-particle reaction transforms particle as:

Pq(Pla coy Piy ooy pn(Pq)a C) — Pq(Pla ) p;» ) pn(Pq); C)a
where

p; = pi(nsi,no + 1, nou — 2).
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m Deduce rate of intra-particle reaction from surface reaction rate and
avergae sintering rate such that Si/O ratio of 1/2 is attained:

E,
Rint(Pq) - Asurf exp <__)770H(Pq)NACg

RT
P
_ ps(Pq) n(gi) Cij — Sspn(pi, pj)
2 ij=1 T(pi7 pJ) ,

where ps(Pg) = nomu(Pq)/S(Pq) is the surface density of active sites.
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Algorithm

Input: State of the system @ at initial time tp and final time t;.
Output: State of the system @ at final time t;.

t «— t0,Q +— Qu;

while t < t; do

Calculate an exponentially distributed waiting time 7 with parameter;

Rtot(Q) — Rinc(Q) + Rcoag(Q) + Rsurf(Q) + Rint(o)-

Choose a process m according to the probability

_ Rm(Q)
Pim) = R(Q)’

where Ry, is the rate of the process m € {inc, coag, surf, int};
Perform process m;

Update sintering level of all particles;

Increment t «— t 4 T;
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m For a given property of the system ¢ calculated using Ny,
computational particles and L number of independent runs, the
empirical mean is:

(NSP7L) Nsp»
My L Z f(

m The empirical variance is:

L
2
w0 () —%Z (e D(2)® — ™0 (e)

UNIVERSITY OF

CoMo '
o SRS TSe s O CAMBRIDGE



m The confidence interval /p within which there is a probability P of
finding the true solution is then given by:

lp = ['uJ(lNSp’L)(t) —cp, ,UJ(lNSp’L)(t) + Cp] .

Nep, L
()
T .
m We use ap = 3.29 which corresponds to P = 0.999(99.9%)

Cp = ap
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m The error e is:
e(’Vsp»l—) ‘ (NSp»L)(t) Coo(t)‘

m (°°(t) is an approximation for the true solution which is obtained from
a "high-precision calculation" with a very large number of particles.

m The average error over the entire simulation time is:

M

_ 1
&(Nsp, L) = M Z e(Nsp’L)(tj)v

j=t

where the M time steps t; are equidistant.
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m The zeroth moment is the particle number density:

Mo(t) = N

Vsmpl
95 10%
\
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Figure: Convergence of zeroth moment (N, x L = 65536). Solid line indicates
slope of -1.
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m The average particle volume:

V(t) = mx”“)V(Pq(t))
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Figure: Convergence of average volume (N, x L = 65536). Solid line indicates
slope of -1.
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m The average collision diameter of a particle:

Du(t) = T MOd(Py(1))
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Figure: Convergence of average average collision diameter (N, x L = 65536).
Solid line indicates slope of -1.
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Computational Time (s)
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Figure: Computational time for different Ngp.




Computer-generated TEM

Simulation Experiment @

(i) Before heating

1500°C

(i) Ty

1750°C

(i) Ty

Vv

Figure: TEM images generated by projecting particles onto a plane. Experimental
ues from Seto et al. (1995). e o
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m Description of a detailed population balance model.
m Numerical studies performed.

m Demonstrated feasibility of using first-principles to model complex
nanoparticle synthesis processes.
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Thank You!
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