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Trends

Computation is central to much of statistics.

Increased computational power has allowed us to analyze larger
datasets and consider more complex models for our data.

Advances in Bayesian statistics, in particular, have gone
hand-in-hand with advances in computation.

The 20th Century saw single-threaded computational power
increase exponentially.

At the beginning of the 21st Century, it looks like we will see
processors with many cores instead of processors with faster cores.

We need parallel algorithms to take advantage of emerging
technology!
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Monte Carlo Methods

Many statistical problems are computational in nature.

Here, we are primarily interested in estimating expected values:

Given a test function φ : X → R and a density π : X → R+, we want
to estimate

I def
= Eπ[φ(X)] =

∫
X

φ(x)π(x)dx

In Bayesian statistics, most quantities of interest have this form.
- for example, π(·) may represent the posterior distribution on a

parameter x

With samples {x(i)}Ni=1
iid
∼ π, the Monte Carlo estimate is

ÎMC
def
=

1
N

N∑
i=1

φ(x(i))

Unfortunately, we often have no way of sampling according to π
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Two General Approaches to Sampling

1. Construct an ergodic, π-stationary Markov chain sequentially
(MCMC).

Once the chain has converged, use the dependent samples to
estimate I.
Easy to formulate, but the rate of convergence is often an issue.

2. Sample according to some other density γ and weight the samples
accordingly (Importance Sampling).

Use the weighted samples to estimate I:

ÎIS
def
=

N∑
i=1

W (i)φ(x(i)),W (i) =
w(x(i))∑N

j=1 w(x(j))
and w(x(i)) =

π∗(x(i))

γ∗(x(i))

Simple conceptually, but it is difficult to come up with γ such that the
asymptotic variance C(φ, π, γ)/N is reasonable.
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Parallel Computation in Bayesian Statistics

Parallel computation is not new to statistics.

Many algorithms are trivially parallelizable on clusters or distributed
systems.

The focus in this talk is on a different architecture that provides a
number of distinct advantages.

In particular, processors share both memory and instructions.
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Graphics Cards Characteristics: eg. NVIDIA GTX 280

30 multiprocessors, each can support 1024 active threads.
- each multiprocessor has 8 ALU’s ≈ 240 processors per card
- you can think of a thread as being executed by a virtual processor

1GB of very fast on-card memory (low latency and high bandwidth).

Relatively inexpensive at around £200.

Easy to install.

Dedicated and local.

Can be more energy-efficient than a cluster.

Becoming easier to program.
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View of the link between host and graphics card

memory memory

CPU cores GPU cores

host graphics card

Figure: Link between host and graphics card. The thicker lines represent higher
data bandwidth while the squares represent processor cores.
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What’s The Catch?

GPUs have devote more transistors to arithmetic logic units and less
to caches and flow control.

Less general purpose.
Effective with data-parallel computation with high arithmetic intensity.
Architecture is known as Single Instruction, Multiple Data (SIMD).

We use NVIDIA cards with CUDA, their interface to compliant
graphics cards.

An extension of the C programming language.
- ≈ 4 weeks take up time

Users code ‘kernels’, which are executed in parallel on the GPU based
on a unique thread identifier.
Further conditional branching is possible, but hurts performance.
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What is SIMD?

Single Instruction, Multiple Data.

Several processors share flow control, ie. one controller tells all
processors to execute the same instruction.

This means that algorithms must exhibit instruction-level parallelism!

Typically this architecture is exploited by algorithms in which we
compute the same function for many pieces of data.
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Example of C-like Syntax

Kernel:

__global__ void importance_sample(int N, float* d_array,
float* d_array_out) {
// thread id = threads per block * block id + thread id within block
const int tid = blockDim.x * blockIdx.x + threadIdx.x;
// total number of threads = threads per block * number of blocks
const int tt = blockDim.x * gridDim.x;
int i;
float w, x;
for (i = tid; i < N; i += tt) {

x = d_array[i];
w = target_pdf(x) / proposal_pdf(x);
d_array_out[i] = phi(x) * w;

}
}

Calling the kernel in host code:

...
importance_sample<<<64,128>>>(N, d_array, d_array_out);
...
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Taking Advantage

We sought to investigate methods amenable to computation on this
architecture.
Two such methods are from the class of population-based Monte
Carlo methods

Population-based MCMC
Sequential Monte Carlo
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Population-Based Monte Carlo Methods

A class of Monte Carlo methods that is particularly well-suited to
parallelization in shared memory systems.

Population-based methods include SMC samplers, particle filters
and population-based MCMC.

The idea in all of these is to use a collection of samples generated at
each iteration of an algorithm to approximate an artificially
constructed distribution.

We introduce auxiliary distributions which aid in the sampling of
some complex target density π(·)

We will focus on these today but many other applications of GPUs in
stochastic simulation are possible.
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Example 1: Mixture Model

Let y = y1:m be a vector of i.i.d. observations where yj ∈ R for
j ∈ {1, . . . ,m}

Univariate Gaussian mixture model with k components (f is
Gaussian pdf):

p(y|µ1:k , σ1:k ,w1:k−1) =
m∏

j=1

k∑
i=1

wi f(yj |µi , σi)

For simplicity, assume k = 4, wi = w = 0.25, σi = σ = 0.55,
i ∈ {1, . . . , 4} are known and let p(µ1:k ) denote the uniform density
on [−10, 10]k .

Invariance of the posterior to permutations of the labels of the
parameters gives it k ! = 24 symmetric modes:

p(µ|y) ∝ p(y|µ)I(µ ∈ [−10, 10]4)
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Mixture Model Density

Figure: p(y |µ1:4, σ)
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What the posterior looks like (marginally)

We simulate m = 100 data points with µ = (−3, 0, 3, 6)T .

Figure: Marginal posterior density p(µ1:2|y) on [−10, 10]2
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Population-Based MCMC

First note that conventional Metropolis-Hastings random walk
MCMC on π(µ) = p(µ|y) doesn’t converge.

In population-based MCMC, we do MCMC on an extended target
distribution π̄

π̄(µ1:M)
def
=

M∏
i=1

πi(µi)

For this example, we choose πi(µi) = π(µi)
βi and βi = (i/M)2.

µ1:M−1 are auxiliary variables.

All moves must leave π̄ invariant.

We parallelize across chains.

Both single chain moves and interactions between chains can be
done in parallel.
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Population-Based MCMC Details

There are two types of moves:
1. In parallel, each chain i performs an MCMC move targetting πi .
2. In parallel, adjacent chains i and i + 1 perform an MCMC ‘exchange’

move targetting πiπi+1.

A simple exchange move at time n proposes to swap the values of

the two chains and has acceptance probability min{1,
πi(x

(n)
i+1)πi+1(x

(n)
i )

πi(x
(n)
i )πi+1(x

(n)
i+1)
}.

In order to ensure (indirect) communication between all the chains,
we pick the exchange partners at each time with equal probability
from {{1, 2}, . . . , {M − 1,M}} and {{2, 3}, . . . , {M − 2,M − 1}}.

Anthony Lee Massively Parallel Population-Based Monte Carlo Methods 21/ 38



Comp. Statistics GPUs Mixture Model Stochastic Volatility Remarks Population-Based MCMC Sequential Monte Carlo Samplers

Visualizing the Auxiliary Distributions I

(a) β = 0 (b) β = 0.001

(c) β = 0.01 (d) β = 0.1

Figure: Marginal posterior density p(µ1:2|y)β on [−10, 10]2

Anthony Lee Massively Parallel Population-Based Monte Carlo Methods 22/ 38



Comp. Statistics GPUs Mixture Model Stochastic Volatility Remarks Population-Based MCMC Sequential Monte Carlo Samplers

Visualizing the Auxiliary Distributions II

(a) β = 0.2 (b) β = 0.5

(c) β = 1

Figure: Marginal posterior density p(µ1:2|y)β on [−10, 10]2
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Population-Based MCMC Results

Table: Running times for the Population-Based MCMC Sampler for various
numbers of chains M. We sample N = 8192 points from chain M.

M CPU (mins) GTX280 (secs) Speedup
8 0.0166 1.083 0.9
32 0.0656 1.098 4
128 0.262 1.100 14
512 1.04 1.235 51
2048 4.16 1.427 175
8192 16.64 2.323 430
32768 66.7 7.729 527
131072 270.3 28.349 572
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Sequential Monte Carlo Samplers

Similarly, standard importance sampling won’t work with a standard
choce of γ.

SMC is a population-based extension of importance sampling.

In SMC, we introduce the same type of auxiliary distributions
πi(µi) = π(µi)

βi with βi = (i/M)2.

Whereas in population-based MCMC we sample from the joint
distribution of auxiliary variables, in SMC we construct a weighted
particle approximation of each auxiliary distribution in turn using N
particles.

Particle evolution moves are parallelizable & particle interaction via
resampling is somewhat parallelizable (but infrequent!).

Unlike population-based MCMC, we fix M and vary N since we are
parallelizing across particles.
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Sequential Monte Carlo Sampler Details

Very similar methodology to particle filters for state-space models
but applicable to static inference problems.

One can think of particle filters as a special case of an SMC sampler
with auxiliary distributions selected via data tempering.

In state-space models the importance weights are defined naturally
on a joint density but in general one must specify a backwards
transition to compute importance weights on an artificial joint density.

ψt (x1:t ) = πt (xt )
t−1∏
i=1

Li(xi+1, xi)

A simple but effective option in many cases is to use an MCMC step
that leaves πi+1 invariant when moving a particle approximating πi

and specify the backwards transition to be the ‘reverse’ MCMC step
that leaves πi invariant.
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Algorithmic Details

1. At time t = 0:
• For i = 1, . . . ,N, sample x(i)

0 ∼ η(x0)
• For i = 1, . . . ,N, evaluate the importance weights:

w0(x
(i)
0 ) ∝

π0(x
(i)
0 )

η(x(i)
0 )

2. For times t = 1, . . . ,T:
• For i = 1, . . . ,N, sample x(i)

t ∼ Kt(x
(i)
t−1, ·)

• For i = 1, . . . ,N, evaluate the importance weights:

wt(x
(i)
t ) ∝ wt−1(x

(i)
t−1)

πt(x
(i)
t )Lt−1(x

(i)
t , x

(i)
t−1)

πt−1(x
(i)
t−1)Kt(x

(i)
t−1, x

(i)
t )

• Normalize the importance weights.
• Depending on some criteria, resample the
particles. Set w(i)

t = 1
N for i = 1, . . . ,N.
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Algorithmic Details

For the special case where Lt−1 is the associated backwards kernel
for Kt , ie.

πt (xt )Lt−1(xt , xt−1) = πt (xt−1)Kt (xt−1, xt )

the incremental importance weights simplify to

wt (x
(i)
t ) ∝ wt−1(x(i)

t−1)
πt (x

(i)
t−1)

πt−1(x(i)
t−1)

The green steps are trivially parallelizable.

The normalization step is a reduction operation and a divide
operation.

The resampling step involves a parallel scan.
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Sequential Monte Carlo Sampler Results

Table: Running times for the Sequential Monte Carlo Sampler for various values
of N.

N CPU (mins) GTX280 (secs) Speedup
8192 4.44 0.597 446
16384 8.82 1.114 475
32768 17.7 2.114 502
65536 35.3 4.270 496
131072 70.6 8.075 525
262144 141 16.219 522
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Empirical Approximations to the Auxiliary Distributions

(a) β = 0.000025 (b) β = 0.02

(c) β = 0.3 (d) β = 1

Figure: Empirical approximations of the marginal posterior density p(µ1:2|y)β on
[−10, 10]2 Anthony Lee Massively Parallel Population-Based Monte Carlo Methods 30/ 38
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Sequential Monte Carlo a. k. a. Particle Filtering

We use auxiliary distributions of the form pt (x0:t |y1:t ) in SMC.

Again, a weighted particle approximation of each auxiliary
distribution is constructed using a combination of importance
sampling and resampling.

In this case, evaluation of the importance weights does not require
choosing an artificial joint density.

Essentially the same parallelization issues as before.
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Sequential Importance Sampling / Resampling (generic)

1. At time t = 0:
• For i = 1, . . . ,N, sample x̃(i)

0 ∼ q(x0|y0)
• For i = 1, . . . ,N, evaluate the importance weights:

w0(x̃
(i)
0 ) =

p(x̃(i)
0 , y0)

q(x̃(i)
0 |y0)

=
p(y0|x̃

(i)
0 )p(x̃(i)

0 )

q(x̃(i)
0 |y0)

2. For times t = 1, . . . ,T:
• For i = 1, . . . ,N, sample x̃(i)

t ∼ q(xt |yt , x
(i)
t−1) and set

x̃(i)
0:t

def
= (x(i)

0:t−1, x̃
(i)
t )

• For i = 1, . . . ,N, evaluate the importance weights:

wt(x̃
(i)
0:t) = w(i)

t−1

p(yt |x̃
(i)
t )p(x̃(i)

t |x
(i)
t−1)

q(x̃(i)
t |yt , x

(i)
t−1)

• Normalize the importance weights.
• Depending on some criteria, resample the
particles. Set w(i)

t = 1
N for i = 1, . . . ,N.
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Example 2: Factor Stochastic Volatility

xt ∈ R
K is a latent factor, yt ∈ R

M is a vector of asset values.

B is the M × K factor loading matrix.

Model:
yt ∼ N(Bft ,Ψ), Ψ

def
= diag(ψ1, . . . , ψM)

ft ∼ N(0,Ht ), Ht
def
= diag(exp(xt )

xt ∼ N(Φxt−1,U), Φ
def
= diag(φ1, . . . , φK )

We want samples from p(x0:T |y1:T ) given an initial distribution on x0.

This is a T × K -dimensional problem!
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FSV Results

Figure: Estimated and real values of x3 from time 0 to 200 given y1:200
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Particle Filtering Results

Table: Running time (in seconds) for the particle filter for various values of N.

N CPU GTX280 Speedup
8192 2.167 0.082 26
16384 4.325 0.144 30
32768 8.543 0.249 34
65536 17.425 0.465 37
131072 34.8 0.929 37

The main reasons for the decrease in speedup are
Increased space complexity of each thread.
Increased number of times we have to resample.
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Remarks

The speedups have practical significance.

Arithmetic intensity is important.

There is a roughly linear penalty for the space complexity of each
thread.

Emerging many-core technology is likely to have the same kinds of
restrictions.
There is a need for methodological attention to this model of
computation.

For example, SMC sampler methodology can be more suitable to
parallelization when the number of auxiliary distributions one wants to
introduce is not very large.

There are many other algorithms that will benefit from this
technology.

http://www.oxford-man.ox.ac.uk/gpuss
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