Activity analysis from video

David Hogg University of Leeds

Mathematical Challenges in Computer Vision, Warwick, March 2009

Introduction

Understanding our world requires knowledge about a huge variety of objects and activities.

How is this knowledge acquired and used?

Summary of talk:

- Learning about objects
- · Learning about activities
- · Dealing with visual ambiguity in recognising activities

Object recognition

Challenge posed by Heinrich Bulthoff, MPI

How many chairs are there in the picture?

Obtaining labelled examples

the world wide web TV and radio shows CCTV networks

Everingham et al., BMVC 2006

Learning without labels

Given a set of unlabelled images $\{I_i\}$

Cluster co-occurring visual words into classes, for example:

- using spectral clustering on an adjacency graph between images (*Graumann and Darrell, CVPR 2006*);
- through modelling each histogram as a mixture of 'category' histograms (Latent Dirichlet Allocation LDA, Latent Semantic Analysis LSA)

(e.g. Sivic, Russell, Efros, Zisserman, and Freeman., ICCV 2005)

Building the temporal template

Aligning to the model template

Demo

Activity discovery challenge

To infer the principles of the game of cricket by visual observation alone

Learning a layered model of activities without labels Visual words: Quantised position and flow direction of 'change pixels' Atomic activities: Co-occurring visual words (in short clips) Interactions: Co-occurring atomic activities (in short clips) Wang, Ma and Grimson, TPAMI 31(3) 2009

Learning activities Sridhar, et al., ECAI 2008

Overview of method

- Detect and track objects in video
- Represent spatio-temporal relationships as a labelled graph
- Find maximal frequent isomorphic subgraphs – output as discovered activities

Object detection and tracking

Colour-based segmentation Careful to minimise (but not eliminate) occlusions Lots of spurious blobs

Temporal relations and the spatio-temporal graph Dealing with parallel activities and varying sequential order of the spatial configurations that make up an activity Before I Before Y Before Einish Equa X Neets Y Starts Before E11 Finish Starts Overlaps Before I Starts Y After Before Before X During Y Meet Meet Overlaps Before Meet X Finishes Y E10 Finis inish X Equal Y Before During Allen's relations (Allen, CACM 1983) Meet E9

Inducing a functional object taxonomy

Form Boolean matrix of the role played by objects in each event class (+ partially generalised classes)

Event classes

Compress the rows (pattern for each object) using PCA Obtain object taxonomy by hierarchical-clustering of the compressed rows

Dealing with detection errors and ambiguity

Radar tracking

Dealing with

- · missed detections
- · spurious detections

Long history from radar literature and elsewhere:

Ingemar Cox, A Review of Statistical Data Association Techniques for Motion Correspondence, International Journal of Computer Vision, vol. 10, pp. 53-66, 1993.

Standard approach

Find the optimal global explanation:

Given a set of noisy observations Y over a period of time.

An explanation is a partition of these observations $\mathbf{W} = \{ \mathbf{t}_0, \mathbf{t}_1, \dots \mathbf{t}_K \}$ where each part defines a track and \mathbf{t}_0 contains all spurious observations (false alarms)

Seek $\operatorname{argmax}(p(\boldsymbol{w}|Y))$

Formulation from Oh, Russell and Sastry, CDC-04

Defining $p(\mathbf{w}|Y)$

Assumptions:

(1) each track behaves as a stochastic linear system:

$$x_{t_{i+1}} = Ax_{t_i} + \boldsymbol{h}$$

(note that matrix A and noise term scaled according to the width of interval

$$y_{t_i} = Cx_{t_i} + \boldsymbol{u}$$

- (2) new objects and false alarms occur as Poisson processes
- (3) objects disappear and are undetected with fixed probability at each time-step

For a given W at time-step t, assume:

- e, objects persist from t-1
- a_{i} new objects appear
- z_{i} objects disappear
- d_{i} objects detected
- f_{i} false alarms
- $u_t = e_t z_t + a_t d_t$ objects undetected

Integer Programming Morefield, IEEE-TAC 1977

 Create a large set of feasible tracks F (a covering), many of which will be inconsistent with one another.

Seek the optimal partition from a subset of these tracks + false alarms

$$\underset{\mathbf{w} \in \mathcal{O}}{\operatorname{argmax}} (p(\mathbf{w} \mid Y))$$

Uses a trained pedestrian detector operating on each frame

from http://www.vision.ee.ethz.ch/~bleibe/index.html

Multiple - Hypothesis Tree (MHT) Reid, IEEE-TAC 1979

- Iteratively extend partial tracks at each time-step
- · Pursue multiple hypotheses where there is ambiguity
- Prune unlikely hypotheses to keep search tractable

Multiple-Hypothesis Tree (MHT) Reid, IEEE-TAC 1979

- · Iteratively extend partial tracks at each time-step
- · Pursue multiple hypotheses where there is ambiguity
- Prune unlikely hypotheses to keep search tractable

Multiple - Hypothesis Tree (MHT) Reid, IEEE-TAC 1979

- Iteratively extend partial tracks at each time-step
- · Pursue multiple hypotheses where there is ambiguity
- Prune unlikely hypotheses to keep search tractable

Markov Chain Monte Carlo Data Association Oh, Russell, and Sastry, CDC-04, 2004

• Draw samples from posterior $p(\mathbf{w}|Y)$ and select the maximum. Use Markov Chain Monte Carlo (MCMC) to do this efficiently.

initialise \mathbf{W} repeat many times Sample w' from proposal distribution $q(\mathbf{W}, \mathbf{W'})$ Replace w by w' with (acceptance) probability: $A(\mathbf{W}, \mathbf{W'}) = \min \left(1, \frac{p(\mathbf{W'} \mid Y)q(\mathbf{W'}, \mathbf{W})}{p(\mathbf{W} \mid Y)q(\mathbf{W}, \mathbf{W'})}\right)$ end

Introduction to MCMC

MCMC moves

From Oh, Russell and Sastry, CDC-04, 2004

Detecting people parking and collecting bikes Damen & Hogg, BMVC 2007

Task: linking people dropping-off and picking-up bikes

Method

- Track people (+/- bikes) entering and leaving the rack area
- Detect new clusters of dropped & picked bikes each time the rack area becomes empty
- List the possible new drop, pick and pass-through events, assuming people entering the rack, drop or pick no more than one bike
- Find optimal set of linked drop and pick events

 $\underset{w}{\operatorname{arg\,max}}(p(\boldsymbol{w}|Y))$

Defining $p(\mathbf{w} | Y)$

Based on:

- Change in the area of person-blobs between entering and leaving rack
- · Proximity of people to bike clusters
- · Similarity of bike clusters between drop and pick
- Prior probabilities for the different events:

Likelihood of a person dropping, picking or passing through

Dataset

Results

Results

Number of drops, picks, drop-picks	Greedy		МСМС		SA-MCMC	
	log(p)	Accuracy	log(p)	Accuracy	log(p)	Accuracy
24,20,20	102.3	72.41	57.9	91.38	57.9	91.38
11,12,11	23.5	85.19	4.6	100.00	4.6	100.00
20,19,18	609.7	58.59	429.0	88.28	422.3	89.84
20,10,20	6272.7	73.81	6077.3	83.33	6083.7	87.30
14,13,14	5034.5	89.05	4944.7	94.89	4937.1	94.16
28,17,14	860.4	66.07	815.8	71.43	808.4	76.79
39,41,22	934.4	45.69	681.2	48.22	658.23	51.78