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h-PRINCIPLE AND RIGIDITY FOR C1,α ISOMETRIC

EMBEDDINGS

SERGIO CONTI, CAMILLO DE LELLIS, AND LÁSZLÓ SZÉKELYHIDI JR.

Abstract. In this paper we study the embedding of Riemannian man-
ifolds in low codimension. The well-known result of Nash and Kuiper
[21, 20] says that any short embedding in codimension one can be
uniformly approximated by C1 isometric embeddings. This statement
clearly cannot be true for C2 embeddings in general, due to the classical
rigidity in the Weyl problem. In fact Borisov extended the latter to
embeddings of class C1,α with α > 2/3 in [3, 5]. On the other hand he
announced in [6] that the Nash-Kuiper statement can be extended to
local C1,α embeddings with α < (1+n+n2)−1, where n is the dimension
of the manifold, provided the metric is analytic. Subsequently a proof
of the 2-dimensional case appeared in [7]. In this paper we provide an-
alytic proofs of all these statements, for general dimension and general
metric.

1. Introduction

Let Mn be a smooth compact manifold of dimension n ≥ 2, equipped
with a Riemannian metric g. An isometric immersion of (Mn, g) into R

m

is a map u ∈ C1(Mn; Rm) such that the induced metric agrees with g. In
local coordinates this amounts to the system

∂iu · ∂ju = gij (1)

consisting of n(n+ 1)/2 equations in m unknowns. If in addition u is injec-
tive, it is an isometric embedding. Assume for the moment that g ∈ C∞.
The two classical theorems concerning the solvability of this system are:

(A) if m ≥ (n + 2)(n + 3)/2, then any short embedding can be uni-
formly approximated by isometric embeddings of class C∞ (Nash
[22], Gromov [16]);

(B) if m ≥ n + 1, then any short embedding can be uniformly approxi-
mated by isometric embeddings of class C1 (Nash [21], Kuiper [20]).

Recall that a short embedding is an injective map u : Mn → R
m such that

the metric induced on M by u is shorter than g. In coordinates this means
that (∂iu · ∂ju) ≤ (gij) in the sense of quadratic forms. Thus, (A) and
(B) are not merely existence theorems, they show that there exists a huge
(essentially C0-dense) set of solutions. This type of abundance of solutions is
a central aspect of Gromov’s h-principle, for which the isometric embedding
problem is a primary example (see [16, 12]).
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Naively, this type of flexibility could be expected for high codimension
as in (A), since then there are many more unknowns than equations in (1).
The h-principle for C1 isometric embeddings is on the other hand rather
striking, especially when compared to the classical rigidity result concerning
the Weyl problem: if (S2, g) is a compact Riemannian surface with positive
Gauss curvature and u ∈ C2 is an isometric immersion into R

3, then u is
uniquely determined up to a rigid motion ([8, 17], see also [30] for a thorough
discussion). Thus it is clear that isometric immersions have a completely
different qualitative behaviour at low and high regularity (i.e. below and
above C2).

This qualitative difference is further highlighted by the following optimal
mapping properties in the case when m is allowed to be sufficiently high:

(C) if g ∈ C l,β with l+β > 2 and m is sufficiently large, then there exists
a solution u ∈ C l,β (Nash [22], Jacobowitz [18]);

(D) if g ∈ C l,β with 0 < l + β < 2 and m is sufficiently large, then there
exists a solution u ∈ C1,α with α < (l + β)/2 (Källen [19]).

These results are optimal in the sense that in both cases there exists g ∈ C l,β

to which no solution u has better regularity than stated.
The techniques are also different: whereas the proofs of (A) and (C)

rely on the Nash-Moser implicit function theorem, the proofs of (B) and
(D) involve an iteration technique called convex integration. This technique
was developed by Gromov [15, 16] into a very powerful tool to prove the
h-principle in a wide variety of geometric problems (see also [12, 32]). In
general the regularity of solutions obtained using convex integration agrees
with the highest derivatives appearing in the equations (see [31]). Thus, an
interesting question raised in [16] p219 is how one could extend the methods
to produce more regular solutions. Essentially the same question, in the
case of isometric embeddings, is also mentioned in [33] (see Problem 27).
For high codimension this is resolved in (D).

Our primary aim in this paper is to consider the low codimension case, i.e.
when m = n + 1. This range was first considered by Borisov. In [6] it was
announced that if g is analytic, then the h-principle holds for local isometric
embeddings u ∈ C1,α for α < 1

1+n+n2 . A proof for the case n = 2 appeared

in [7]. Our main result is to provide a proof of the h-principle in this range
for g which is not necessarily analytic and general n ≥ 2 (see Section 1.1
for precise statements). Moreover, at least for l = 0 and sufficiently small
β > 0, we recover the optimal mapping range corresponding to (D). Thus,
there seems to be a direct trade-off between codimension and regularity.

The novelty of our approach, compared to Borisov’s, is that only a finite
number of derivatives need to be controlled. This is achieved by introducing
a smoothing operator in the iteration step, analogous to the device of Nash
used to overcome the loss of derivative problem in [22]. A similar method
was used by Källen in [19]. See Section 3 for an overview of the iteration
procedure. In addition, the errors coming from the smoothing operator are
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controlled by using certain commutator estimates on convolutions. These
estimates are in Section 2.

Concerning rigidity in the Weyl problem, it is known from the work of
Pogorelov and Sabitov that

(1) closed C1 surfaces with positive Gauss curvature and bounded ex-
trinsic curvature are convex (see [25]);

(2) closed convex surfaces are rigid in the sense that isometric immer-
sions are unique up to rigid motion [24];

(3) a convex surface with metric g ∈ C l,β with l ≥ 2, 0 < β < 1 and
positive curvature is of class C l,β (see [25, 26]).

Thus, extending the rigidity in the Weyl problem to C1,α isometric immer-
sions can be reduced to showing that the image of the surface has bounded
extrinsic curvature (for definitions see Section 7). Using geometric argu-
ments, in a series of papers [1, 2, 3, 4, 5] Borisov proved that for α > 2/3
the image of surfaces with positive Gauss curvature has indeed bounded
extrinsic curvature. Consequently, rigidity holds in this range and in par-
ticular 2/3 is an upper bound on the range of Hölder exponents that can be
reached using convex integration.

Using the commutator estimates from Section 2, at the end of this paper
(in Section 7) we provide a short and self-consistent analytic proof of this
result.

1.1. The h–principle for small exponents. In this subsection we state
our main existence results for C1,α isometric immersions. One is of local
nature, whereas the second is global. Note that for the local result the
exponent matches the one announced in [6]. In what follows, we denote by
sym +

n the cone of positive definite symmetric n × n matrices. Moreover,
given an immersion u : Mn → R

m, we denote by u♯e the pullback of the
standard Euclidean metric through u, so that in local coordinates

(u♯e)ij = ∂iu · ∂ju.

Finally, let

n∗ =
n(n+ 1)

2
.

Theorem 1.1 (Local existence). Let n ∈ N and g0 ∈ sym +
n . There exists

r > 0 such that the following holds for any smooth bounded open set Ω ⊂ R
n

and any Riemannian metric g ∈ Cβ(Ω) with β > 0 and ‖g − g0‖C0 ≤ r.
There exists a constant δ0 > 0 such that, if u ∈ C2(Ω; Rn+1) and α satisfy

‖u♯e− g‖0 ≤ δ20 and 0 < α < min

{
1

1 + 2n∗
,
β

2

}

,

then there exists a map v ∈ C1,α(Ω; Rn+1) with

v♯e = g and ‖v − u‖C1 ≤ C ‖u♯e− g‖1/2
C0 .



4 SERGIO CONTI, CAMILLO DE LELLIS, AND LÁSZLÓ SZÉKELYHIDI JR.

Corollary 1.2 (Local h-principle). Let n, g0,Ω, g, α be as in Theorem 1.1.
Given any short map u ∈ C1(Ω; Rn+1) and any ε > 0 there exists an iso-
metric immersion v ∈ C1,α(Ω; Rn+1) with ‖u− v‖C0 ≤ ε.

Theorem 1.3 (Global existence). Let Mn be a smooth, compact manifold
with a Riemannian metric g ∈ Cβ(M) and let m ≥ n + 1. There is a
constant δ0 > 0 such that, if u ∈ C2(M ; Rm) and α satisfy

‖u♯e− g‖C0 ≤ δ20 and 0 < α < min

{
1

1 + 2(n + 1)n∗
,
β

2

}

,

then there exists a map v ∈ C1,α(M ; Rm) with

v♯e = g and ‖v − u‖C1 ≤ C‖u♯e− g‖1/2
C0 .

Corollary 1.4 (Global h–principle). Let (Mn, g) and α be as in Theorem
1.3. Given any short map u ∈ C1(M ; Rm) with m ≥ n + 1 and any ε > 0
there exists an isometric immersion v ∈ C1,α(M ; Rm) with ‖u− v‖C0 ≤ ε.

Remark 1.5. In both corollaries, if u is an embedding, then there exists a
corresponding v which in addition is an embedding.

1.2. Rigidity for large exponents. The following is a crucial estimate on
the metric pulled back by standard regularizations of a given map.

Proposition 1.6 (Quadratic estimate). Let Ω ⊂ R
n be an open set, v ∈

C1,α(Ω,Rm) with v♯e ∈ C2 and ϕ ∈ C∞
c (Rn) a standard symmetric convo-

lution kernel. Then, for every compact set K ⊂ Ω,

‖(v ∗ ϕℓ)
♯e− v♯e‖C1(K) = O(ℓ2α−1). (2)

In particular, fix a map u and a kernel ϕ satisfying the assumptions of the
Proposition with α > 1/2. Then the Christoffel symbols of (v∗ϕℓ)

♯e converge
to those of v♯e. This corresponds to the results of Borisov in [1, 2], and hints

at the absence of h–principle for C1, 1
2
+ε immersions. Relying mainly on this

estimate we can give a fairly short proof of Borisov’s theorem:

Theorem 1.7. Let (M2, g) be a surface with C2 metric and positive Gauss
curvature, and let u ∈ C1,α(M2; R3) be an isometric immersion with α >
2/3. Then u(M) is a surface of bounded extrinsic curvature.

This leads to the following corollaries, which follow from the work of
Pogorelov and Sabitov.

Corollary 1.8. Let (S2, g) be a closed surface with g ∈ C2 and positive
Gauss curvature, and let u ∈ C1,α(S2; R3) be an isometric immersion with
α > 2/3. Then, u(S2) is the boundary of a bounded convex set and any two
such images are congruent. In particular if the Gauss curvature is constant,
then u(S2) is the boundary of a ball Br(x).
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Corollary 1.9. Let Ω ⊂ R
2 be open and g ∈ C2,β a metric on Ω with

positive Gauss curvature. Let u ∈ C1,α(Ω; R3) be an isometric immersion
with α > 2/3. Then u(Ω) is C2,β and locally uniformly convex (that is, for
every x ∈ Ω there exists a neighborhood V such that u(Ω) ∩ V is the graph
of a C2,β function with positive definite second derivative).

1.3. Connections to the Euler equations. There is an interesting anal-
ogy between isometric immersions in low codimension (in particular the
Weyl problem) and the incompressible Euler equations. In [10] a method,
which is very closely related to convex integration, was introduced to con-
struct highly irregular energy-dissipating solutions of the Euler equations.
Being in conservation form, the ”expected” regularity space for convex inte-
gration for the Euler equations should be C0. This is still beyond reach, and
in [10] a weak version of convex integration was applied instead, to produce
solutions in L∞ (see also [11] for a slightly better space) and, moreover, to
show that a weak version of the h-principle holds.

Nevertheless, just like for isometric immersions, for the Euler equations
there is particular interest to go beyond C0: in [23] L. Onsager, motivated
by the phenomenon of anomalous dissipation in turbulent flows, conjectured
that there exist weak solutions of the Euler equations of class Cα with
α < 1/3 which dissipate energy, whereas for α > 1/3 the energy is conserved.
The latter was proved in [13, 9], but on the construction of energy-dissipating
weak solutions nothing is known beyond L∞ (for previous work see [27, 28,
29]). It should be mentioned that the critical exponent 1/3 is very natural -
it agrees with the scaling of the energy cascade predicted by Kolmogorov’s
theory of turbulence (see for instance [14]).

For the analogous problem for isometric immersions there does not seem
to be a universally accepted critical exponent (c.f. Problem 27 of [33]),
even though 1/2 seems likely (c.f. section 1.2 and the discussion in [7]).
In fact, the regularization and the commutator estimates used in our proof
of Proposition 1.6 and Theorem 1.7 have been inspired by (and are closely
related to) the arguments of [9].

2. Estimates on convolutions: Proof of Proposition 1.6

As usual, we denote the norm on the Hölder space Ck,α(Ω) by

‖f‖k,α := sup
x∈Ω

∑

|a|≤k

|∂af(x)| + sup
x,y∈Ω, x 6=y

∑

|a|=k

|∂af(x) − ∂af(y)|
|x− y|α .

Here k = 0, 1, 2, . . . , a = (a1, . . . , an) is a multi-index with |a| = a1 + · · ·+an

and α ∈ [0, 1[. For simplicity we will also use the abbreviation ‖f‖k = ‖f‖k,0

and ‖f‖α = ‖f‖0,α.
Recall the following interpolation inequalities for these norms:

‖f‖k,α ≤ C‖f‖λ
k1,α1

‖f‖1−λ
k2,α2

,
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where C depends on the various parameters, 0 < λ < 1 and

k + α = λ(k1 + α1) + (1 − λ)(k2 + α2).

The following estimates are well known and play a fundamental role in both
the constructions and the proof of rigidity.

Lemma 2.1. Let ϕ ∈ C∞
c (Rn) be symmetric and such that

∫
ϕ = 1. Then

for any r, s ≥ 0 and α ∈]0, 1] we have

‖f ∗ ϕℓ‖r+s ≤ Cℓ−s‖f‖r, (3)

‖f − f ∗ ϕℓ‖r ≤ Cℓ2‖f‖r+2, (4)

‖(fg) ∗ ϕℓ − (f ∗ ϕℓ)(g ∗ ϕℓ)‖r ≤ Cℓ2α−r‖f‖α‖g‖α. (5)

Proof. For any multi-indices a, b with |a| = r, |b| = s we have ∂a+b(f ∗ϕℓ) =
∂af ∗ ∂bϕℓ, hence

|∂a+b(f ∗ ϕℓ)| ≤ Csℓ
−s‖f‖r.

This proves (3).
Next, by considering the Taylor expansion of f at x we see that

f(x− y) − f(x) = f ′(x)y + rx(y),

where supx |rx(y)| ≤ C|y|2‖f‖2. Moreover, since ϕ is symmetric,
∫

ϕℓ(y)y dy = 0 .

Thus,

|f − f ∗ ϕℓ| =

∣
∣
∣
∣

∫

ϕℓ(y)(f(x− y) − f(x))dy

∣
∣
∣
∣

≤ C‖f‖2

∫

ℓ−n
∣
∣
∣ϕ

(y

ℓ

)∣
∣
∣ |y|2dy = Cℓ2‖f‖2 .

This proves (4) for the case r = 0. To obtain the estimate for general r,
repeat the same argument for the partial derivatives ∂af with |a| = r.

For the proof of estimate (5) let a be any multi-index with |a| = r. By
the product rule

∂a
[
ϕℓ ∗ (fg)−(ϕℓ ∗ f)(ϕℓ ∗ g)

]
=

=∂aϕℓ ∗ (fg) −
∑

b≤a

(
a
b

)

(∂bϕℓ ∗ f)(∂a−bϕℓ ∗ g)

=∂aϕℓ ∗ (fg) − (∂aϕℓ ∗ f)(ϕℓ ∗ g) + (ϕℓ ∗ f)(∂aϕℓ ∗ g)

−
∑

0<b<a

(
a
b

)

[∂bϕℓ ∗ (f − f(x))][∂a−bϕℓ ∗ (g − g(x))]

=∂aϕℓ ∗ [(f − f(x))(g − g(x))]

−
∑

b≤a

(
a
b

)

∂bϕℓ ∗ (f − f(x)) · ∂a−bϕℓ ∗ (g − g(x)),
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where we have used the fact that

∂aϕℓ ∗ f(x) =

{

f(x) if a = 0,

0 if a 6= 0.

Now observe that

|∂aϕℓ∗[(f − f(x))(g − g(x))]|

=

∣
∣
∣
∣

∫

∂aϕℓ(y)(f(x− y) − f(x))(g(x − y) − g(x))dy

∣
∣
∣
∣

≤
∫

|∂aϕℓ(y)||y|2αdy ‖f‖α‖g‖α = Cr ℓ
2α−r‖f‖α‖g‖α.

Similarly, all the terms in the sum over b obey the same estimate. This
concludes the proof of (5). �

Proof of Proposition 1.6. Set g := v♯e and gℓ := (v ∗ ϕℓ)
♯e. We have

‖gℓ
ij − gij‖1 ≤ ‖gℓ

ij − gij ∗ ϕℓ‖1 + ‖gij ∗ ϕℓ − gij‖1 .

The first term can be written as

‖gℓ
ij − gij ∗ ϕℓ‖1 = ‖∂jv ∗ ϕℓ · ∂iv ∗ ϕℓ − (∂jv · ∂iv) ∗ ϕℓ‖1 ,

so that (5) applies, to yield the bound ℓ2α−1‖v‖2
1,α. For the second term (4)

gives the bound ℓ‖g‖2. Combining these two we obtain

‖gℓ
ij − gij‖k ≤ C(ℓ2α−1‖v‖2

1,α + ℓ‖g‖2) ,

from which (2) readily follows. �

3. h–principle: The general scheme

The general scheme of our construction follows the method of Nash and
Kuiper [21, 20]. For convenience of the reader we sketch this scheme in this
section. Assume for simplicity that g is smooth.

The existence theorems are based on an iteration of stages, and each stage
consists of several steps. The purpose of a stage is to correct the error g−u♯e.
In order to achieve this correction, the error is decomposed into a sum of
primitive metrics as

g − u♯e =

n∗∑

k=1

a2
kνk ⊗ νk (locally)

g − u♯e =
∑

j

n∗∑

k=1

(ψjaj,k)
2νj,k ⊗ νj,k (globally)

The natural estimates associated with this decomposition are

‖ak‖0 ∼ ‖g − u♯e‖1/2
0

‖ak‖N+1 ∼ ‖u‖N+2 for N = 0, 1, 2, . . . .
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A step then involves adding one primitive metric. In other words the goal
of a step is the metric change

u♯e 7→ u♯e+ a2ν ⊗ ν.

Nash used spiralling perturbations (also known as the ”Nash twist”) to
achieve this; for the codimension one case Kuiper replaced the spirals by
corrugations. Using the same ansatz (see formula (20)) one easily checks
that addition of a primitive metric is possible with the following estimates
(see Proposition 4.1):

C0-error in the metric ∼ ‖g − u♯e‖0
1

K

increase of C1-norm of u ∼ ‖g − u♯e‖1/2
0

increase of C2-norm of u ∼ ‖u‖2 K

for any K ≥ 1. Observe that the first two of these estimates is essentially
the same as in [21, 20]. Furthermore, the third estimate is only valid modulo
a ”loss of derivative” (see Remark 4.2).

The low codimension forces the steps to be performed serially. This is in
contrast with the method of Källen in [19], where the whole stage can be
performed in one step due to the high codimension. Thus the number of steps
in a stage equals the number of primitive metrics in the above decomposition
which interact. This equals n∗ for the local construction and (n + 1)n∗ for
the global construction. To deal with the ”loss of derivative” problem we
mollify the map u at the start of every stage, in a similar manner as is
done in a Nash-Moser iteration. Because of the quadratic estimate (5) in
Lemma 2.1 there will be no additional error coming from the mollification.
Therefore, iterating the estimates for one step over a single stage (that is,
over N∗ steps) leads to

C0-error in the metric ∼ ‖g − u♯e‖0
1

K

increase of C1-norm of u ∼ ‖g − u♯e‖1/2
0

increase of C2-norm of u ∼ ‖u‖2 K
N∗

With these estimates, iterating over the stages leads to exponential conver-
gence of the metric error, leading to a controlled growth of the C1 norm and
an exponential growth of the C2 norm of the map. In particular, interpo-
lating between these two norms leads to convergence in C1,α for α < 1

1+2N∗

.

4. h–principle: Construction step

The main step of our construction is given by the following proposition.

Proposition 4.1 (Construction step). Let Ω ⊂ R
n, ν ∈ Sn−1 and N ∈ N.

Let u ∈ CN+2(Ω; Rn+1) and a ∈ CN+1(Ω). Assume that γ ≥ 1 and ℓ, δ ≤ 1
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are constants such that

1

γ
I ≤ u♯e ≤ γI in Ω, (6)

‖a‖0 ≤ δ, (7)

‖u‖k+2 + ‖a‖k+1 ≤ δℓ−(k+1) for k = 0, 1, . . . , N. (8)

Then, for any

λ ≥ ℓ−1 (9)

there exists v ∈ CN+1(Ω; Rn+1) such that

∥
∥
∥v♯e− (u♯e+ a2ν ⊗ ν)

∥
∥
∥

0
≤ C

δ2

λℓ
(10)

and

‖u− v‖j ≤ C δ λj−1 for j = 0, 1, . . . , N + 1, (11)

where C is a constant depending only on n,N and γ.

Remark 4.2. Observe that if (11) would hold for j = N + 2, then the
conclusion of the proposition would say essentially (with N = 0) that the
equation

v♯e = u♯e+ a2ν ⊗ ν

admits approximate solutions in C2 with estimates

‖v♯e− (u♯e+ a2ν ⊗ ν)‖0 ≤ C δ2
1

K
,

‖u− v‖2 ≤ C ‖u‖2 K.

Here K = λℓ ≥ 1. The fact that (11) holds only for j ≤ N + 1 amounts to
a ”loss of derivative” in the estimate.

In the higher codimension case we need an additional technical assump-
tion in order to carry on the same result. As usual the oscillation osc u of a
vector-valued map u is defined as supx,y |u(x) − u(y)|.
Proposition 4.3 (Step in higher codim.). Let m,n,N ∈ N with n,N ≥ 1
and m ≥ n + 1. Then there exist a constant η0 > 0 with the following
property. Let Ω, g, a, ν and u ∈ C2+N (Ω,Rm) satisfy the assumptions of
Proposition 4.1 and assume in addition osc∇u ≤ η0. Then there exists a
map v ∈ C1+N (Ω,Rm) satisfying the same conclusion as in Proposition 4.1.

4.1. Basic building block. In order to prove the Proposition we need the
following lemma. The function Γ will be our ”corrugation”.

Lemma 4.4. There exists δ∗ > 0 and a function Γ ∈ C∞([0, δ∗] × R; R2)
with Γ(δ, t+ 2π) = Γ(δ, t) and having the following properties:

|∂tΓ(s, t) + e1|2 = 1 + s2 , (12)

|∂s∂
k
t Γ1(s, t)| + |∂k

t Γ(s, t)| ≤ Cks for k ≥ 0. (13)
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Proof. Define H : R
2 → R

2 as H(τ, t) = (cos(τ sin t), sin(τ sin t)). Then
∫ 2π

0
H2(τ, t) dt =

∫ 2π

0
sin(τ sin t) dt =

∫ π

−π
sin(τ sin t) dt = 0 (14)

by the symmetry of the sine function. Set

J0(τ) :=
1

2π

∫ 2π

0
H1(τ, t) dt =

1

2π

∫ 2π

0
cos(τ sin t) dt . (15)

Note that J0 ∈ C∞(R) with J0(0) = 1, J ′
0(0) = 0 and J ′′(0) < 0. We claim

that there exists δ > 0 and a function f ∈ C∞(−δ, δ) such that f(0) = 0
and

J0(f(s)) =
1√

1 + s2
. (16)

This is a consequence of the implicit function theorem. To see this, set

F (s, r) = J0(r
1/2) − (1 + s2)−1/2.

Then F ∈ C∞(R2). Indeed, since the Taylor expansion of cos x contains

only even powers of x, J0(r
1/2) is obviously analytic. Moreover,

J0(r
1/2) =

1

2π

∫ 2π

0

(

1 − r

2
sin2 t

)

dt+O(r2).

In particular ∂rF (0, 0) = −1/4. Since also F (0, 0) = 0, the implicit funcion
theorem yields δ > 0 and g ∈ C∞(−δ, δ) such that g(0) = 0 and

F (s, g(s)) = 0.

Next, observe that ∂sF (0, 0) = 0 and ∂2
sF (0, 0) = 1. Therefore

g′(0) = 0 and g′′(0) = 4.

This implies that f(s) := g(s)1/2 is also a smooth function, with

f(0) = 0 and f ′(0) =
√

2,

thus proving our claim.
Having found f ∈ C∞(−δ, δ) with f(0) = 0 and (16), we finally set

Γ(s, t) :=

∫ t

0

[√

1 + s2H(f(s), t′) − e1

]

dt′ .

By construction |∂tΓ(s, t) + e1|2 = 1 + s2. Moreover

Γ(s, t+ 2π) − Γ(s, t) =

∫ t+2π

t

[√

1 + s2H(f(s), t′) − e1

]

dt′

=
√

1 + s2
∫ 2π

0
H(f(s), t′) dt′ − 2πe1

(14)(15)
= 2πe1

[√

1 + s2J0(f(s)) − 1
]

(16)
= 0.

Thus the function Γ is 2π-periodic in the second argument.
We now come to the estimates. Fix δ∗ < δ. Then Γ ∈ C([0, δ∗] × R; R2),

and since it is periodic in the second variable, Γ and all its partial derivatives
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are uniformly bounded. Straightforward computations show that for any
k = 0, 1, . . .

∂k
t Γ(0, t) = 0 and ∂s∂

k
t Γ1(0, t) = 0 for all t.

Hence, integrating in s, we conclude that

|∂k
t Γ(s, t)| ≤ s ‖∂s∂

k
t Γ‖0 ,

|∂s∂
k
t Γ1(s, t)| ≤ s ‖∂2

s∂
k
t Γ1‖0,

which give the desired estimates.
�

4.2. Proof of Proposition 4.1. Throughout the proof the letter C will
denote a constant, whose value might change from line to line, but otherwise
depends only on n,N and γ. Fix a choice of orthonormal coordinates in R

n.
In these coordinates the pullback metric can be written as (u♯e)ij = ∂iu ·∂ju
or, denoting the matrix differential of u by ∇u = (∂ju

i)ij, as

u♯e = ∇uT∇u.
From now on we will work with this notation.

Let

ξ = ∇u · (∇uT∇u)−1 · ν, ζ = ∂1u ∧ ∂2u ∧ · · · ∧ ∂nu .

Because of (6) the vectorfields ξ, ζ are well-defined and satisfy

1

C
≤ |ξ(x)|, |ζ(x)| ≤ C for x ∈ Ω (17)

with some C ≥ 1. Now let

ξ1 =
ξ

|ξ|2 , ξ2 =
ζ

|ξ||ζ| , Ψ(x) = ξ1(x) ⊗ e1 + ξ2(x) ⊗ e2,

and
ã = |ξ|a.

Then

∇uT Ψ =
1

|ξ|2 ν ⊗ e1, ΨT Ψ =
1

|ξ|2 I, (18)

and

‖Ψ‖j ≤ C‖u‖j+1,

‖ã‖j ≤ C(‖a‖j + ‖a‖0‖u‖j+1),
(19)

for j = 0, 1, . . . , N + 1. Finally, let

v(x) := u(x) +
1

λ
Ψ(x)Γ

(
ã(x), λx · ν

)
, (20)

where Γ = Γ(s, t) is the function constructed in Lemma 4.4.

Proof of (10). First we compute ∇vT∇v. We have

∇v = ∇u+ Ψ · ∂tΓ ⊗ ν
︸ ︷︷ ︸

A

+λ−1 Ψ · ∂sΓ ⊗∇ã
︸ ︷︷ ︸

E1

+λ−1 ∇Ψ · Γ
︸ ︷︷ ︸

E2

. (21)
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Using the notation sym(A) = (A+AT )/2 one has

∇vT∇v = ATA+ 2sym(ATE1 +ATE2) + (E1 + E2)
T (E1 + E2).

Using (18) and (12):

ATA = ∇uT∇u+
1

|ξ|2 (2∂tΓ1 + |∂tΓ|2)ν ⊗ ν

= ∇uT∇u+
1

|ξ|2 ã
2ν ⊗ ν = ∇uT∇u+ a2ν ⊗ ν.

Next we estimate the error terms. First of all

ATE1 =
1

λ
(∇uT Ψ) (∂sΓ ⊗∇ã) +

1

λ
(ν ⊗ ∂tΓ)(ΨT Ψ)(∂sΓ ⊗∇ã)

=
1

λ|ξ|2 (∂sΓ1 + ∂tΓ · ∂sΓ) (ν ⊗∇ã).

Note that (13) together with (19) implies:

‖Γ‖0, ‖∂tΓ‖0, ‖∂sΓ1‖0 ≤ C ‖a‖0.

Therefore

‖sym(ATE1)‖0 ≤ C

λ
‖a‖0‖ã‖1 ≤ C

δ2

λℓ
,

and similarly

‖sym(ATE2)‖0 ≤ C

λ
‖a‖0‖u‖2 ≤ C

δ2

λℓ
.

Finally,

‖E1 +E2‖0 ≤ C

λ
(‖ã‖1 + ‖a‖0‖u‖2) ≤

C

λ
(‖a‖1 + δ ‖u‖2) ≤ C

δ

λℓ
.

In particular ‖E1 + E2‖0 ≤ Cδ and hence

‖(E1 +E2)
T (E1 +E2)‖0 ≤ C

δ2

λℓ
.

Putting these estimates together we obtain (10) as required.

Proof of (11). In fact

‖u− v‖0 ≤ Cδ
1

λ

is obvious, whereas the estimates for j = 1, . . . , N will follow by interpola-
tion, provided the case j = N + 1 holds. Therefore, we now prove this case.
A simple application of the product rule and interpolation yields

‖v − u‖N+1 ≤ C

λ
(‖Ψ‖N+1‖Γ‖0 + ‖Ψ‖0‖Γ‖N+1)

≤ C

λ
(‖u‖N+2‖ã‖0 + ‖Γ‖N+1) .
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Denoting by Dj
x any partial derivative in the variables x1, . . . , xn of order j,

the chain rule can be written symbolically as

DN+1
x Γ =

∑

i+j≤N+1

(

∂i
s∂

j
t Γ

)

λj
∑

σ

Ci,j,σ(Dxã)
σ1(D2

xã)
σ2 · · · · · (DN+1

x ã)σN+1 ,

where the inner sum is over all σ with

σ1 + · · · + σN+1 = i,

σ1 + 2σ2 + · · · + (N + 1)σN+1 + j = N + 1.

These relations can be checked by counting the order of differentiation.
Therefore, by using (7), (8) and (9)

‖DN+1
x Γ‖0 ≤ C

∑

i+j≤N+1

∥
∥
∥∂i

s∂
j
t Γ

∥
∥
∥

0
λjδi ℓ−(N+1−j)

≤ C
∑

i+j≤N+1

∥
∥
∥∂i

s∂
j
t Γ

∥
∥
∥

0
δiλN+1 ≤ CδλN+1.

In particular, since ‖Γ‖0 ≤ δ, we deduce that ‖Γ‖N+1 ≤ CδλN+1. Therefore

‖v − u‖N+1 ≤ C

λ

(
δ‖u‖N+2 + δλN+1

)
≤ C δλN .

This concludes the proof of the proposition.

4.3. Proof of Proposition 4.3. The proof of Proposition 4.1 would carry
over to this case if we can choose an appropriate normal vector field ζ as
at the beginning of the proof of Proposition 4.1, enjoying the estimate (17)
with a fixed constant.

To obtain ζ(x) let T (x) be the tangent plane to u(Rn) at the point u(x),
i.e. the plane generated by {∂1u, . . . , ∂nu}. Denote by πx the orthogonal
projection of R

m onto T (x). Assuming that ∇u has oscillation smaller than
η0, there exists a vector w ∈ Sn−1 such that |πxw| ≤ 1/2 for every x ∈ Ω.
Hence, we can define

ζ(x) := w − πxw.

It is straightforward to see that this choice of ζ gives a map enjoying the
same estimates as the ζ used in the proof of Proposition 4.1.

5. h–principle: stage

Proposition 5.1 (Stage, local). For all g0 ∈ sym +
n there exists 0 < r < 1

such that the following holds for any Ω ⊂ R
n and g ∈ Cβ(Ω) with ‖g−g0‖0 ≤

r. There exists a δ0 > 0 such that, if K ≥ 1 and u ∈ C2(Ω,Rn+1) satisfies

‖u♯e− g‖0 ≤ δ2 ≤ δ20 and ‖u‖2 ≤ µ ,
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then there exists v ∈ C2(Ω,Rn+1) with

‖v♯e− g‖0 ≤ Cδ2 ,

(
1

K
+ δβ−2µ−β

)

(22)

‖v‖2 ≤ CµKn∗ , (23)

‖u− v‖1 ≤ Cδ . (24)

Here C is a constant depending only on n, g0, g and Ω.

The Proposition above is the basic stage of the iteration scheme which
will prove Theorem 1.1. A similar proposition, to be used in the proof of
Theorem 1.3 will be stated later.

5.1. Decomposing a metric into primitive metrics.

Lemma 5.2. Let g0 ∈ sym +
n . Then there exists r > 0, vectors ν1, . . . , νn∗

∈
S

n−1 and linear maps Lk : sym n → R such that

g =

n∗∑

k=1

Lk(g)νk ⊗ νk for every g ∈ sym n

and, moreover, Lk(g) ≥ r for every k and every g ∈ sym +
n with |g− g0| ≤ r.

Proof. Consider the set S := {(ei + ej) ⊗ (ei + ej), i ≤ j}, where {ei} is the
standard basis of R

n. Since the span of S contains all matrices of the form
ei ⊗ ej + ej ⊗ ei, clearly S generates sym n. On the other hand S consists of
n∗ matrices with n∗ = dim (sym n). So S is a basis for sym n. Let us relabel
the vectors ei + ej (i ≤ j) as f1, . . . , fn∗

, and let

h =

n∗∑

k=1

fk ⊗ fk.

Then h ∈ sym +
n and hence there exists an invertible linear transformation

L such that LhLT = g0. In particular, writing νk = Lfk/|Lfk| ∈ S
n−1, we

have

g0 =
n∗∑

k=1

Lfk ⊗ Lfk =
n∗∑

k=1

|Lfk|2νk ⊗ νk .

Note that the set {νk ⊗ νk} is also a basis for sym n and therefore there
exist linear maps Lk : sym n → R such that

∑
Lk(A)νk ⊗ νk is the unique

representation of A ∈ sym n as linear combination of νk ⊗ νk. In particular,
Li(g0) = |Lfk|2 > 0. The existence of r > 0 satisfying the claim of the
lemma follows easily. �

5.2. Proof of Proposition 5.1. Choose r > 0 and γ > 1 so that the
statement of Lemma 5.2 holds with g0 and 2r, and so that

1

γ
I ≤ h ≤ γ for any h ∈ sym +

n with |h− g0| < 2r.
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Moreover, extend u and g to R
n so that

‖u‖C2(Rn) ≤ C‖u‖C2(Ω), ‖g‖Cβ(Rn) ≤ C‖g‖Cβ(Ω).

The procedure of such an extension is well known, with the constant C
depending on n, β and Ω. In what follows, the various constants will be
allowed to depend in addition on r and γ.

Step 1. Mollification. We set

ℓ =
δ

µ
,

and let
ũ = u ∗ ϕℓ, g̃ = g ∗ ϕℓ,

where ϕ ∈ C∞
c (B1(0)) is a symmetric nonnegative convolution kernel with

∫
ϕ = 1. Lemma 2.1 implies

‖ũ− u‖1 ≤ C‖u‖2 ℓ ≤ Cδ, (25)

‖g̃ − g‖0 ≤ C‖g‖β ℓ
β, (26)

‖ũ‖k+2 ≤ C‖u‖2 ℓ
−k ≤ Cδℓ−(k+1), (27)

and

‖ũ♯e− g̃‖k ≤ ‖ũ♯e− (u♯e) ∗ ϕℓ‖k + ‖(u♯e) ∗ ϕℓ − g ∗ ϕℓ‖k

≤ C ℓ2−k‖u‖2
2 + C ℓ−k‖u♯e− g‖0 ≤ C δ2ℓ−k,

(28)

where k = 0, 1, . . . , n∗. Moreover, since the set {h ∈ sym +
n : |h− g0| ≤ r} is

convex, g̃ also satisfies ‖g̃ − g0‖0 ≤ r.

Step 2. Rescaling. First of all, observe that

h̃ := g̃ +
r

Cδ2
(g̃ − ũ♯e)

satisfies the condition |h̃(x)−g0| ≤ r
Cδ2 ‖g̃− ũ♯e‖0 +r ≤ 2r. Therefore, using

Lemma 5.2 we have

(1 + Cr−1δ2)g̃ − ũ♯e =
Cδ2

r
h̃ =

n∗∑

i=1

ã2
i νi ⊗ νi,

where ãi(x) =
(

C δ2

r Li(h̃(x))
)1/2

. In particular ãi is smooth and

‖ãi‖k ≤ Cδ
‖Li(h̃)‖k

‖Li(h̃)‖1/2
0

≤ Cδ‖h̃‖k

≤ Cδ

(

‖g̃‖k +
1

δ2
‖g̃ − ũ♯e‖k

)

≤ Cδℓ−k

for k = 0, 1, 2, . . . , n∗ (note that the first inequality is achieved through
interpolation). Let

u0 =
1

(1 + Cr−1δ2)1/2
ũ, ai =

1

(1 + Cr−1δ2)1/2
ãi.
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Then we have

g̃ − u♯
0e =

n∗∑

i=1

a2
i νi ⊗ νi,

with

‖ũ− u0‖1 ≤ Cδ, (29)

‖ai‖0 ≤ Cδ, (30)

‖u0‖k+2 + ‖ai‖k+1 ≤ Cδℓ−(k+1) , (31)

for k = 0, 1, . . . , n∗. Notice that the constants above depend also on k, but
since we will only use these estimates for k ≤ n∗, this dependence can be
suppressed.

Finally, using (28) we have ‖u♯
0e− g0‖0 ≤ r+Cδ2, so that γ−1I ≤ u♯

0e ≤
γI, provided δ0 is sufficiently small.

Step 3. Iterating one-dimensional oscillations. We now apply n∗
times successively Proposition 4.1, with

ℓj = ℓK−j, λj = Kj+1ℓ−1, Nj = n∗ − j

for j = 0, 1, . . . , n∗. In other words we construct a sequence of immersions

uj such that 1
γ I ≤ u♯

je ≤ γI and

‖uj‖k+2 ≤ Cδℓ
−(k+1)
j for k = 0, 1, . . . , Nj . (32)

To see that Proposition 4.1 is applicable, observe that λj = Kℓ−1
j . Therefore

it suffices to check inductively the validity of (32). This follows easily from
(11). The constants will depend on j, but this can again be suppressed
because j ≤ n∗.

In this way we obtain the functions u1, u2, . . . , un∗
with estimates

‖uj‖2 ≤ Cδℓ−1Kj,

‖u♯
j+1e− (u♯

je+ a2
j+1νj+1 ⊗ νj+1)‖0 ≤ C

δ2

λjℓj
= Cδ2

1

K
,

and moreover

‖uj+1 − uj‖1 ≤ Cδ.

Observe also that ‖u♯
je− g0‖0 ≤ r+Cδ2, so that, provided δ0 is sufficiently

small, γ−1I ≤ u♯
je ≤ γI for all j.

Thus v := un∗
satisfies the estimates

‖v♯e− g̃‖0 ≤ Cδ2
1

K
,

‖v‖2 ≤ CµKn∗,

‖v − u0‖1 ≤ Cδ.

The estimates (22), (23) and (24) follow from the above combined with (25),
(26) and (29).
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5.3. Stage for general manifolds. Given M as in Theorem 1.3 we fix a
finite atlas of M with charts Ωi and a corresponding partition of unity {φi},
so that

∑
φi = 1 and φi ∈ C∞

c (Ωi). Furthermore, on each Ωi we fix a choice
of coordinates.

Using the partition of unity we define the space Ck(M). In particular, let

‖u‖k :=
∑

i

‖φiu‖k.

Similarly, we define ”mollification on M” via the partition of unity. In other
words we fix ϕ ∈ C∞

c (B1(0)), and for a function u on M we define

u ∗ ϕℓ :=
∑

i

(φiu) ∗ ϕℓ . (33)

It is not difficult to check that the estimates in Lemma 2.1 continue to hold
on M with these definitions.

Next, let g be a metric on M as in Theorem 1.3. Since M is compact and
g is continuous, there exists γ > 0 such that

1

γ
I ≤ g ≤ γI in M. (34)

Moreover, also by compactness, there exists r0 > 0 such that Lemma 5.2
holds with r = 2r0 for any g0 satisfying 1

γ I ≤ g0 ≤ γI. Therefore there

exists ρ0 > 0 so that

U ⊂ Ωi for some i and oscUg < r0

whenever U ⊂M with diam U < ρ0.
(35)

Here oscUg is to be evaluated in the coordinates of the chart Ωi.
In the following we will need coverings of M with the following property:

Definition 5.3 (Minimal cover of M). For ρ > 0 a finite open covering C
of M is a minimal cover of diameter ρ if:

• the diameter of each U ∈ C is less than ρ;
• C can be subdivided into n + 1 subfamilies Fi, each consisting of

pairwise disjoint sets.

The existence of such coverings is a well-known fact. For the convenience
of the reader we give a short proof at the end of this section.

We are now ready to state the iteration stage needed for the proof of
Theorem 1.3. Recall that η0 > 0 is the constant from Proposition 4.3.

Proposition 5.4 (Stage, global). Let (Mn, g) be a smooth, compact Rie-
mannian manifold with g ∈ Cβ(M), and let C be a minimal cover of M of
diameter ρ < ρ0, where ρ0 is as in (35). There exists δ0 > 0 such that, if
K ≥ 1 and u ∈ C2(M,Rm) satisfies

‖u♯e− g‖0 ≤ δ2 < δ20 , (36)

‖u‖2 ≤ µ, (37)

oscU ∇u ≤ η0/2 for all U ∈ C, (38)
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then there exists v ∈ C2(M,Rm) with

‖v♯e− g‖0 ≤ Cδ2
(

1

K
+ δβ−2µ−β

)

, (39)

‖v‖2 ≤ CµK(n+1)n∗ , (40)

‖u− v‖1 ≤ Cδ . (41)

The constants C depend only (Mn, g) and C.

5.4. Proof of Proposition 5.4. We proceed as in the proof of Proposition
5.1. Enumerate the covering as C = {Uj}j∈J , and for each j choose a matrix
gj ∈ sym +

n such that

|g(x) − gj | ≤ r0 for x ∈ Uj .

Furthermore, fix a partition of unity {ψj} for C in the sense that ψj ∈
C∞

c (Uj) and
∑

j ψ
2
j = 1 on M .

Step 1. Mollification. The mollification step is precisely as in Propo-
sition 5.1. We set

ℓ =
δ

µ
,

and let

ũ = u ∗ ϕℓ, g̃ = g ∗ ϕℓ,

where now the convolution is defined in (33) above. Then, as before,

‖ũ− u‖1 ≤ Cδ, (42)

‖g̃ − g‖0 ≤ C‖g‖βℓ
β, (43)

‖ũ‖k+2 ≤ Cδℓ−(k+1), (44)

‖ũ♯e− g̃‖k ≤ Cδ2ℓ−k, (45)

for k = 0, 1, . . . , (n + 1)n∗. In particular, for any j ∈ J and any x ∈ Uj

|g̃(x) − gj | ≤ r0 + Cℓβ ≤ r0 + Cδβ
0 ≤ 3

2
r0

provided δ0 > 0 is sufficiently small.

Step 2. Rescaling. We rescale the map analogously to Step 2 in Propo-
sition 5.1. Accordingly,

h̃ := g̃ +
r0

2Cδ2
(g̃ − ũ♯e)

satisfies

|h̃(x) − gj | ≤
r0

2Cδ2
‖g̃ − ũ♯e‖0 +

3

2
r0 ≤ 2r0 in Uj .

Therefore, using Lemma 5.2 for each gj and introducing

u0 =
1

(1 + Cr−1
0 δ2)1/2

ũ
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we obtain (as in Proposition 5.1)

g̃ − u♯
0e =

n∗∑

i=1

a2
i,jνi,j ⊗ νi,j in Uj

for some functions ai,j ∈ C∞(Uj) satisfying the estimates

‖ai,j‖Ck+1(Uj) ≤ Cδℓ−(k+1) for j ∈ J and k = 0, 1, . . . , (n+ 1)n∗.

In particular, using the partition of unity {ψj} we obtain

g̃ − u♯
0e =

∑

j∈J

n∗∑

i=1

(ψjai,j)
2νi,j ⊗ νi,j, (46)

with

‖u− u0‖1 ≤ Cδ, (47)

‖ψjai,j‖0 ≤ Cδ, (48)

‖u0‖k+2 + ‖ψjai,j‖k+1 ≤ Cδℓ−(k+1) (49)

for k = 0, 1, . . . , (n + 1)n∗.

Step 3. Iterating one–dimensional oscillations We now argue as in
the Step 3 of the proof of Proposition 5.1. However, there are two differences.
First of all we apply Proposition 4.3 in place of Proposition 4.1. This requires
an additional control of the oscillation of ∇u in each Uj . Second, the number
of steps is (n+ 1)n∗. Indeed, observe that (46) can be written as

g̃ − u♯
0e =

n+1∑

σ=1

n∗∑

i=1

∑

j∈Jσ

(ψjai,j)
2νi,j ⊗ νi,j,

where the index set J is decomposed as J = J1∪· · ·∪Jn+1 so that Uj ∈ Fσ if
and only if j ∈ Jσ. The point is that the sum in j consists of functions with
disjoint supports, and hence for this sum Proposition 4.3 can be performed
in parallel, in one step. Thus, the number of steps to be performed serially
is the number of summands in σ and i, which is precisely (n + 1)n∗.

To deal with the restriction on the oscillation of uk in each step, observe
that oscUj∇u ≤ η0/2 by assumption, and clearly the same holds for u0. Also,
at each step we have the estimate ‖uk+1 − uk‖1 ≤ Cδ ≤ Cδ0. Therefore,
choosing δ0 > 0 sufficiently small (only depending on the constants and on
η0), we ensure that the condition remains satisfied inductively (n + 1)n∗
times.

Thus, proceeding as in the proof of Proposition 5.1 we apply Proposition
4.3 successively with ℓk = ℓK−k, λk = Kk+1ℓ−1, and Nk = (n + 1)n∗ − k.
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In this way we obtain a final map v := u(n+1)n∗
such that

‖v♯e− g̃‖0 ≤ Cδ2
1

K
,

‖v‖2 ≤ CµK(n+1)n∗ ,

‖v − u0‖1 ≤ Cδ.

The above inequalities combined with (42), (43) and (47) imply the estimates
(39), (40) and (41). This concludes the proof.

5.5. Existence of minimal covers. We fix a triangulation T of M with
simplices having diameter smaller than ρ/3. We let S0 be the vertices of the
triangulation, S1 be the edges, Sk be the k–faces. F0 is made by pairwise
disjoint balls centered on the elements of S0, with radius smaller than ρ/2.
We let M0 be the union of these balls. Next, for any element σ ∈ S1, we
consider σ′ = σ \M0. The σ′ are therefore pairwise disjoint compact sets
and we let F1 be a collection of pairwise disjoint neighborhoods of σ′, each
with diameter less than ρ. We define M1 to be the union of the elements
of F1 and F0. We proceed inductively. At the step k, for every k–dim.
face F ∈ Sk we define F ′ = F \ Ak−1. Clearly, the F ′ are pairwise disjoint
compact sets and hence we can find pairwise disjoint neighborhoods of the
F ′ with diameter smaller than ρ. Figure 1 below shows the elements of Fi

for a 2–d triangulation.

F2

F1

F0

Figure 1. The triangulation T and the covering for a 2–
dimensional manifold.

Clearly, the collection F0 ∪ . . . ∪ Fn covers any simplex of T , and hence
is a covering of M .
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6. h–principle: iteration

6.1. Proof of Theorem 1.1. Let µ0, δ0 > 0 be such that

‖u♯e− g‖0 ≤ δ20
‖u‖2 ≤ µ0.

Let also K ≥ 1. Later on we are going to adjust the parameters µ0 and K
in order to achieve the required convergence in C1,α.

Applying Proposition 5.1 successively, we obtain a sequence of maps uk ∈
C2(Ω,Rn+1) such that

‖u♯
ke− g‖0 ≤ δ2k

‖uk‖2 ≤ µk

‖uk+1 − uk‖1 ≤ Cδk,

where

δ2k+1 = Cδ2k

(
1

K
+ δβ−2

k µ−β
k

)

, (50)

µk+1 = CµkK
n∗ . (51)

Substituting K with max {C1/n∗K,K} we can absorbe the constant in (51)
to achieve µk+1 = µkK

n∗, at the price of getting a possibly worse constant
in (50). In particular µk = µ0K

kn∗. Next, we show by induction that for
any

a < min

{
1

2
,
βn∗

2 − β

}

(52)

there exists a suitable initial choice of K and µ0 so that

δk ≤ δ0K
−ak.

The case k = 0 is obvious. Assuming the inequality to hold for k, we have

δ2k+1 ≤ Cδ20K
−2ak−1 + Cδβ

0µ
−β
0 K−βk(a+n∗).

Therefore δk+1 ≤ δ0K
−a(k+1) provided

2C ≤ K1−2a and 2C ≤ µβ
0δ

2−β
0 Kk[β(a+n∗)−2a]−2a.

By choosing first K and then µ0 ≥ ‖u‖2 sufficiently large, these two inequal-
ities can be satisfied for any given a in the range prescribed in (52). This
proves our claim.

Next we show that for any

α < min

{
1

1 + 2n∗
,
β

2

}

(53)

the parameters µ0 and K can be chosen so that the sequence uk converges
in C1,α(Ω; Rn+1). To this end observe that to any α satisfying (53) there
exists an a satisfying (52) such that

α <
a

a+ n∗
.
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Then, choosing µ0 and K sufficiently large as above, we obtain a sequence
uk such that

‖uk+1 − uk‖1 ≤ Cδ0K
−ak

‖uk+1 − uk‖2 ≤ µk+1 + µk ≤ 2µ0K
(k+1)n∗ .

Therefore, by interpolation

‖uk+1 − uk‖1,α ≤ ‖uk+1 − uk‖1−α
1 ‖uk+1 − uk‖α

2

≤ C̃ K−[(1−α)a−αn∗]k.

Thus the sequence converges in C1,α to some limit map v ∈ C1,α(Ω; Rn+1).
Since δk → 0, the limit satisfies v♯e = g in Ω.

Finally, choosing K so large that K−a ≤ 1/2, we have

‖v − u‖1 ≤ Cδ0
∑

k

K−ak ≤ 2Cδ0.

6.2. Proof of Theorem 1.3. Recall from Section 5.3 that for the whole
construction we work with a fixed atlas {Ωi} of the manifold M , and that
to the given metric g ∈ Cβ(M) there exist constants γ > 1 and ρ0 > 0 such
that (34) and (35) hold.

Since u ∈ C2(M ; Rm) and there are a finite number of charts Ωi, there
exists ρ < ρ0 such that

oscU∇u < η0/4 whenever U ⊂M with diam U < ρ.

Fix a minimal cover C of M with diameter ρ and let µ0, δ0 > 0 be such that

‖u♯e− g‖0 ≤ δ20
‖u‖2 ≤ µ0.

The iteration now proceeds with respect to this fixed cover, parallel to the
proof of Theorem 1.1. More precisely, arguing as in in Theorem 1.1, Propo-
sition 5.4 yields a sequence uk ∈ C2(M ; Rm) with

‖u♯
ke− g‖0 ≤ δ2k

‖uk‖2 ≤ µ0K
k(n+1)n∗

‖uk+1 − uk‖1 ≤ Cδk,

where

δ2k+1 = Cδ2k

(
1

K
+ δβ−2

k K−βk(n+1)n∗

)

.

The proof that µ0 and K can be chosen so that uk converges in C1,α for

α < min

{
1

1 + 2(n+ 1)n∗
,
β

2

}

follows entirely analogously. Recall that this argument yields in particular

δk ≤ δ0K
−ak.
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The only difference is that the estimates (36) and (38) need to be fulfilled
at each stage. To this end note that δk ≤ δ0, so that (36) will hold at stage
k if it holds at the initial stage. Moreover,

oscU∇uk ≤ oscU∇u+

k−1∑

j=0

2‖uj+1−uj‖1 ≤ η0

4
+2Cδ0

∑

j

K−aj ≤ η0

4
+4Cδ0,

so that (38) is fulfilled by uk provided δ0 is sufficiently small (depending
only on the various constants).

6.3. Proof of Corollaries 1.2 and 1.4. The corollaries are a direct con-
sequence of the Nash-Kuiper theorem combined with Theorems 1.1 and 1.3
respectively. For simplicity, we allow M to be either Ω for a smooth bounded
open set Ω ⊂ R

n or a compact Riemannian manifold of dimension n, and
assume that g ∈ Cβ(M) is satisfying either the assumptions of Theorem 1.1
or those of Theorem 1.3. We then set α0 = min{(2n∗ + 1)−1, β/2} in the
first case, and α0 = min{(2(n + 1)n∗ + 1)−1, β/2} in the second.

Let u ∈ C1(M ; Rm) be a short map and ε > 0. We may assume without
loss of generality that ε < δ0. Using the Nash-Kuiper theorem together with
a standard regularization, there exists u0 ∈ C2(M ; Rm) such that

‖u− u0‖1 ≤ ε/2,

‖u♯
0e− g‖0 ≤

( ε

2C

)2
,

where C is the constant in Theorems 1.1 and 1.3 respectively. Then the
theorem, applied to u0, yields an isometric immersion v ∈ C1,α(M ; Rm) for
any α < α0, such that ‖v − u0‖1 ≤ ε/2, so that ‖v − u‖1 ≤ ε. This proves
the corollaries.

We now come to Remark 1.5. This follows immediately from the fact
that the Nash-Kuiper theorem also works for embeddings, and that the set
of embeddings of a compact manifold is an open set in C1(M ; Rm). Indeed,
if u is an embedding, the Nash-Kuiper theorem gives the existence of an
embedding u0 with the estimates above. Ensuring in addition that ε is so
small that any map v ∈ C1(M ; Rm) with ‖v − u‖1 ≤ ε is an embedding, we
reach the required conclusion.

7. Rigidity: Proof of Theorem 1.7

7.1. Curvature and Brouwer degree. Let (M,g) be as in Theorem 1.7.
As usual, we denote by dA the area element in M and by κ the Gauss
curvature of (M,g). Consider next a C2 isometric embedding v : M → R

3.
The unit normal N(p) to v(M) is the unique vector of R

3 such that, given a
positively oriented basis e1, e2 for Tp(M), the triple (dvp(e1), dvp(e2), N(p))
is an orthonormal positively oriented frame of R

3.
As it is well known, if dσ denotes the area element in S

2, then N ♯dσ =
κdA. Therefore, for every open set V ⊂⊂M and for every f ∈ C1(S2), the
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usual change of variable formula yields
∫

V
f(N(x))κ(x) dA(x) =

∫

S2

f(y)deg (y, V,N) dσ(y), (54)

where deg (y, V,N) denotes the Brouwer degree of the map N . Though the
differential definition of deg makes sense only for regular values of N , it
is a classical observation that deg is constant on connected components of
S

2\N(∂V ). Thus it has a unique continuous extension to S
2\N(∂V ), which

will be denoted as well by deg .
Consider next an isometric embedding v ∈ C1. In this case N ∈ C0. The

Brouwer degree deg (y, V,N) can still be defined and we recall the following
well-known theorem.

Theorem 7.1. Let N ∈ C(V,S2) and {Nk} ⊂ C∞(V,S2) be a sequence
converging uniformly to N . Let K ⊂ S

2 \N(∂V ) be a closed set. For any k
sufficiently large, deg (·, V,Nk) ≡ deg (·, V,N) on K.

Thus deg (·, V,N) ∈ L1
loc(S

2\N(∂V )). A key step to the proof of Theorem
1.7 is to show that formula (54) holds for v ∈ C1,α with α > 2/3.

Proposition 7.2. Let v ∈ C1,α(M,R3) be an isometric embedding with
α > 2/3. Then (54) holds for every open set V ⊂⊂ M diffeomorphic to a
subset of R

2 and every f ∈ L∞ with supp (f) ⊂ S
2 \N(∂V ).

In order to deal with N(∂V ) we recall the following elementary fact.

Lemma 7.3. Let M and M̃ be 2-dimensional Riemannian manifolds and
N ∈ C0,β(M,M̃ ) with β > 1/2. If E ⊂M has Hausdorff dimension 1, then
the area of N(E) is 0.

The following is then a corollary of Proposition 7.2 and Lemma 7.3.

Corollary 7.4. Let (M,g) and v be as in Proposition 7.2, with κ ≥ 0. For
any open V ⊂⊂M , deg (·, V,N) is a nonnegative L1 function and (54) holds
for every f ∈ L∞(S2 \N(∂V )).

7.2. Proof of Proposition 7.2. By a standard approximation argument,
it suffices to prove the statement when f is smooth. Under this additional
assumption the proof is a direct consequence of Theorem 7.1 and of the
convergence result below, which is a consequence of Proposition 1.6. Since
V is diffeomorphic to an open set of the euclidean plane, we can consider
global coordinates x1, x2 on it. Fix a symmetric kernel ϕ ∈ C∞

c (R2), set
ϕε(x) = ε−2ϕ(x/ε) and let vε := (v1V )∗ϕε (we consider here the convolution
of the two functions in R

2 using the coordinates x1, x2 and the corresponding
Lebesgue measure).

Proposition 7.5. Let v and vε be defined as above and denote by N ε, gε,
Aε and κε respectively, the normal to vε(M), the pull-back of the metric on
vε(M), and the corresponding area element and Gauss curvature. Then,

lim
ε↓0

∫

V
f(N ε)κε dAε =

∫

V
f(N)κdA ∀f ∈ C∞

c (S2 \N(∂V )) . (55)
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Proof of Proposition 7.5. In coordinates, our aim is to show that

lim
ε↓0

∫

V
f(N ε(x))κε(x) (det gε(x))

1

2 dx =

∫

V
f(N(x))κ(x) (det g(x))

1

2 dx .

(56)
We recall the formulas for the Christoffel symbols, the Riemann tensor and
the Gauss curvature in V , in the system of coordinates already fixed:

Γi
jk =

1

2
gim

(
∂kgjm + ∂jgmk − ∂mgkj

)
, (57)

Riljk = glm

(
∂kΓ

m
ij − ∂jΓ

m
ik + Γl

ijΓ
m
kl − Γl

ikΓ
m
jl

)
, (58)

κ =
R1212

det(gij)
. (59)

After obvious computations we conclude that

κ = (det g)−1 (cijkl ∂klgij + dijklmn(g) ∂kgij ∂lgmn) (60)

where cijkl are constant coefficients and the functions dijklmn are smooth.
Proposition 1.6 implies that ∂kg

ε
ij and gε

ij converge locally uniformly to
∂kgij and gij respectively. Moreover, N ε converges locally uniformly to N .
Since there is a compact set containing f(N ε) and f(N), we only need to
show that

lim
ε↓0

∫

V
f(N ε(x))(det gε(x))−

1

2 ∂klg
ε
ij(x) dx

=

∫

V
f(N(x))(det g(x))−

1

2 ∂klgij(x) dx . (61)

Denote by ψε the function f(N ε(x))(det gε(x))−
1

2 . Since f(N ε) is smooth
and compactly supported in V we can integrate by parts to get

∫

V
ψε∂klg

ε
ij =

∫

V
∂kψ

ε∂lg
ε
ij . (62)

Note that ‖∂kψ
ε‖ ≤ Cεα−1 by obvious estimates on convolutions. Hence,

(2) gives
∫

V
∂kψ

ε
(
∂lg

ε
ij − ∂lgij

)
= O(ε3α−2) (63)

which converges to 0 because α > 3/2. Integrating again by parts, we get

lim
ε↓0

∫

V
f(N ε(x))(det gε(x))−

1

2 ∂klg
ε
ij(x) dx

= lim
ε↓0

∫

V
f(N ε(x))(det gε(x))−

1

2 ∂klgij(x) dx .

Using the uniform convergence of N ε to N and of gε to g we then conclude
(61) and hence the proof of the Proposition. �
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7.3. Proof of Lemma 7.3 and Corollary 7.4.

Proof of Lemma 7.3. By the definition of Hausdorff dimension, for every
ε > 0 and η > 1 there exists a covering of E with closed sets Ei such that

∑

i

(diam (Ei))
η ≤ ε . (64)

On the other hand, diam (g(Ei)) ≤ C(diam(Ei))
β and hence the area |g(Ei)|

can be estimated with C(diam (Ei))
2β . Since β > 1/2, we can pick η = 2β

to conclude that

|g(E)| ≤ C
∑

i

(diam (Ei))
η ≤ Cε .

The arbitrariness of ε implies |g(E)| = 0. �

Proof of Corollary 7.4. First of all, we know from Proposition 7.2 that the
formula (54) is valid for any open set V which is diffeomorphic to an open
set of R

2, and any f ∈ L∞ compactly supported in S
2 \ N(∂V ). Since

κ is nonnegative, we conclude that deg (·, N, V ) ≥ 0. Testing (54) with a
sequence of compactly supported functions fk ↑ 1S2\N(∂V ) we derive that

∫

deg (y,N, V ) dσ(y) =

∫

V
κdA < ∞ ,

which implies deg (·, N, V ) ∈ L1.

Next, consider a V with smooth boundary. We decompose it into the
union of finitely many nonoverlapping Lipschitz open sets Vi diffeomorphic
to open sets of the euclidean plane. Then

deg (y,N, V ) =
∑

i

deg (y,N, Vi) for every y 6∈ ⋃
N(∂Vi).

On the other hand, by Lemma 7.3,
⋃

iN(∂Vi) is a negligible set, and hence
we conclude the formula for V from the previous step.

Finally, fix a generic V and an f ∈ L∞ with supp (f) ⊂ S
2 \ N(∂V ).

Choose an open set V ′ with smooth boundary ∂V ′ sufficiently close to ∂V .
Then deg (·, V,N) and deg (·, V ′, N) coincide on the support of f , whereas
the support of f(N(·)) is contained in V ′. From the formula for V ′ and f
we conclude then the validity of the formula for V and f . Arguing again
as above, we conclude that deg (·, N, V ) is summable and nonnegative and
that the formula (54) holds for any V and any f ∈ L∞(S2 \N(∂V )). �

7.4. Bounded extrinsic curvature. The proof of Theorem 1.7. We
recall the notion of bounded extrinsic curvature for a C1 immersed surface
(see p. 590 of [25]).
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Definition 7.6. Let Ω ⊂ R
2 be open and u ∈ C1(Ω,R3) an immersion. The

surface u(Ω) has bounded extrinsic curvature if there is a C such that

N∑

i=1

|N(Ei)| ≤ C (65)

for any finite collection {Ei} of pairwise disjoint closed subsets of Ω.

The proof of Theorem 1.7 follows now from Corollary 7.4.

Proof of Theorem 1.7. The theorem follows easily from the claim:

deg (·, V,N) ≥ 1N(V )\N(∂V ) for every open V ⊂ Ω. (66)

In fact, given disjoint closed sets E1, . . . , EN , we can cover them with disjoint
open sets V1, . . . VN with smooth boundaries. By (66) and Corollary 7.4,

∑

i

|N(Ei) \N(∂Vi)| ≤
∑

i

|N(Vi) \N(∂Vi)| ≤
∑

i

∫

Vi

κ ≤
∫

Ω
κ . (67)

On the other hand, by Lemma 7.3, |N(∂Vi)| = 0. Thus, (67) shows (65).

We now come to the proof of (66). Obviously deg (y, V,N) = 0 if y 6∈
N(V ). Moreover, by Corollary 7.4, deg (·, V,N) ≥ 0. Therefore, fix y0 ∈
N(V ) \N(∂V ) and assume, by contradiction, that deg (y0, V,N) = 0. Con-
sider a small open disk D centered at y0 such that N−1(D)∩∂V = ∅ and let
W := N−1(D) ∩ V . Then N(∂W ) ⊂ ∂D and N(W ) ⊂ D. So, deg (·,W,N)
vanishes on S

2 \D and is a constant integer k on D. On the other hand k =
deg (y0,W,N) = deg (y0, V,N) − deg (y0, V \W,N) = −deg (y0, V \W,N).
Since y0 6∈ N(V \W ), we conclude k = 0 and hence

0 =

∫

deg (y,W,N) dy =

∫

W
κdA .

which is a contradiction becase W 6= ∅ and κ > 0. �

Corollary 1.8 follows from Theorem 1.7 and the results of Pogorelov cited
in the introduction. More precisely, by Theorem 9 on p650 [25], u(S2) is a
closed convex surface, which by [24] is rigid.

Corollary 1.9 also follows from the results in [25] and [26]. However, we
were unable to find an exact reference for open surfaces, and therefore, for
the reader’s convenience, we have included a proof in the appendix.

Appendix A. Proof of Corollary 1.9

First of all, since the theorem is local, without loss of generality we can
assume that:

• Ω = Br(0), u ∈ C1,α(Br(x)), g ∈ C2,β(Br(x)) and u is an embed-
ding;

• u(Ω) has bounded extrinsic curvature.
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Step 1. Density of regular points. For any point z ∈ S
2 we let n(z)

be the cardinality of N−1(z). It is easy to see that, for a surface of bounded
extrinsic curvature,

∫

S2 n < ∞ (cp. with Theorem 3 of p. 590 in [25]).

Therefore, the set E := {n = ∞} has measure zero. Let Ωr := N−1(S2 \E).
Observe that

Ωr is dense in Ω. (68)

Otherwise there is a nontrivial smooth open set V such that N(V ) ⊂ E. But
then, deg (·, V,N) = 0 for every y 6∈ N(V ), and since |N(V )| = |N(∂V )| = 0,
it follows that deg (·, V,N) = 0 a.e.. By Corollary 7.4,

∫

V κ = 0, which
contradicts κ > 0.

Step 2. Convexity around regular points. Note next that, for every
x ∈ Ωr there is a neighborhood U of x such that N(y) 6= N(x) for all
y ∈ U \ {x}, i.e. x is regular in the sense of [25] p. 582. Recalling (66),
deg (·, V,N) ≥ 1V \∂V for every V : therefore the index of the map N at every
point x ∈ Ωr is at least 1. So, by the Lemma of page 594 in [25], any point
x ∈ Ωr is an elliptic point relative to the mapping N (that is, there is a
neighborhood U of x such that the tangent plane π to u(Ω) in x intersects
U ∩ u(Ω) only in u(x); cp. with page 593 of [25]).

By the discussion of page 650 in [25], u(Ω) has nonnegative extrinsic
curvature as defined in IX.5 of [25]. Then, Lemma 2 of page 612 shows
that, for every elliptic point y ∈ u(Ω) there is a neighborhood where u(Ω)
is convex. This conclusion applies, therefore, to any y ∈ Ωr. We next
claim the existence of a constant C with the following property. Set ρ(y) :=
C−1 min{1,dist(u(y), u(∂Ω)}. Then

u(Ω) ∩Bρ(y)(y) is convex for all y ∈ Ωr. (69)

Recall that u is an embedding and hence dist(u(y), u(∂Ω)) > 0 for every
y ∈ Ω. By (68), (69) gives for any y ∈ Ω there is a neighborhood where
u(Ω) is convex. This would complete the proof.

Step 3. Proof of (69). First of all, since u is an embedding and ‖u‖C1,α

is finite, there is a constant c0 such that, for any point x, Bc0(x) ∩ u(Ω) is
the graph of a C1,α function with ‖ · ‖C1,α norm smaller than 1. In order
to prove (69) we assume, without loss of generality, that y = 0 and that
the tangent plane to u(Ω) at y is {x3 = 0}. Denote by π the projection on
{x3 = 0}. By [26] there is a constant λ > 0 (depending only on ‖g‖C2,β ,
‖κ‖C0 and ‖κ−1‖C0) with the following property.

(Est) Let U be an open convex set such that U ∩u(∂Ω) = ∅, diam (U) ≤ c0
and U ∩ u(Ω) is locally convex. Then U ∩ u(Ω) is the graph of a
function f : π(u(Ω)∩U) → R with ‖f‖C2,1/2 ≤ λ−1 and D2f ≥ λId.

We now look for sets U as in (Est) with the additional property that U =
V×] − a, a[ and f |∂V = a (see Figure 2). Let Um be the maximal set of
this form for which the assumptions of (Est) hold. We claim that, either
∂Um ∩ u(∂Ω) 6= ∅, or diam (Um) = c0. By (Est), this claim easily implies
(69). To prove the claim, assume by contradiction that it is wrong and let
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x3

y

V

Figure 2. The convex sets of type V×]−a, a[ among which
we choose the maximal one Um.

Um = Wm×] − am, am[ be the maximal set. Let γ = ∂Um ∩ u(Ω). By the
choice of c0, γ is necessarily the curve ∂Wm × {a}. On the other hand,
by the estimates of (Est), it follows that every tangent plane to u(Ω) at a
point of γ is transversal to {x3 = 0}. So, for a sufficiently small ε > 0, the
intersection {x3 = am + ε}∩u(Ω) contains a curve γ′ bounding a connected
region D ⊂ u(Ω) which contains u(Ω) ∩ Um. By Theorem 8 of page 650 in
[25], D is a convex set. This easily shows that Um was not maximal.
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[10] De Lellis, C., and Székelyhidi, L. J. The Euler equations as a differential inclu-
sion. Ann. Math. (2) (to appear).
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E-mail address: camillo.delellis@math.unizh.ch

Hausdorff Center for Mathematics, Universität Bonn, D-53115 Bonn

E-mail address: laszlo.szekelyhidi@hcm.uni-bonn.de


	1. Introduction
	1.1. The h--principle for small exponents
	1.2. Rigidity for large exponents
	1.3. Connections to the Euler equations

	2. Estimates on convolutions: Proof of Proposition ??
	3. h--principle: The general scheme
	4. h--principle: Construction step
	4.1. Basic building block
	4.2. Proof of Proposition ??
	4.3. Proof of Proposition ??

	5. h--principle: stage
	5.1. Decomposing a metric into primitive metrics
	5.2. Proof of Proposition ??
	5.3. Stage for general manifolds
	5.4. Proof of Proposition ??
	5.5. Existence of minimal covers

	6. h--principle: iteration
	6.1. Proof of Theorem ??
	6.2. Proof of Theorem ??
	6.3. Proof of Corollaries ?? and ??

	7. Rigidity: Proof of Theorem ??
	7.1. Curvature and Brouwer degree
	7.2. Proof of Proposition ??
	7.3. Proof of Lemma ?? and Corollary ??
	7.4. Bounded extrinsic curvature. The proof of Theorem ??

	Appendix A. Proof of Corollary ??
	References

