Uniqueness of Lagrangian trajectories for suitable weak solutions of the 3D Navier-Stokes equations

James C. Robinson
Department of Mathematics University of Warwick

(joint work with Masoumeh Dashti \& Witold Sadowski)

Warwick, June 8th 2009

Lagrangian trajectories

We want to investigate uniqueness of solutions of the ODE for Lagrangian 'particle' trajectories

$$
\mathrm{d} \xi / \mathrm{d} t=u(\xi, t) \quad \xi(0)=a \in \Omega
$$

where u is a weak solution of the Navier-Stokes equations

$$
u_{t}-\Delta u+(u \cdot \nabla) u+\nabla p=0 \quad \nabla \cdot u=0 \quad u(x, 0)=u_{0}(x)
$$

for $x \in \Omega$ (periodic or Dirichlet boundary conditions).

- $u_{0} \in H^{1 / 2}$: a unique $u \in L^{\infty}\left(0, T ; H^{1 / 2}\right) \cap L^{2}\left(0, T ; H^{3 / 2}\right)$ for some $T>0$ (Fujita \& Kato, 1964), and every initial condition $a \in \Omega$ gives rise to a unique solution $\xi_{a}(t)$ on $[0, T)$ (Chemin \& Lerner, 1995; Dashti \& JCR, 2009);
- continue u as a suitable weak solution for $t \geq T$; then almost every initial condition $a \in \Omega$ gives rise to a unique solution $\xi_{a}(t)$ for all $t \geq 0$ (Sadowski \& JCR, 2009).

Everywhere uniqueness for flows in \mathbb{R}^{3}

Take two solutions $X(t)$ and $Y(t)$ of $\mathrm{d} X / \mathrm{d} t=u(X, t)$ with the same initial condition.

Then

$$
\frac{\mathrm{d}}{\mathrm{~d} t}|X-Y| \leq|u(X, t)-u(Y, t)| .
$$

Since (Zuazua, 2002)

$$
|f(X)-f(Y)| \leq c\|f\|_{H^{5 / 2}}|X-Y|(-\log |X-Y|)^{1 / 2}
$$

we have, with $W=X-Y$,

$$
\frac{\mathrm{d}}{\mathrm{~d} t}|W| \leq\|u(t)\|_{H^{5 / 2}}|W|(-\log |W|)^{1 / 2}
$$

Integrate from s to t :

$$
-(-\log |W(t)|)^{1 / 2} \leq-(-\log |W(s)|)^{1 / 2}+c \int_{s}^{t}\|u(r)\|_{H^{2}} \mathrm{~d} r
$$

If $u \in L^{1}\left(0, T ; H^{5 / 2}\right)$ then we could simply let $s \downarrow 0$ to obtain uniqueness. But this is not true, even for the heat equation, when $u_{0} \in H^{1 / 2}$.

Theorem (Dashti \& JCR)

Suppose that $\Omega \subset \mathbb{R}^{d}$, and for some $p>1$

$$
u \in L^{p}\left(0, T ; H^{(d / 2)-1}\right) \quad \text { and } \quad \sqrt{t} u \in L^{2}\left(0, T ; H^{(d / 2)+1}\right) .
$$

Then for every $a \in \Omega$ there exists a unique solution of $\mathrm{d} X / \mathrm{d} t=u(X, t)$ for $t \in[0, T)$.

Theorem (Dashti \& JCR)

Suppose that $\Omega \subset \mathbb{R}^{3}$,

$$
u \in L^{2}\left(0, T ; H^{1 / 2}\right) \quad \text { and } \quad \sqrt{t} u \in L^{2}\left(0, T ; H^{5 / 2}\right) .
$$

Then for every $a \in \Omega$ there exists a unique solution of $\mathrm{d} X / \mathrm{d} t=u(X, t)$ for $t \in[0, T)$.

Theorem (Dashti \& JCR)

Suppose that $\Omega \subset \mathbb{R}^{3}$,

$$
u \in L^{2}\left(0, T ; H^{1 / 2}\right) \quad \text { and } \quad \sqrt{t} u \in L^{2}\left(0, T ; H^{5 / 2}\right)
$$

Then for every $a \in \Omega$ there exists a unique solution of $\mathrm{d} X / \mathrm{d} t=u(X, t)$ for $t \in[0, T)$.

Note that under the assumptions of the theorem, for any $0<r<1$

$$
\begin{aligned}
\int_{0}^{T}\|u(t)\|_{H^{5 / 2}}^{r} \mathrm{~d} t & \leq \int_{0}^{T} t^{-r / 2} t^{r / 2}\|u(t)\|_{H^{5 / 2}} \mathrm{~d} r \\
& \leq\left(\int_{0}^{T} t^{-r /(2-r)} \mathrm{d} t\right)^{1-(r / 2)}\left(\int_{0}^{T} t\|u(t)\|_{H^{5 / 2}}^{2} \mathrm{~d} t\right)^{r / 2}
\end{aligned}
$$

i.e. $u \in L^{r}\left(0, T ; H^{5 / 2}\right)$.

$$
-(-\log |W(t)|)^{1 / 2} \leq-(-\log |W(s)|)^{1 / 2}+c \int_{s}^{t}\|u(r)\|_{H^{5 / 2}} \mathrm{~d} r
$$

From $\mathrm{d}|W| / \mathrm{d} t \leq 2\|u(t)\|_{\infty}$ we have

$$
\begin{aligned}
|W(t)| & \leq 2 \int_{0}^{t}\|u(r)\|_{\infty} \mathrm{d} r \leq c \int_{0}^{t}\|u(r)\|_{H^{1 / 2}}^{1 / 2}\|u(r)\|_{H^{5 / 2}}^{1 / 2} \mathrm{~d} r \\
& =c \int_{0}^{t} r^{-1 / 4}\|u(r)\|_{H^{1 / 2}}^{1 / 2} r^{1 / 4}\|u(r)\|_{H^{5 / 2}}^{1 / 2} \mathrm{~d} r \\
& \leq c\left(\int_{0}^{t} r^{-1 / 2} \mathrm{~d} r\right)^{1 / 2}\left(\int_{0}^{t}\|u(r)\|_{H^{1 / 2}}^{2} \mathrm{~d} r\right)^{1 / 4}\left(\int_{0}^{t} r\|u(r)\|_{H^{5 / 2}}^{2} \mathrm{~d} r\right)^{1 / 4} \\
& \leq c t^{1 / 4}\|u\|_{L^{2}\left(0, t ; H^{1 / 2}\right)}^{1 / 2}\|\sqrt{t} u\|_{L^{2}\left(0, t ; H^{5 / 2}\right)}^{1 / 4}
\end{aligned}
$$

So

$$
(-\log |W(s)|)^{1 / 2} \geq \alpha(-\log s)^{1 / 2}
$$

for some fixed $\alpha>0$ for all $s \leq s_{0}, s_{0}$ small.

$$
-(-\log |W(t)|)^{1 / 2} \leq-\alpha(-\log s)^{1 / 2}+c \int_{s}^{t}\|u(r)\|_{H^{5 / 2}} \mathrm{~d} r
$$

$$
\begin{aligned}
\int_{s}^{t}\|u(r)\|_{H^{5 / 2}} \mathrm{~d} r & =\int_{s}^{t} r^{-1 / 2} r^{1 / 2}\|u(r)\|_{H^{5 / 2}} \mathrm{~d} r \\
& \leq\left(\int_{s}^{t} r^{-1} \mathrm{~d} r\right)^{1 / 2}\left(\int_{s}^{t} r\|u(r)\|_{H^{5 / 2}}^{2} \mathrm{~d} r\right)^{1 / 2} \\
& =(\log t-\log s)^{1 / 2}\left(\int_{0}^{t} r\|u(r)\|_{H^{5 / 2}}^{2} \mathrm{~d} r\right)^{1 / 2}
\end{aligned}
$$

For t sufficiently small, $t<t^{*}$,

$$
\int_{0}^{t} r\|u(r)\|_{H^{5 / 2}}^{2} \mathrm{~d} r<\alpha^{2} / 4:
$$

$$
-(-\log |W(t)|)^{1 / 2} \leq-\alpha(-\log s)^{1 / 2}+\frac{\alpha}{2}(\log t-\log s)^{1 / 2}
$$

Now let $s \rightarrow 0$ to deduce that $|W(t)|=0$.

Checking conditions for 3D Navier-Stokes

Consider here periodic BCs for simplicity. Take the inner product of the equation with $t \Delta u$ in $H^{1 / 2}$, and then

$$
\left.\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(t\|u\|_{3 / 2}^{2}\right)-\frac{1}{2}\|u\|_{3 / 2}^{2}+\nu t\|u\|_{5 / 2}^{2} \leq t((u \cdot \nabla) u, \Delta u)\right)_{1 / 2}
$$

Estimating the RHS using standard inequalities yields

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(t\|u\|_{3 / 2}^{2}\right)-\|u\|_{3 / 2}^{2}+\nu t\|u\|_{5 / 2}^{2} \leq c t\|u\|_{3 / 2}^{4}
$$

Multiplying by $E(t)=\exp \left(-c \int_{0}^{t}\|u(s)\|_{3 / 2}^{2} \mathrm{~d} s\right)$ gives

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(t\|u(t)\|_{3 / 2}^{2} E(t)\right)+\nu t E(t)\|u\|_{5 / 2}^{2} \leq E(t)\|u\|_{3 / 2}^{2}
$$

Integrating between 0 and t and multiplying by $E(t)^{-1}$ gives

$$
\nu \int_{0}^{t} s\|u(s)\|_{5 / 2}^{2} \mathrm{~d} s \leq\left(\int_{0}^{t}\|u(s)\|_{3 / 2}^{2} \mathrm{~d} s\right) \exp \left(c \int_{0}^{t}\|u(s)\|_{3 / 2}^{2} \mathrm{~d} s\right)<\infty
$$

3D: Lagrangian mapping of Foias-Guillopé-Temam (1985)

For any weak solution u, for every $a \in \Omega$ there exists a continuous function $\xi:[0, T] \rightarrow \bar{\Omega}$ satisfying

$$
\begin{equation*}
\xi(t)=a+\int_{0}^{t} u(\xi(s), s) \mathrm{d} s \tag{*}
\end{equation*}
$$

Uses the fact that $u \in L^{1}\left(0, T ; L^{\infty}(\Omega)\right)$ (FGT, 1982) and that u is regular on a collection of open intervals whose union has full measure (Leray, 1934).

Furthermore there exists at least one 'solution mapping' $\Phi: \Omega \times[0, T] \rightarrow \Omega$ such that
(i) $\xi_{a}(\cdot)=\Phi(a, \cdot)$ satisfies $(*)$,
(ii) $\xi_{a}(\cdot) \in W^{1,1}(0, T)$,
(iii) the mapping $a \mapsto \Phi(a, \cdot)$ belongs to $L^{\infty}(\Omega ; C([0, T], \bar{\Omega}))$, and
(iv) Φ is volume-preserving: for any Borel set $B \subset \Omega$,

$$
\mu\left[\Phi(\cdot, t)^{-1}(B)\right]=\mu(B)
$$

where μ denotes the Lebesgue measure on \mathbb{R}^{3}.

Aside - generalised flows of Di Perna \& Lions (1989)

With $u \in L^{1}\left(0, T ; W^{1,1}\right)$, for each $\theta_{0} \in L^{\infty}(Q)$, there exists a unique 'renormalised solution' $\theta\left(t ; \theta_{0}\right) \in L^{\infty}(\mathbb{R} \times Q)$ of $\theta_{t}+(u \cdot \nabla) \beta=0$, i.e.

$$
(\beta(\theta))_{t}+(u \cdot \nabla) \beta(\theta)=0 \quad \text { and } \quad \beta(\theta(0))=\beta\left(\theta_{0}\right)
$$

for a large class of well-behaved functions β.
There is a one-to-one correspondence between such $\theta \mathrm{s}$ and generalised flows of $\dot{\xi}=u(\xi, t)$ (Lions, 1998): $\theta \mapsto \Phi$ via

$$
[\Phi(t, a)]_{i}=\left[\theta\left(t ; x_{i}\right)\right](a)
$$

In particular this proves the uniqueness of the FGT solution mapping.
Unique flow \nRightarrow almost everywhere uniqueness: for $\dot{x}=|x|^{1 / 2}$ there is a unique flow defined for all $t \in \mathbb{R}$, corresponding to the solution $x(t)=t|t| / 4$, but uniqueness nowhere (Beck, 1973).

Partial regularity - box-counting dimension of singular set

Take a suitable weak solution with $p \in L^{5 / 3}(\Omega \times(0, T))$ (Sohr-von Wahl, 1986).
Theorem (Caffarelli, Kohn, \& Nirenberg, 1982; Ladyzenskaya \& Seregin, 1999)
There is an absolute constant $\alpha>0$ such that if (u, p) is a suitable weak solution, r is sufficiently small that $Q_{r}(x, t) \subset \Omega \times(0, T)$, and

$$
r^{-2 / 3}\left(\int_{Q_{r}(x, t)}|u|^{3}\right)^{1 / 3}+r^{-4 / 3}\left(\int_{Q_{r}(x, t)}|p|^{3 / 2}\right)^{2 / 3}<\alpha
$$

then $u(x, t)$ is Hölder continuous in a neighbourhood of (x, t).
In the statement of the theorem,

$$
Q_{r}(x, t)=\left\{(y, s) \in \Omega \times(0, T):|y-x|<r,|s-t|<r^{2}\right\}
$$

Theorem (L \& S)

Let S be the 'singular set' of points for which $u(x, t)$ is not Hölder continuous in a neighbourhood of (x, t). Then $P^{1}(S)=0 \Rightarrow d_{\mathrm{H}}(S) \leq 1$.

The box-counting dimension of $X, d_{\text {box }}(X)$, is given by

$$
\limsup _{\epsilon \rightarrow 0} \frac{\log N(X, \epsilon)}{-\log \epsilon}
$$

where $N(X, \epsilon)$ is the minimum number of ϵ-balls that cover X.

The box-counting dimension of $X, d_{\text {box }}(X)$, is given by

$$
\limsup _{\epsilon \rightarrow 0} \frac{\log N(X, \epsilon)}{-\log \epsilon}
$$

where $N(X, \epsilon)$ is the maximum number of ϵ-separated points in X.

The box-counting dimension of $X, d_{\text {box }}(X)$, is given by

$$
\limsup _{\epsilon \rightarrow 0} \frac{\log N(X, \epsilon)}{-\log \epsilon}
$$

where $N(X, \epsilon)$ is the maximum number of ϵ-separated points in X.

Theorem (JCR \& Sadowski)

If S denotes the singular set of a suitable weak solution (u, p) then $d_{\text {box }}(S \cap K) \leq 5 / 3$ for any compact subset K of $\Omega \times(0, T)$.

If $(x, t) \in S$ then

$$
r^{-2 / 3}\left(\int_{Q_{r}}|u|^{3}\right)^{1 / 3}+r^{-4 / 3}\left(\int_{Q_{r}}|p|^{3 / 2}\right)^{2 / 3}>\alpha
$$

for all $r \geq 0$. By Hölder's inequality

$$
\int_{Q_{r}}|u|^{10 / 3}+\int_{Q_{r}}|p|^{5 / 3}>c_{3} r^{5 / 3}
$$

Note: $u \in L^{10 / 3}(\Omega \times(0, T))$ for any weak solution.

If $d_{\text {box }}(S \cap K)>5 / 3$ fix d with $5 / 3<d<d_{\text {box }}(S)$:

- there exists a decreasing sequence $\epsilon_{j} \rightarrow 0$ such that

$$
N_{j}=N\left(S \cap K, \epsilon_{j}\right) \geq \epsilon_{j}^{-d}
$$

- there exists an $r_{0}>0$ such that $Q_{r}(x, t) \subset \Omega \times(0, T)$ for all $r<r_{0}$ and every $(x, t) \in K$.

Let $\left\{\left(x_{i}, t_{i}\right)\right\}_{i=1}^{N_{j}}$ be a collection of ϵ-separated points in $S \cap K$.
Take j large enough that $\epsilon_{j}<r_{0}$, and then
$\underbrace{\int_{\Omega \times(0, T)}|u|^{10 / 3}+|p|^{5 / 3}}_{\text {finite }} \geq \sum_{i=1}^{N_{j}} \int_{Q_{\epsilon}\left(x_{i}, t_{i}\right)}|u|^{10 / 3}+|p|^{5 / 3} \geq \underbrace{\epsilon_{j}^{-d} \times c_{3} \epsilon_{j}^{5 / 3}}_{\rightarrow \infty \text { as } j \rightarrow \infty}$.
The contradiction implies that $d_{\text {box }}(S \cap K) \leq 5 / 3$ as claimed.

Theorem (JCR \& WS, after Aizenman, 1978; Cipriano \& Cruzeiro, 2005)

Let $\Omega \subset \mathbb{R}^{d}$, and let $\Phi: \Omega \times[0, T] \rightarrow \Omega$ be a volume-preserving solution mapping corresponding to a vector field u with $u \in L^{1}\left(0, T ; L^{\infty}(\Omega)\right)$ for every $T>0$. If X is a compact subset of Ω with $d_{\text {box }}(X)<d-1$ then for almost every initial condition $a \in \Omega, \Phi(t, a) \notin X$ for all $t \geq 0$.

Choose $T>0$ and fix $N \in \mathbb{N}$; write $t_{j}=j T / N$, and consider the problem of avoiding X on the time interval $\left[t_{k}, t_{k+1}\right]$ for some $k \in\{0, \ldots, N-1\}$. Since

$$
\xi_{a}(t)-\xi_{a}(s)=\int_{s}^{t} u\left(\xi_{a}(r), r\right) \mathrm{d} r
$$

it follows that for all $t \in\left[t_{k}, t_{k+1}\right]$,

$$
\left|\xi_{a}(t)-\xi_{a}\left(t_{k}\right)\right| \leq \delta_{k}:=\int_{t_{k}}^{t_{k+1}}\|u(t)\|_{\infty} \mathrm{d} t
$$

So if $\xi_{a}(t) \in X$ for some $t \in\left[t_{k}, t_{k+1}\right]$, we must have

$$
\xi_{a}\left(t_{k}\right) \in O\left(X, \delta_{k}\right)
$$

What is $\mu(O(X, \delta))$?

What is $\mu(O(X, \delta))$?
Recall

$$
d_{\text {box }}(X)=\limsup _{\epsilon \rightarrow 0} \frac{\log N(X, \epsilon)}{-\log \epsilon},
$$

where $N(X, \epsilon)$ is the minimum number of ϵ-balls that cover X.

What is $\mu(O(X, \delta))$?

Recall

$$
d_{\text {box }}(X)=\limsup _{\epsilon \rightarrow 0} \frac{\log N(X, \epsilon)}{-\log \epsilon},
$$

where $N(X, \epsilon)$ is the minimum number of ϵ-balls that cover X.

For any $\rho>d_{\text {box }}(X)$, for all δ sufficiently small

$$
N(X, \delta)<\delta^{-\rho}
$$

and

$$
X \subset \bigcup_{j=1}^{N(X, \delta)} B\left(x_{j}, \delta\right) \Rightarrow O(X, \delta) \subset \bigcup_{j=1}^{N(X, \delta)} B\left(x_{j}, 2 \delta\right)
$$

Thus

$$
\mu(O(X, \delta)) \leq \delta^{-\rho} \omega_{n}(2 \delta)^{n}=c_{n} \delta^{n-\rho}
$$

What is $\mu(O(X, \delta))$?
Recall

$$
d_{\text {box }}(X)=\limsup _{\epsilon \rightarrow 0} \frac{\log N(X, \epsilon)}{-\log \epsilon}
$$

where $N(X, \epsilon)$ is the minimum number of ϵ-balls that cover X.

For any $\rho>d_{\text {box }}(X)$, for all δ sufficiently small

$$
N(X, \delta)<\delta^{-\rho}
$$

and

$$
X \subset \bigcup_{j=1}^{N(X, \delta)} B\left(x_{j}, \delta\right) \Rightarrow O(X, \delta) \subset \bigcup_{j=1}^{N(X, \delta)} B\left(x_{j}, 2 \delta\right)
$$

Thus

$$
\mu(O(X, \delta)) \leq \delta^{-\rho} \omega_{n}(2 \delta)^{n}=c_{n} \delta^{n-\rho}
$$

$$
d_{\mathrm{box}}(X)<n-1 \quad \Rightarrow \quad \mu(O(X, \delta)) \leq c_{n} \delta^{r} \quad \text { for some } r>1
$$

Φ is measure-preserving, so

$$
\mu\left\{a: \xi_{a}\left(t_{k}\right) \in O\left(X, \delta_{k}\right)\right\} \leq c_{n} \delta_{k}^{r} .
$$

Thus for any choice of N, the measure of initial conditions Ω_{X} for which $\xi_{a}(t) \in X$ for some $t \in[0, T]$ is bounded by

$$
c_{n} \sum_{k=0}^{N-1} \delta_{k}^{r}=c_{n} \sum_{k=0}^{N-1}\left(\int_{t_{k}}^{t_{k+1}}\|u(s)\|_{\infty} \mathrm{d} s\right)^{r}
$$

Since $u \in L^{1}\left(0, T ; L^{\infty}\right)$ its integral is absolutely continuous. In particular, given an $\epsilon>0$, there exists an $N \in \mathbb{N}$ such that for each $k \in\{0, \ldots, N-1\}$,

$$
\int_{t_{k}}^{t_{k+1}}\|u(s)\|_{\infty} \mathrm{d} s<\epsilon
$$

Using this in (\dagger) it follows that

$$
\mu\left(\Omega_{X}\right) \leq c_{n} \epsilon^{r-1} \int_{0}^{T}\|u(s)\|_{\infty} \mathrm{d} s
$$

Since $r>1$ and both ϵ and T are arbitrary this completes the proof.

Theorem

If u is a suitable weak solution and Φ is a corresponding solution mapping then for almost every $a \in \Omega, \Phi(a, t) \notin S$ for all $t \geq 0$.

Fix $T>0$ and let $\Omega \times(0, T)=\bigcup_{n=1}^{\infty} K_{n}$ with K_{n} compact. $d_{\text {box }}\left(P\left[S \cap K_{n}\right]\right) \leq d_{\text {box }}\left(S \cap K_{n}\right) \leq 5 / 3$.

Thus almost every trajectory avoids $P\left(S \cap K_{n}\right)$ for all $t \geq 0$, and so in particular avoids $S \cap K_{n} \Rightarrow$ almost every trajectory avoids S.

Corollary

If u is a suitable weak solution corresponding to $u_{0} \in H \cap H^{1 / 2}(\Omega)$ then almost every initial condition $a \in \Omega$ gives rise to a unique particle trajectory, which is a C^{1} function of time.
$u_{0} \in H^{1 / 2}(\Omega)$ implies that trajectories are unique on $[0, T)$ (for some $T>0$).
Let $\xi_{a}(t)$ be a trajectory that avoids the singular set for all $t \geq 0$, and suppose that there are two trajectories that pass through the space-time point $\left(\xi_{a}(t), t\right)$.

The solution of $\dot{\xi}=u(\xi, t)$ is unique at $\left(\xi_{a}(t), t\right)$, a contradiction.
Since u is also Hölder continuous in (x, t) on the complement of S, it follows that $\xi_{a}(\cdot)$ is a C^{1} function of time.

- Can one weaken the assumption on the initial condition to $u_{0} \in L^{2}$ (problem is just 'at $t=0$ ')?
- Can one improve the bound on the box-counting dimension of the singular set? (Yes, Kukavica has a finer result, $135 / 82 \simeq 1.646 \ldots$; cf. $5 / 3=1.666 \ldots$)
- What are the minimal conditions for almost everywhere uniqueness of ODEs?

