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Lagrangian trajectories

We want to investigate uniqueness of solutions of the ODE for Lagrangian
‘particle’ trajectories

dξ/dt = u(ξ, t) ξ(0) = a ∈ Ω,

where u is a weak solution of the Navier–Stokes equations

ut − ∆u + (u · ∇)u + ∇p = 0 ∇ · u = 0 u(x, 0) = u0(x)

for x ∈ Ω (periodic or Dirichlet boundary conditions).

u0 ∈ H1/2: a unique u ∈ L∞(0, T ; H1/2) ∩ L2(0, T ;H3/2) for some
T > 0 (Fujita & Kato, 1964), and every initial condition a ∈ Ω gives rise
to a unique solution ξa(t) on [0, T ) (Chemin & Lerner, 1995; Dashti &
JCR, 2009);

continue u as a suitable weak solution for t ≥ T ; then almost every initial
condition a ∈ Ω gives rise to a unique solution ξa(t) for all t ≥ 0
(Sadowski & JCR, 2009).



Everywhere uniqueness for flows in R
3

Take two solutions X(t) and Y (t) of dX/dt = u(X, t) with the same initial
condition.

Then
d

dt
|X − Y | ≤ |u(X, t) − u(Y, t)|.

Since (Zuazua, 2002)

|f(X) − f(Y )| ≤ c‖f‖H5/2 |X − Y |(− log |X − Y |)1/2

we have, with W = X − Y ,

d

dt
|W | ≤ ‖u(t)‖H5/2 |W |(− log |W |)1/2.

Integrate from s to t:

−(− log |W (t)|)1/2 ≤ −(− log |W (s)|)1/2 + c

∫ t

s

‖u(r)‖H2 dr.

If u ∈ L1(0, T ; H5/2) then we could simply let s ↓ 0 to obtain uniqueness. But
this is not true, even for the heat equation, when u0 ∈ H1/2.



Theorem (Dashti & JCR)

Suppose that Ω ⊂ R
d, and for some p > 1

u ∈ Lp(0, T ;H(d/2)−1) and
√

tu ∈ L2(0, T ;H(d/2)+1).

Then for every a ∈ Ω there exists a unique solution of

dX/dt = u(X, t) for t ∈ [0, T ).



Theorem (Dashti & JCR)

Suppose that Ω ⊂ R
3,

u ∈ L2(0, T ;H1/2) and
√

tu ∈ L2(0, T ;H5/2).

Then for every a ∈ Ω there exists a unique solution of

dX/dt = u(X, t) for t ∈ [0, T ).



Theorem (Dashti & JCR)

Suppose that Ω ⊂ R
3,

u ∈ L2(0, T ;H1/2) and
√

tu ∈ L2(0, T ;H5/2).

Then for every a ∈ Ω there exists a unique solution of

dX/dt = u(X, t) for t ∈ [0, T ).

Note that under the assumptions of the theorem, for any 0 < r < 1

∫ T

0
‖u(t)‖r

H5/2 dt ≤
∫ T

0
t−r/2tr/2‖u(t)‖H5/2 dr

≤
(∫ T

0
t−r/(2−r) dt

)1−(r/2) (∫ T

0
t‖u(t)‖2

H5/2 dt

)r/2

,

i.e. u ∈ Lr(0, T ;H5/2).



−(− log |W (t)|)1/2 ≤ −(− log |W (s)|)1/2 + c

∫ t

s

‖u(r)‖H5/2 dr.

From d|W |/dt ≤ 2‖u(t)‖∞ we have

|W (t)| ≤ 2

∫ t

0

‖u(r)‖∞ dr ≤ c

∫ t

0

‖u(r)‖1/2

H1/2
‖u(r)‖1/2

H5/2
dr

= c

∫ t

0

r−1/4‖u(r)‖1/2

H1/2
r1/4‖u(r)‖1/2

H5/2
dr

≤ c

(∫ t

0

r−1/2 dr

)1/2 (∫ t

0

‖u(r)‖2
H1/2 dr

)1/4 (∫ t

0

r‖u(r)‖2
H5/2 dr

)1/4

≤ ct1/4‖u‖1/2

L2(0,t;H1/2)
‖
√

tu‖1/4

L2(0,t;H5/2)
.

So
(− log |W (s)|)1/2 ≥ α(− log s)1/2

for some fixed α > 0 for all s ≤ s0, s0 small.



−(− log |W (t)|)1/2 ≤ −α(− log s)1/2 + c

∫ t

s

‖u(r)‖H5/2 dr.

∫ t

s

‖u(r)‖H5/2 dr =

∫ t

s

r−1/2r1/2‖u(r)‖H5/2 dr

≤
(∫ t

s

r−1 dr

)1/2 (∫ t

s

r‖u(r)‖2
H5/2 dr

)1/2

= (log t − log s)1/2

(∫ t

0

r‖u(r)‖2
H5/2 dr

)1/2

.

For t sufficiently small, t < t∗,

∫ t

0

r‖u(r)‖2
H5/2 dr < α2/4 :

−(− log |W (t)|)1/2 ≤ −α(− log s)1/2 +
α

2
(log t − log s)1/2.

Now let s → 0 to deduce that |W (t)| = 0.



Checking conditions for 3D Navier–Stokes

Consider here periodic BCs for simplicity. Take the inner product of the
equation with t∆u in H1/2, and then

1

2

d

dt

(
t‖u‖2

3/2

)
− 1

2
‖u‖2

3/2 + νt‖u‖2
5/2 ≤ t((u · ∇)u, ∆u))1/2.

Estimating the RHS using standard inequalities yields

d

dt

(
t‖u‖2

3/2

)
− ‖u‖2

3/2 + νt‖u‖2
5/2 ≤ ct‖u‖4

3/2.

Multiplying by E(t) = exp(−c
∫ t

0
‖u(s)‖2

3/2 ds) gives

d

dt

(
t‖u(t)‖2

3/2E(t)
)
+ νtE(t)‖u‖2

5/2 ≤ E(t)‖u‖2
3/2.

Integrating between 0 and t and multiplying by E(t)−1 gives

ν

∫ t

0

s‖u(s)‖2
5/2 ds ≤

(∫ t

0

‖u(s)‖2
3/2 ds

)

exp

(

c

∫ t

0

‖u(s)‖2
3/2 ds

)

< ∞.



3D: Lagrangian mapping of Foias-Guillopé-Temam (1985)

For any weak solution u, for every a ∈ Ω there exists a continuous function
ξ : [0, T ] → Ω̄ satisfying

ξ(t) = a +

∫ t

0

u(ξ(s), s) ds. (∗)

Uses the fact that u ∈ L1(0, T ;L∞(Ω)) (FGT, 1982) and that u is regular on a
collection of open intervals whose union has full measure (Leray, 1934).

Furthermore there exists at least one ‘solution mapping’ Φ : Ω × [0, T ] → Ω
such that

(i) ξa(·) = Φ(a, ·) satisfies (∗),
(ii) ξa(·) ∈ W 1,1(0, T ),

(iii) the mapping a 7→ Φ(a, ·) belongs to L∞(Ω; C([0, T ], Ω̄)), and

(iv) Φ is volume-preserving: for any Borel set B ⊂ Ω,

µ[Φ(·, t)−1(B)] = µ(B),

where µ denotes the Lebesgue measure on R
3.



Aside – generalised flows of Di Perna & Lions (1989)

With u ∈ L1(0, T ; W 1,1), for each θ0 ∈ L∞(Q), there exists a unique
‘renormalised solution’ θ(t; θ0) ∈ L∞(R × Q) of θt + (u · ∇)β = 0, i.e.

(β(θ))t + (u · ∇)β(θ) = 0 and β(θ(0)) = β(θ0)

for a large class of well-behaved functions β.

There is a one-to-one correspondence between such θs and generalised flows of
ξ̇ = u(ξ, t) (Lions, 1998): θ 7→ Φ via

[Φ(t, a)]i = [θ(t; xi)](a).

In particular this proves the uniqueness of the FGT solution mapping.

Unique flow 6⇒ almost everywhere uniqueness: for ẋ = |x|1/2 there is a unique
flow defined for all t ∈ R, corresponding to the solution x(t) = t|t|/4, but
uniqueness nowhere (Beck, 1973).



Partial regularity – box-counting dimension of singular set

Take a suitable weak solution with p ∈ L5/3(Ω× (0, T )) (Sohr-von Wahl, 1986).

Theorem (Caffarelli, Kohn, & Nirenberg, 1982; Ladyzenskaya & Seregin, 1999)

There is an absolute constant α > 0 such that if (u, p) is a suitable weak

solution, r is sufficiently small that Qr(x, t) ⊂ Ω × (0, T ), and

r−2/3

(
∫

Qr(x,t)

|u|3
)1/3

+ r−4/3

(
∫

Qr(x,t)

|p|3/2

)2/3

< α,

then u(x, t) is Hölder continuous in a neighbourhood of (x, t).

In the statement of the theorem,

Qr(x, t) = {(y, s) ∈ Ω × (0, T ) : |y − x| < r, |s − t| < r2}.

Theorem (L & S)

Let S be the ‘singular set’ of points for which u(x, t) is not Hölder continuous

in a neighbourhood of (x, t). Then P 1(S) = 0 ⇒ dH(S) ≤ 1.



The box-counting dimension of X, dbox(X), is given by

lim sup
ǫ→0

log N(X, ǫ)

− log ǫ

where N(X, ǫ) is the minimum number of ǫ-balls that cover X.



The box-counting dimension of X, dbox(X), is given by

lim sup
ǫ→0

log N(X, ǫ)

− log ǫ

where N(X, ǫ) is the maximum number of ǫ-separated points in X.



The box-counting dimension of X, dbox(X), is given by

lim sup
ǫ→0

log N(X, ǫ)

− log ǫ

where N(X, ǫ) is the maximum number of ǫ-separated points in X.

Theorem (JCR & Sadowski)

If S denotes the singular set of a suitable weak solution (u, p) then

dbox(S ∩ K) ≤ 5/3 for any compact subset K of Ω × (0, T ).

If (x, t) ∈ S then

r−2/3

(∫

Qr

|u|3
)1/3

+ r−4/3

(∫

Qr

|p|3/2

)2/3

> α

for all r ≥ 0. By Hölder’s inequality
∫

Qr

|u|10/3 +

∫

Qr

|p|5/3 > c3r
5/3.

Note: u ∈ L10/3(Ω × (0, T )) for any weak solution.



If dbox(S ∩ K) > 5/3 fix d with 5/3 < d < dbox(S):

there exists a decreasing sequence ǫj → 0 such that
Nj = N(S ∩ K, ǫj) ≥ ǫ−d

j ;

there exists an r0 > 0 such that Qr(x, t) ⊂ Ω × (0, T ) for all
r < r0 and every (x, t) ∈ K.

Let {(xi, ti)}Nj

i=1 be a collection of ǫ-separated points in S ∩ K.

Take j large enough that ǫj < r0, and then

∫

Ω×(0,T )
|u|10/3 + |p|5/3

︸ ︷︷ ︸

finite

≥
Nj∑

i=1

∫

Qǫ(xi,ti)
|u|10/3+|p|5/3 ≥ ǫ−d

j × c3ǫ
5/3
j

︸ ︷︷ ︸

→∞ as j→∞

.

The contradiction implies that dbox(S ∩ K) ≤ 5/3 as claimed.



Theorem (JCR & WS, after Aizenman, 1978; Cipriano & Cruzeiro, 2005)

Let Ω ⊂ R
d, and let Φ : Ω × [0, T ] → Ω be a volume-preserving solution

mapping corresponding to a vector field u with u ∈ L1(0, T ;L∞(Ω)) for every

T > 0. If X is a compact subset of Ω with dbox(X) < d − 1 then for almost

every initial condition a ∈ Ω, Φ(t, a) /∈ X for all t ≥ 0.

Choose T > 0 and fix N ∈ N; write tj = jT/N , and consider the problem of
avoiding X on the time interval [tk, tk+1] for some k ∈ {0, . . . , N − 1}. Since

ξa(t) − ξa(s) =

∫ t

s

u(ξa(r), r) dr,

it follows that for all t ∈ [tk, tk+1],

|ξa(t) − ξa(tk)| ≤ δk :=

∫ tk+1

tk

‖u(t)‖∞ dt.

So if ξa(t) ∈ X for some t ∈ [tk, tk+1], we must have

ξa(tk) ∈ O(X, δk).



What is µ(O(X, δ))?



What is µ(O(X, δ))?

Recall

dbox(X) = lim sup
ǫ→0

log N(X, ǫ)

− log ǫ
,

where N(X, ǫ) is the minimum number of ǫ-balls that cover X.



What is µ(O(X, δ))?

Recall

dbox(X) = lim sup
ǫ→0

log N(X, ǫ)

− log ǫ
,

where N(X, ǫ) is the minimum number of ǫ-balls that cover X.

For any ρ > dbox(X), for all δ sufficiently small

N(X, δ) < δ−ρ

and

X ⊂
N(X,δ)
⋃

j=1

B(xj , δ) ⇒ O(X, δ) ⊂
N(X,δ)
⋃

j=1

B(xj , 2δ).

Thus
µ(O(X, δ)) ≤ δ−ρωn(2δ)n = cnδn−ρ.



What is µ(O(X, δ))?

Recall

dbox(X) = lim sup
ǫ→0

log N(X, ǫ)

− log ǫ
,

where N(X, ǫ) is the minimum number of ǫ-balls that cover X.

For any ρ > dbox(X), for all δ sufficiently small

N(X, δ) < δ−ρ

and

X ⊂
N(X,δ)
⋃

j=1

B(xj , δ) ⇒ O(X, δ) ⊂
N(X,δ)
⋃

j=1

B(xj , 2δ).

Thus
µ(O(X, δ)) ≤ δ−ρωn(2δ)n = cnδn−ρ.

dbox(X) < n − 1 ⇒ µ(O(X, δ)) ≤ cnδr for some r > 1.



Φ is measure-preserving, so

µ{a : ξa(tk) ∈ O(X, δk)} ≤ cnδr
k.

Thus for any choice of N , the measure of initial conditions ΩX for which
ξa(t) ∈ X for some t ∈ [0, T ] is bounded by

cn

N−1∑

k=0

δr
k = cn

N−1∑

k=0

(∫ tk+1

tk

‖u(s)‖∞ ds

)r

. (†)

Since u ∈ L1(0, T ; L∞) its integral is absolutely continuous. In particular,
given an ǫ > 0, there exists an N ∈ N such that for each k ∈ {0, . . . , N − 1},

∫ tk+1

tk

‖u(s)‖∞ ds < ǫ.

Using this in (†) it follows that

µ(ΩX ) ≤ cnǫr−1

∫ T

0

‖u(s)‖∞ ds.

Since r > 1 and both ǫ and T are arbitrary this completes the proof.



Theorem

If u is a suitable weak solution and Φ is a corresponding solution mapping then

for almost every a ∈ Ω, Φ(a, t) /∈ S for all t ≥ 0 .

Fix T > 0 and let Ω × (0, T ) =
⋃

∞

n=1 Kn with Kn compact.

dbox(P [S ∩ Kn]) ≤ dbox(S ∩ Kn) ≤ 5/3.

increasing t

S ⊂ Ω × (0, T )

Ω

PS ⊂ Ω

Thus almost every trajectory avoids P (S ∩ Kn) for all t ≥ 0, and so in
particular avoids S ∩ Kn ⇒ almost every trajectory avoids S.



Corollary

If u is a suitable weak solution corresponding to u0 ∈ H ∩ H1/2(Ω) then

almost every initial condition a ∈ Ω gives rise to a unique particle trajectory,

which is a C1 function of time.

u0 ∈ H1/2(Ω) implies that trajectories are unique on [0, T ) (for some T > 0).

Let ξa(t) be a trajectory that avoids the singular set for all t ≥ 0, and suppose
that there are two trajectories that pass through the space-time point (ξa(t), t).

x

x

x

x

x

x

u ∈ L∞

x ⇒ u ∈ C∞

x (Serrin, 1962)

(ξa(t), t)

a

t = T

The solution of ξ̇ = u(ξ, t) is unique at (ξa(t), t), a contradiction.

Since u is also Hölder continuous in (x, t) on the complement of S, it follows
that ξa(·) is a C1 function of time.



Can one weaken the assumption on the initial condition to
u0 ∈ L2 (problem is just ‘at t = 0’)?

Can one improve the bound on the box-counting dimension of
the singular set? (Yes, Kukavica has a finer result,
135/82 ≃ 1.646 . . .; cf. 5/3 = 1.666 . . .)

What are the minimal conditions for almost everywhere
uniqueness of ODEs?


