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Lagrangian trajectories

We want to investigate uniqueness of solutions of the ODE for Lagrangian
‘particle’ trajectories

dg/dt =u(é,t)  £(0)=a€Q,
where w is a weak solution of the Navier—Stokes equations

u —Au+ (u-V)u+Vp=0 V.-u=0 u(z,0) = uo(x)

for z € Q (periodic or Dirichlet boundary conditions).

® wo € H'?: a unique u € LOO(O,T;HI/Q) OLQ(O,T;H3/2) for some
T > 0 (Fujita & Kato, 1964), and every initial condition a € Q gives rise
to a unique solution &,(t) on [0,T") (Chemin & Lerner, 1995; Dashti &
JCR, 2009);

@ continue u as a suitable weak solution for t > T'; then almost every initial
condition a € ) gives rise to a unique solution &,(t) for all ¢ > 0
(Sadowski & JCR, 2009).



Everywhere uniqueness for flows in R?

Take two solutions X (t) and Y (¢) of dX/dt = u(X, t) with the same initial
condition. J

Then d
SIX = Y] < Ju(X, )~ u(Y )

Since (Zuazua, 2002)
[F(X) = F()] < ellfll a2 | X = Y(=log |X —Y])'/?
we have, with W = X -V,
d
WIS (@)l gs/2| W (— log W) /2.

Integrate from s to ¢:

—(—log |[W (t)])!/* < —(—log|W(s)])"/* + C/t l[w(r)l| g2 dr. J

If w e L'(0,T; H'?) then we could simply let s | 0 to obtain uniqueness. But
this is not true, even for the heat equation, when uo € H/?.



Theorem (Dashti & JCR)

Suppose that Q C R%, and for some p > 1
u € Lp(O,T’ H(d/2)*1) and \/Eu e LQ(O,T, H(d/2)+1)_

Then for every a € () there exists a unique solution of
dX/dt = u(X,t) fort € [0,T).




Theorem (Dashti & JCR)
Suppose that Q C R3,

we L2(0,T;HY?)  and  Vitue L*(0,T; H?).

Then for every a € () there exists a unique solution of
dX/dt = u(X,t) fort € [0,T).




Theorem (Dashti & JCR)
Suppose that Q C R3,

we L2(0,T;HY?)  and  Vitue L*(0,T; H?).

Then for every a € () there exists a unique solution of
dX/dt = u(X,t) fort € [0,T).

-

Note that under the assumptions of the theorem, for any 0 < r < 1

T T
/0 () [Ty dt < /0 £ 262 (1) oy

T 1—(r/2) T
g( / t—r/@—r)dt) ( / t\\u(t)\\3{5/2dt>
0 0

ie.u e L(0,T; H?).

r/2

)



(= log W2 < —(~log [W(s))* + ¢ / () 1572 J
From d|W|/dt < 2||u(t)||cc we have
t t
W) <2 / u(r) oo dr < ¢ / (L2 ) 12, dr
0 0

t
— 1/2 1/2
= [ L [ dr
0

t 1/2 t 1/4 t
Sc( / r*/?dr) ( JALCI dr) ( PRI dr)
0 0 0

1/4 1/2 1/4
< et Ml g m IVE ol 4 sy

1/4

So
—log|[W(s)])"/? > a(—logs)"/?

for some fixed o > 0 for all s < sp, s small.



t
—(—log W ())/? < —a(—logs)/? + ¢ / ()| o2 dr. J

ot ot
1 orn ar = [0 ) g

t 1/2 t 1/2
< (/ — dr) (/ rHu(r)st/z dr)
t 1/2
= (logt — logs)l/2 (/ 7'||u(r)|\§{5/2 dr> .
0

For ¢ sufficiently small, ¢t < t*,

t
/ Pl sz dr < /4
0

—(=log |W(t))*? < —a(—log s)"/? + %(logt —log s)'/2. J

Now let s — 0 to deduce that |W (t)| = 0.



Checking conditions for 3D Navier—Stokes

Consider here periodic BCs for simplicity. Take the inner product of the
equation with tAu in H'/2, and then

1d 1
537 (lells2) = Sllulli/e + vllulls/e < (- V)u, Au)s .

Estimating the RHS using standard inequalities yields
d

3 (tlullz/2) = llull3/2 + vtlluls2 < ctlulls2.
Multiplying by E(t) = exp( cfo lu(s)3,2 ds) gives

d
3 (@ 32E®) + vtE®)|[ull3/2 < B®)|ulli/2

Integrating between 0 and t and multiplying by E(t)™" gives

t t t
o [l < ([ luaas) e (o [ a2 as) <
0 0 0



3D: Lagrangian mapping of Foias-Guillopé-Temam (1985)

For any weak solution u, for every a € 2 there exists a continuous function
£ :[0,T] — Q satisfying

ew=a+ [ Cule(s), ) ds. (*)

Uses the fact that u € L' (0, T; L>(Q)) (FGT, 1982) and that v is regular on a
collection of open intervals whose union has full measure (Leray, 1934).

Furthermore there exists at least one ‘solution mapping’ ® : Q x [0,7] — Q
such that

(i) &u(-) = ®(a,-) satisfies (x),

(i) &(-) € WHH(0,T),
(iii) the mapping a — ®(a,-) belongs to L>°(£; C([0, T],£Y)), and
(iv) @ is volume-preserving: for any Borel set B C €,

ul@(, 1) (B)] = u(B),

where yi denotes the Lebesgue measure on R3.



Aside — generalised flows of Di Perna & Lions (1989)

With v € L*(0,T; W), for each 6y € L°°(Q), there exists a unique
‘renormalised solution’ 0(t;600) € L= (R X Q) of 0 + (u- V)3 =0, i.e.

(B(0))e + (u-V)B(0) =0 and  B(6(0)) = B(6o)
for a large class of well-behaved functions 3.

There is a one-to-one correspondence between such s and generalised flows of
& =u(¢,t) (Lions, 1998): 0 — & via

[@(t, a)]; = [0(t; z3)](a).
In particular this proves the uniqueness of the FGT solution mapping.

Unique flow % almost everywhere uniqueness: for & = |ar:|1/2 there is a unique
flow defined for all ¢ € R, corresponding to the solution x(t) = t|t|/4, but
uniqueness nowhere (Beck, 1973).



Partial regularity — box-counting dimension of singular set

Take a suitable weak solution with p € L3/3(Q x (0,T)) (Sohr-von Wahl, 1986).

Theorem (Caffarelli, Kohn, & Nirenberg, 1982; Ladyzenskaya & Seregin, 1999)

There is an absolute constant o > 0 such that if (u,p) is a suitable weak
solution, r is sufficiently small that Q,(x,t) C Q x (0,T), and

then u(z,t) is Hélder continuous in a neighbourhood of (z,t).

In the statement of the theorem,

Qr(z,t) ={(y,5) € Ax (0,T): |y —a| <7, |s—1t|<r’}.

Theorem (L & S)

Let S be the ‘singular set’ of points for which u(x,t) is not Hélder continuous
in a neighbourhood of (x,t). Then P'(S) =0 = du(S) < 1.




The box-counting dimension of X, dpox(X), is given by

lim sup log N(X, ¢)
e—0 —loge

where N (X, ¢€) is the minimum number of e-balls that cover X.



The box-counting dimension of X, dpox(X), is given by

lim sup log N(X, ¢)
e—0 —loge

where N (X, ¢€) is the maximum number of e-separated points in X.



The box-counting dimension of X, dpox(X), is given by

lim sup log N(X, ¢)
€0 —loge

where N (X, €) is the maximum number of e-separated points in X.

Theorem (JCR & Sadowski)

If S denotes the singular set of a suitable weak solution (u,p) then
dbox (S N K) < 5/3 for any compact subset K of Q x (0,T).

If (z,t) € S then

1/3 2/3
7"72/3 (/ |u|3) + 7"74/3 (/ |p|3/2) > a
Qr Qr

for all 7 > 0. By Holder's inequality

/ |u|10/3 +/‘ |p|5/3 > C3T'5/3.
Q Q

T r

Note: u € L'%3(Q x (0,T)) for any weak solution.



If dpox(SNK) >5/3 fix dwith 5/3 < d < dpex(95):
@ there exists a decreasing sequence €¢; — 0 such that
N; =N(SNK,e) > e;d'

@ there exists an rg > 0 such that Q,(z,t) C Q x (0,7 for all
r < rg and every (z,t) € K.

Let {(x4,t;) ﬁ\;jl be a collection of e-separated points in SN K.

Take j large enough that €; < 79, and then

J |u|1°/3+|p|5/3>2 [, P 2 G x
Qx(0,T

> exuz

—o00 aS j—oo
flnlte

The contradiction implies that dpox (S N K) < 5/3 as claimed.



Theorem (JCR & WS, after Aizenman, 1978; Cipriano & Cruzeiro, 2005)

Let Q CRY, and let ® : Q x [0,T] — Q be a volume-preserving solution
mapping corresponding to a vector field u with u € L*(0, T; L (Q)) for every
T > 0. If X is a compact subset of Q with dyox(X) < d — 1 then for almost
every initial condition a € Q, ®(t,a) ¢ X for all t > 0.

Choose T' > 0 and fix N € N; write t; = 57'/N, and consider the problem of
avoiding X on the time interval [tx,tx+1] for some k € {0,..., N — 1}. Since

€a(t) — £a(s) = / w(€a(r), ) dr,

it follows that for all ¢ € [tk, tkt1],

alt) ~ Ealt] < 1= | ) dt.

tg

So if £4(t) € X for some ¢ € [ty, tr+1], we must have

&a(tr) € O(X, 0r).



What is (O(X,0))?



What is u(O(X, §))?

Recall

doox(X) = lim sup BN X ©
e—0 —loge

where N (X, ¢€) is the minimum number of e-balls that cover X.



What is (O(X,0))?

Recall

doox(X) = lim sup BN X ©
e—0 —loge

where N (X, ¢€) is the minimum number of e-balls that cover X.

For any p > dpox(X), for all ¢ sufficiently small

N(X,0)<d”
and
N(X,d) N(X,6)
xc |J B(@;0) = oKX 5)c |J Blay,20).
j=1 j=1
Thus

w(O(X,8)) <6 Pwn(20)" = cnd™ ™"



What is (O(X,0))?

Recall

doox(X) = lim sup BN X ©
e—0 —loge

where N (X, ¢€) is the minimum number of e-balls that cover X.

For any p > dpox(X), for all ¢ sufficiently small

N(X,0)<d”
and
N(X,d) N(X,6)
xc |J B(@;0) = oKX 5)c |J Blay,20).
j=1 j=1
Thus

w(O(X,8)) <6 Pwn(20)" = cnd™ ™"

doox(X) <n—-1 = p(O(X,d)) <cpd" for somer > 1. J



® is measure-preserving, so
ula: &a(tn) € O(X, 1)} < cndi.

Thus for any choice of N, the measure of initial conditions 2x for which
&a(t) € X for some ¢ € [0,T] is bounded by

N-1
Cn E 0p = Cn
k=0

Since u € L*(0,T; L) its integral is absolutely continuous. In particular,
given an € > 0, there exists an N € N such that for each k € {0,..., N — 1},

N-1

> (f sl ds) (h

k=0

tet1
/ lu(s)]|oo ds < e.
tr

Using this in (}) it follows that

T
1(Qx) < ene’ / u(5)|oo ds.
0

Since » > 1 and both € and T are arbitrary this completes the proof.



If u is a suitable weak solution and ® is a corresponding solution mapping then
for almost every a € Q, ®(a,t) ¢ S for allt >0 .

Fix T > 0 and let Q x (0,T) = J;—, Kn with K, compact.
dbOX(P[S N Kn]) < dbox(S N K") < 5/3.

PScQ ScQx(0,7) _
T~
—
U
Q
increasing ¢

Thus almost every trajectory avoids P(S N K) for all ¢ > 0, and so in
particular avoids S N K, = almost every trajectory avoids S.



If u is a suitable weak solution corresponding to ug € H N HY?(Q) then
almost every initial condition a € Q) gives rise to a unique particle trajectory,
which is a C* function of time.

uo € H'?(Q) implies that trajectories are unique on [0, T) (for some T > 0).

Let &,(t) be a trajectory that avoids the singular set for all ¢ > 0, and suppose
that there are two trajectories that pass through the space-time point (£4(¢),t).

u € Ly = u e Cg° (Serrin, 1962)

The solution of £ = u(&,t) is unique at (£4(t),t), a contradiction.

Since w is also Hélder continuous in (z,t) on the complement of S, it follows
that &,(+) is a C* function of time.



@ Can one weaken the assumption on the initial condition to
ug € L? (problem is just ‘at t = 0')?
@ Can one improve the bound on the box-counting dimension of

the singular set? (Yes, Kukavica has a finer result,
135/82 ~ 1.646.. . .; cf. 5/3 = 1.666...)

@ What are the minimal conditions for almost everywhere
uniqueness of ODEs?



