An Introduction to Shell
Scripting

Paul Brown
SBIDER & Bioinformatics Research Technology Platform

p.e.brown@warwick.ac.uk

What is the shell?

e A command line user interface for Unix-like

operating systems.

* Interactive and scripting modes

What is the Bash Shell?

* Bourne Again SHell, replacing the older Bourne

shell in 1989
* Default shell on most Linux systems and MacQOS

* Now available on Windows

https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-

bash-shell-on-windows-10/

When to use the shell

* As a wrapper for a workflow
* When doing lots of filesystem access

* When low level access to hardware is required

When not to use the shell

Shell scripting is of much less use when any of

the following are required
* Complex calculations
* A graphical user interface

* Any kind of debugging beyond very basic

Starting up

» Often opened via the graphical desktop

» Startup files are read to provide user

customisations, eqg .bash_profile, .bashrc

Some useful commands

nero:var paulbrown$ cd $HOME/bin

nero:~ paulbrown$ pwd
/home/paulbrown/bin
Nero:~ paulbrown$ cd ..
nero:~ paulbrown$ pwd
/home/paulbrown
nero:~ paulbrown$ 1s -1
drwxr-xr-x 29 paulbrown
93 paulbrown
-rW-r--r-- 1 paulbrown
lrwxr-xr-x 1 paulbrown

/home/paulbrown/bin/meme

staff
staff
staff
staff

928 30 Nov 2017 Android
2976 1 Nov 12:34 Documents
© 14 Jul 2015 mcmc.csv
25 20 Sep 2016 meme ->

nero:~ paulbrown$ mv mcmc.csv mcmc 101121.csv

nero:~ paulbrown$ cp -r Android Android.backup

nero:~ paulbrown$ rm -r Android

home

paulbrown

home

paulbrown

meme bin

N\
N
N

2|
meme

home

paulbrown

Changing file and directory
permissions

r—read, w —write, x - execute

Owner Group Other

|1
o

Trw—rw-r--. 1 admin admin 16 Jul 1 2021 TestData

File type file directory
_regular file

d directory
1 symbolic link write Alter contents | Add/delete file/sub-folder

read Read contents | Display content with Is

execute | Runasa cd into directory/access
program content with Is

Changing file and directory
permissions

* Change these with chmod

* This command takes the —R parameter when

operating on directory content

Changing file and directory
permissions

* Permissions represented by a 3 digit octal number

e Common values include

777 FWXIWXIwX

755 FWXI-Xr-X

Changing file and directory

permissions
* Permissions can be set individually as well

chmod [ugo][+-][rwx] filename

Examples
chmod u+x script.sh
chmod go+rx bindir

chmod -R go+r bindir

Startup files

.bash_profile, .bashrc
Need to use ‘ls -a’ to see these files

Put customisations in .bashrc as this is run by

.bash_profile

Put them after the comment line to avoid

being overwritten by system-wide files

Aliases

e Shortcuts to common commands

* A way of enforcing a specific way of running a

command

alias matlab=“matlab -nodesktop -nodisplay”

alias trimmomatic="java -jar /usr/local/bin/trimmomatic-0.39.jar"

Environment variables

Variable can be set or appended to
You can also create new variables
Conventionally, always use block capitals

Remember $ when referring to existing value

Environment variables

* Use the export command
export PATH=$PATH:$HOME/bin

export PATH=$HOME/bin:$PATH

Environment Variables

Nero:~paulbrown$ echo $PATH
/bin:/usr/bin:/usr/sbin:/sbin:/usr/local/bin:~/bi
n
Nero:~paulbrown$ meme
-bash: meme: command not found
Nero:~paulbrown$ export
PATH=$PATH: /usr/local/meme/bin
Nero:~paulbrown$ echo $PATH
/bin:/usr/bin:/usr/sbin:/sbin:/usr/local/bin:~/bi
n:/usr/local/meme/bin
Nero:~paulbrown$ meme
USAGE:

meme <dataset> [optional arguments]

More on variables

* There are no variable types
* VARNAME is a reference
* ${VARNAME} is the value held there

Nero:~paulbrown$ echo PATH
PATH

* Can have arrays
fruits=$(‘Apple’, ‘Banana’, ‘Orange’)
echo s${fruits[o]}

Using quotation marks

* Important to know the difference between single and double quotes

* Expressions are evaluated inside "...", but not inside *...

paul-browns-macbook:~ paulbrown$ NAME="Paul"
paul-browns-macbook:~ paulbrown$ echo "Hello $NAME"
Hello Paul

paul-browns-macbook:~ paulbrown$ echo 'Hello $NAME'
Hello $NAME

Working with files and directories

Many useful commands
Use cat to quickly view the contents of small files

Use less to scroll though a larger file

-N option to display line numbers

Use head/tail todisplay the start/end of a file

-n option specifies the number of lines

Searching files and directories
using grep

grep stands for Global Regular Expression Print

Can be used to

— Test for the presence/absence of a word or

pattern

— Names of files containing a word or pattern

Searching files and directories
using grep

Useful options are
* -iignore case
-v invert (print non-matching lines)
-c display only count of lines that match

-A number and —B number Print number of lines before

and after matching line
-r recursively search all files in a directory

-1 display names of files with a match

Searching files and directories
using grep

* The simplest use is to print matching lines
within a file

grep -B 2 -A 2 ‘paulbrown’ /var/log/secure

 Orfind files that contain a match

grep -r -1 “paulbrown” /var/log

Writing files

* A number of interactive text editors, eq vi,

nano
* Also use re-direction >, >>

* echo “"some content” >> script.sh

GNU nano 2.0.6 File: software.html

Khtml >
<head>
<titleswarwick Systems Biology Centre</titlex>
</head:>
<body>

<p>welcome to our software downloads page. The following packages are currently
available</p>

<p> </p>

<hd>Network Interference Analysis and Correction Software (¥ing wang, Miriam L. Gifford & Nigel$
<p>An implementation of the method described in our paper "Regulator interference causes 1ink under$
submitted to <izBioinformatics</i1>. This method defines causal networks corrected for the problem of
interference bhetween dynamically similar regulators within the context of a sparse Tlinear auto-regr$
model. Test data is provided within the NIACS software package.

Please see the file NIACS_Documentation.pdf contained within the package for details on how to run §
<p><i>Requirements:</i> The R programming Tang$

<p>
<input type="button" wvalue="Download" onclick = "window.location="http://wshc.warwick.ac.uk$
</p>

<p> </p>
<h4>5ASSy (Sensitivity analysis Software for Systems; Mirela pomijan, Paul
Brown, Boris Shulgin & David Rand)</hd>
<p>This is a GUI based matlab toolbox for performing principal components
analysis of ODE models of gene networks. </p>
<p><i>Requirements:</i> matlab R2008a or
later, plus symbolic Mmath Toolbox</p>
<p>
<input type="bhutton" wvalue="Download" onclick="window. location="http://wshc.warwick.ac.uk/softwar$

<p>Updated Instruction mManual</p>

<p> </p>
<hd4>Bayesian Hierarchical Clustering for R (Richard S Savage, Katherine Heller, Yang Xu, Zoubin Gha$

e Get Help s8] writeout N rRead File N Prev Page N Cut Text e Cur Pos
o Exit i Justify v where Is Yy MNext Page il Uncut Text [To Spell

Redirection

* Input to and output from command can be re-

directed away from stdin and stdout

* Re-direct output to file

ls -1 > dircontent.txt

Re-direct input from file

sort -k5 -n < dircontent.txt

Redirection

Pipes are used to chain commands together so

the output of one becomes the input of the next

ls -1 | sort -k5 -n

tail -n 1000 logfile.log | sort | more

Command substitution

This allows the output of a command to be captured
and used piped back to be used as an argument for

something else, or to be captured in a variable

e Preferred way is to use $(...)

rm —f $(find . -name “*.txt”)

Arithmetic expansion

Use command substitution

paul-browns-macbook:~ paulbrown$ echo 2+3

2+3

paul-browns-macbook:~ paulbrown$ echo $(2+3)
-bash: 2+3: command not found
paul-browns-macbook:~ paulbrown$ echo $((2+3))
5

paul-browns-macbook:~ paulbrown$ a=$((2+3))
paul-browns-macbook:~ paulbrown$ echo $%a

5

Arithmetic expansion

Bash handles only integer types

paul-browns-macbook:~ paulbrown$ echo $((4/3))
1

Use ‘bc’ to perform calculations with floating point types

paul-browns-macbook:~ paulbrown$ echo 'scale=3;4/3° | bc
1.333

Remote Shells

* rsh (remote shell). Do not use, insecure

* ssh (secure shell, port 22)

paul-browns-macbook:~ paulbrown$ ssh nero.wsbc.warwick.ac.uk
paulbrown@nero.wsbc.warwick.ac.uk's password:

Last login: Mon Nov 4 23:10:34 2019 from 95.149.133.253
-sh-4.1$% hostname

nero.wsbc.warwick.ac.uk

* Also sftp and scp

scp -r /local/stuff paulbrown@nero.wsbc.warwick.ac.uk:$HOME

Shell scripting

* Conventionally, files have .sh extension
 Remember to set execute permission

* Script begins with

#!/bin/bash

Input arguments

Referred to as $1, $2 etc..
$# is the number of inputs
Same applies to functions

Use read to request user input

Conditionals

Surround an expression with [[... 1]
String operators: -z, -n, ==, !=, <, >, =
Numerical operators: -eq, -ne, -lt, -le, -gt, -ge

File operators: -e, -f, -d, -r, -w, -x

Conditionals

#!/bin/bash

if [[$# -1t 3]] ; then
echo “Not enough input arguments”
exit ©

elif [[$# -gt 5]] ; then
echo “Too many input arguments”
exit ©

else
echo “OK”

fi

Conditionals

* Can be chained together using logical operators &&, ||
#!/bin/bash

if [[$# -1t 3 11 [| [[$# -gt 5]1]; then
echo “Wrong number of input arguments”
exit ©

else
echo “0OK”

fi

* These operators allow conditional execution

mkdir newdir || echo “Cannot create directory”
mkdir newdir && touch newdir/newfile

While Loops

while read 1line; do
fields=(%${1line}) #expand to

array

done < infile

break and continue can be used within the
loop body

For loops

A for loop iterates a series of words in a string

for i in $(1s); do
echo $%$i
done

A C-style for loop can be created using
arithmetic expressions

for ((i = 0; i < 100; i++)); do
echo %$i
done

Range expression

for 1 in {1..10}; do Note: range includes final value
echo $i
done

Functions

myFunc() {
local localVar=“Hello ’%$1;

echo localVar;

}

myFunc “Paul”

Return values can be captured by command substitution

Text Processing

* Bash as a comprehensive set of time-saving

text processing functions.

* Be aware of these before attempting to write

your own

SOIt

Sorts lines of a file

Alphabetic or numeric sort

Can sort on columns eqg csv files

Can randomise rows as well

sort -n -k2 data.txt -o data.txt

uniq

* Remove duplicatesin a list

» Use after sort as it compares only adjacent
values

sort list.txt | unig > unique list.txt

comm

* Compare 2 files and print lines unique to each

and common to both, in 3 columns

* Cansuppress any of these outputs with -1, -2,

-3
comm -12 filel file2

* Translates or deletes characters

tr a-z A-Z < lowercase.txt > upper_ case.txt

tr -d _ <input.txt

* Removes section from each line of a file with

well defined columns

» Default delimiteris TAB, but can be changed

cat data.txt | cut -f1,5

paste

* Merges lines of files into columns with the

specified delimiter

paste -d, names.txt values.txt > scores.csv

Getting help

* man pages for most commands

* Huge amount on online resources, eg a good

cheat sheet at https://devhints.io/bash

