
Notes 7: Dynamic programming and Dijkstra’s algorithm

7.1 Optimal substructure and memoization
We have seen in Sec. 2.1 how the solution of certain problems can be expressed as a combination
the solutions of smaller copies of the same problem. This led us to the divide-and-conquer paradigm
which allowed us to write down some very succinct algorithms for solving problems like sorting,
searching, computing Fourier transforms etc. A problem that can be solved optimally by breaking
it into subproblems and then recursively finding the optimal solutions to the subproblems is said to
have optimal substructure.

Although divide-and-conquer algorithms are often very concise in terms of coding, for certain
types of problems they can be extremely inefficient in terms of run time. This is particularly the
case if the recursive subdivision into smaller and smaller problems frequently generates repeated
instances of the same problem applied to the same data. When two or more subproblems generated
by a recursive subdivision of a larger problem end up applying the same operations to the same input
data, the sub-problems are said to be overlapping. Divide-and-conquer algorithms work best when
all subproblems are non-overlapping. When a significant number of subproblems are overlapping, it
can be more efficient to adopt a strategy in which we solve each subproblem only once, store the
result and then look up the answer when the same subproblem recurs later in the calculation. The
process of storing results of certain calculations which occur frequently in order to speed up a larger
calculation is termed memoization. Memoization is an important tool in the design of algorithms
which allows the programmer to trade memory for speed.

To give a concrete example, consider the following recursive Python function to compute the nth

Fibonacci number:

Function to compute Fibonacci numbers by naive recursion
def F(n):

if n == 1 or n ==0 :
return n

else:
return F(n-1) + F(n-2)

At this point, it should be obvious how and why it works. Let us assess the efficiency of this function.
Using the same arguments as before, the computational complexity, F (n) satisfies the recursion
relation

F (n) = F (n− 1) + F (n− 2)

with starting conditions F (0) = 1 and F (1) = 1. Starting from the ansatz F (n) = xn and solving the
resulting quadratic equation for x, the solution to this recursion relation which satisfies the starting
conditions is

F (n) =
1√
5



�
1 +

√
5

2

�n+1

−
�
1−

√
5

2

�n+1

 ,

which clearly grows exponentially as n increases. At first sight this might seem surprising since
the obvious iterative algorithm for computing Fibonacci numbers is clearly O(n). The reason for the
poor scaling is that the recursive function F (n) generates an exponentially increasing number of
overlapping subproblems as the recursion proceeds. To see this consider the sequence of function

52

MA934 Numerical Methods Notes 7

Figure 7.1: Lin-Log plot showing the time required to compute the nth Fibonacci number using the two
algorithms described in the text.

calls which are made when computing F (5):

F (5) = F (4) + F (3)

= (F (3) + F (2)) + (F (2) + F (1))

= ((F (2) + F (1)) + (F (1) + F (0))) + ((F (1) + F (0)) + F (1))

= (((F (1) + F (0)) + F (1)) + (F (1) + F (0))) + ((F (1) + F (0)) + F (1)).

Sifting through this execution stack we see, for example, that F (2) was computed 3 times and F (3)
was computed twice. As n grows the duplication of sub-problems becomes sufficiently frequent to
result in an exponential time algorithm.

Let us now consider how memoization can be used to greatly speed up this algorithm by storing
the results of computations in memory and then looking up the answer when the same computation
occurs again later. In order to store the intermediate results, we use a special data structure known
as an associative array [1] (called memo in the Python code below). An associative array is a data
structure consisting of a set of key-value pairs where each allowed key appears at most once and
which supports the operations of addition, removal and modification of pairs in addition to a lookup
operation on the keys. In our case the keys will be integers, n, and the corresponding values will be
the Fibonacci numbers associated with these integers. Before calling the function, the associative
array memo is initialised with the pairs 0 : 1 and 1 : 1 corresponding to the first two Fibonacci numbers
(the base cases in the recursive version above). Here is the code:

Function to compute Fibonacci numbers by recursion with memoization

memo = {0:0, 1:1}

def F2(n):
if n not in memo :

memo[n] = F2(n-1) + F2(n-2)
return memo[n]

Notes 7: Dynamic programming and Dijkstra’s algorithm

MA934 Numerical Methods Notes 7

This is deceptively simple. If the key n is already stored it simply looks up the corresponding value
and returns it. If not, it computes it (using the same recursion as before), stores the result for future
use and returns the result. The run times of the two versions of the Fibonacci code are plotted as
a function of n in Fig. 7.1. The memoization version of the code actually runs in O(n) time. This is
because each sub-problem is computed only once.

In reality, one would not use either of these methods to compute Fibonacci numbers. This exercise
is purely pedagogical and intended to illustrate the fact that intelligently reusing previously computed
results can lead to hug efficiency gains in some problems. This is the feature which generalises far
beyond this simple example.

7.2 Dynamic programming
A common class of problems involves making sequences of decisions, each having a known cost
or benefit, such that the total cost of the sequence is minimized (or the total benefit is maximised).
Such problems often exhibit optimal substructure and are amenable to a solution technique called
dynamic programming (DP) which tries to take advantage of overlapping subproblems and solve
each subproblem only once.

Consider for example the following toy problem (the checkerboard problem). Consider a checker-
board with n × n squares and a cost-function c(i, j) which returns a positive cost associated with
square i, j (i being the row, j being the column). Here is an example of the 5 × 5 case. Row and
column indices are in bold on the left and bottom rows and costs, c(i, j), are in the interior of the
table.

5 2 1 4 10 10
4 3 5 1 4 1
3 2 3 7 3 1
2 4 2 3 2 1
1 0 0 0 0 0

1 2 3 4 5

The checker can start anywhere in row 1 and is only allowed to make the usual moves:

5
4
3
2 X X X
1 O

1 2 3 4 5

The objective is to find the sequence of moves which minimises the total cost of reaching row n. One
strategy would be to choose the move which has the smallest cost at each step. Such a strategy of
making locally optimal moves in the hope of finding a global optimum is called a greedy algorithm.
Greedy algorithms are usually not optimal but are often used as cheap and easy ways of getting "not-
too-bad" solutions. The above table of costs has been designed to set a trap for a greedy strategy
to illustrate how locally optimal moves need not necessarily lead to optimal or even near-optimal
solutions.

This problem exhibits optimal substructure. That is, the solution to the entire problem relies on
solutions to subproblems. Let us define a function q(i, j) as the minimum cost to reach square (i, j).
If we can find the values of this function for all the squares at rank n, we pick the minimum and follow
that path backwards to get the optimal path. Clearly that q(i, j) is equal to the minimum cost to get to
any of the three squares below it plus c(i, j). Mathematically:

q(i, j) =





∞ if j < 1 or j > n
0 if j = 1
min {q(i− 1, j − 1), q(i− 1, j), q(i− 1, j + 1)}+ c(i, j) otherwise

(7.1)

The first line is there to make it easier to write the function recursively (no special cases needed for
edges):

Notes 7: Dynamic programming and Dijkstra’s algorithm

MA934 Numerical Methods Notes 7

def q(i, j):
if j < 1 or j > n:

return infinity
else if i == 1:

return c(i, j)
else:

return min(q(i-1, j-1), q(i-1, j), q(i-1, j+1)) + c(i, j)

This function will work although, like the Fibonacci example above, it is very slow for large n since
recompute the same shortest paths over and over. We can compute it much faster in a bottom-
up fashion if we store path-costs in a two-dimensional array q[i, j] rather than using a function thus
avoiding recomputation. Before computing the cost of a path, we check the array q[i, j] to see if the
path cost is already there. In fact, if you had not learned about recursion, this is probably how you
would have instinctively coded up this problem anyway!

def computeMinimumCosts():
for i from 1 to n

q[1, i] = 0
for i from 1 to n

q[i, 0] = infinity
q[i, n + 1] = infinity

for i from 2 to n
for j from 1 to n

m := min(q[i-1, j-1], q[i-1, j], q[i-1, j+1])
q[i, j] := m + c(i, j)

Here is (I think) the contents of the array q[i,j] after running this function:

5 9 6 9 13 13
4 7 9 5 6 3
3 4 7 9 4 2
2 4 2 3 2 1
1 0 0 0 0 0

1 2 3 4 5

The optimal cost is therefore 6 and the optimal path can be reconstructed by reading backwards
through the set of predecessors of the optimal solution. This little problem illustrates the two key
features of DP: a forward sweep which stores at each node the cost of the best possible path to
reach that node followed by a backtracking stage which follows the precursors of the final optimal
state back through the different stages to reconstruct the optimal path. Note that the sequence
constructed from DP is globally optimal.

More generally, a problem is amenable to dynamic programming if it can be broken up into a
number of discrete stages and within each stage into a number of discrete states. Transitions occur
in a directed fashion from states in earlier stages to states in later stages and each transition has
an associated cost. The objective is to find the sequence of states going from a particular starting
state, i0, at stage 0 to a particular ending state, iN , at stage N which minimises the total cost. Such
problems are most naturally represented as a weighted directed graph with stages arranged from
left to right and edges representing allowed transitions between states in consecutive stages. This is
best represented as a picture:

Notes 7: Dynamic programming and Dijkstra’s algorithm

MA934 Numerical Methods Notes 7

The weight associated with an edge linking state j in stage i to state k in stage i + 1 is denoted by
wjk(i) (just written as integers near the associated edges in the picture). To make this concrete, in
the checkerboard example, the stages are the rows, the states are the columns, the edges are the
allowed moves from row i to row i + 1 and the weight of a given edge is the value of c(i, j) on the
square at which the move terminates.

The problem is solved by first making a forward sweep through the graph from left to right. As the
sweep proceeds, we label each vertex with a single integer which is the cost of the best way to have
reached it:

When the end state is reached, the globally minimal cost becomes known:

A back-tracking pass can then be made, tracing back the set of edges which were followed in order
to reach this optimal value. The result is a reconstruction of the optimal path:

Notes 7: Dynamic programming and Dijkstra’s algorithm

MA934 Numerical Methods Notes 7

In this case, the optimal path turns out to be 0 → 3 → 5 → 4 → 5 → 0.

7.3 Dijkstra’s shortest path algorithm
As discussed above it is clear that the problem of finding the shortest path between two nodes on a
graph is of fundamental importance to solving DP problems. This is not a problem which is amenable
to brute force enumeration since the number of possible paths between two vertices of a graph
generally grows exponentially with the number of vertices. There are huge numbers of overlapping
subproblems however. This is because if a sequence of vertices p = {v1, v2, . . . , vn} is a shortest
path between v1 and vn then every contiguous subsequence of vertices of p is itself a shortest path.

Dijkstra’s algorithm is the fundamental method of solution for this problem. The idea is to do a
sweep through the vertices of the graph, starting at the source node and maintaining a set of labels
on each vertex indicating the shortest way to reach it from the source. The algorithm exploits the
overlapping subproblems using the fact that if p1 is a shortest path from v1 to vn and p2 is a shortest
path from vn to vm then the concatenation of p2 with p1 is a shortest path form v1 to vm. As a result
each vertex is only visited once. We do not assume that the graph is directed or has the stage
structure in the DP example above.

We shall illustrate the procedure in pictures before writing a more formal description of the algo-
rithm. Consider the following graph with 20 nodes:

The target node is indicated in blue. All vertices except the source are initially labeled with a distance
of ∞ from the source. In this context, ∞ indicates that the distance is not yet known. The source
vertex is labeled with a distance of 0. All vertices are initially marked as unvisited (white). To start the
search, the current active vertex (indicated in green) is set equal to the source vertex.

Notes 7: Dynamic programming and Dijkstra’s algorithm

MA934 Numerical Methods Notes 7

At the first step, the distances of the neighbours of the current active vertex are examined. All
of them currently have unknown distance from the source. Since they are neighbours of the current
active vertex, there exists a (necessarily shortest) path of length 1 from the current active vertex to
each of them and since the current active vertex is a distance 0 from the source, we can set all of
distance labels to 1. We then mark the source node as visited (orange) and select the new active
vertex to be one of the neighbours of the source. The general rule is to choose the new active vertex
to be one of the unvisited vertices whose distance to the source is a minimum.

After two steps, several paths of length 2 have been identified and the active vertex has moved
on to the next unvisited vertex at distance 1. The distance labels of the unvisited neighbours of the
current active vertex are updated whenever a new path is found which is shorter than the value stored
in the current label. The current active vertex is then marked as visited and the new active vertex set
equal to one of the unvisited vertices whose distance to the source is a minimum.

Notes 7: Dynamic programming and Dijkstra’s algorithm

MA934 Numerical Methods Notes 7

After many steps of the procedure, lots of vertices are orange (visited) and labeled with the length
of the shortest distance back to the source. The efficiency of the algorithms stems from the fact that
it is never necessary to revisit the orange vertices.

In this case, the algorithm is "unlucky": the target vertex is not found until the very last move: 19
intermediate steps were required with the target finally found on the 20th step. Shortest paths like
the red one can now be read of by working backwards from the target towards the source. From any
visited vertex it is always possible to find a neighbour which is one step nearer to the source. There
may be several such neighbours however. In this example, there are two neighbours of the target at
distance 3, each of which leads to a valid shortest path.

Here is some pseudocode for a simple version of Dijkstra’s algorithm which finds the length of the
shortest path between a source and target vertex in a graph G. It is assumed that G is fully connected
so that at least one shortest path exists between any two vertices.

Notes 7: Dynamic programming and Dijkstra’s algorithm

MA934 Numerical Methods Notes 7

input : Graph G
input : vertex source
input : vertex target
// Initialisations
dist [source] = 0 ; // Source is distance 0 from itself
for vertex v ∈ G do

if v! = source then
dist[v] = ∞; // ∞ here means unknown

end
add v to unvisitedQ ; // maintain list of unvisited vertices

end
v = source ; // Set current active vertex to the source
dv = 0 ; // Initial distance is zero
// Main loop starts here
while v! = target do

foreach neighbour u of v ; // loop over neighbours of active vertex
do

if u ∈ unvisitedQ ; // only check those not yet visited
then

du = dist [u] ; // current estimate of distance of u
if dv + 1 < du ; // check if path to u through v is shorter
then

dist [u] = dv + 1 ; // if yes, update estimate of distance of u
end

end
end
remove v from unvisitedQ ; // v will never be visited again
v = fetch min distance vertex from unvisitedQ ; // set new active vertex to be
an

; // unvisited vertex with minimum
; // distance from the source
dv = dist [v]

end
A Python implementation of the algorithm is available in the class www site. Some comments on the
above pseudocode:

• In this implementation of the algorithm, all edges have length 1. It is easy to generalise to the
case where the edges have other weights by replacing line 18 with

dist [u] = dv + length (u,v)
where length(v1,v2) is the function which gives the weight of the edge linking vertices v1 and v2.

• Line 23 assumes that a function has been provided which searches the list of unvisiting vertices
and associated list of distances and returns an unvisited vertex whose distance to the source
is minimal. In the sample code, this is done using simple linear search. For this implementation
the typical runtime of the algorithm (at least for sparse graphs) is O(|V |2) where |V | is the
number of vertices. This is because roughly we do one loop over the |V | vertices, each of
which requires a linear search of an array of length |V |. If the number of vertices is large, linear
search maybe start to slow the algorithm down significantly. This can be remedied by using
some of the more sophisticated searching and sorting procedures which we discussed earlier.
A specialised data structure called a priority queue [2] supports insertion, deletion and retrieval
of minimal key-value pairs (in this case the key would be the distance and the value would be
the vertex) in O(log n) time where n is the number of entries in the queue.

• As written, the algorithm only calculates the length of the shortest path from source to target.
In dynamic programming terms, it does the "sweep" stage of the DP solution. If we wish to
obtain an actual path then we need to do the backtracking stage too. This means starting at the

Notes 7: Dynamic programming and Dijkstra’s algorithm

MA934 Numerical Methods Notes 7

target, stepping to a neighbouring vertex whose distance to the source is minimal and iterating
this procedure until the source is reached. Here is some pseudocode which achieves this:

v = target ; // Set current active vertex to the target
dv = dist [v] ; // Initial distance is shortest path length
spath = [v]
while v! = source do

foreach neighbour u of v ; // loop over neighbours of active vertex
do

if u /∈ unvisitedQ ; // only check those visited during sweep stage
then

du = dist [u] ; // distance of u from source
if du == dv -1 ; // check if u is a step closer to the source
then

v=u ; // if yes, update active vertex
end

end
end
dv = dist [v]; // Update distance of new active vertex
add v to spath ; // Add new active vertex to the path

end
return spath

As we have remarked before, there may be more than one shortest path. This procedure will
only find one of them but can be adapted to find all of them.

• If instead of terminating when the target vertex is found, line 10 were changed to terminate
when the list of unvisited vertices is empty, then the sweep stage will have found the length
of the shortest path from the source to any other vertex on the graph. Therefore in terms
of computational complexity, finding all shortest paths is as easy (or as hard) as finding one
shortest path since both are O(|V |2) operations!

Bibliography
[1] Associative array, 2014. http://en.wikipedia.org/wiki/Associative_array.
[2] Priority queue, 2014. http://en.wikipedia.org/wiki/Priority_queue.

Notes 7: Dynamic programming and Dijkstra’s algorithm

