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Abstract

The high infectivity of Measles and the serious complications it can lead to motivate the pressing
need to understand the cause of outbreaks. Here, we use bifurcation diagrams as a tool to
compare age structured, seasonally forced models and find that when sinusoidal seasonal forcing
is used, the fractional ageing model exhibits chaotic dynamics for large enough amplitudes of
seasonality whereas the cohort ageing model only produces annual or biennial dynamics for all
amplitudes. When a term-time seasonal forcing equation is used, the fractional ageing model
does not exhibit chaotic dynamics for the parameters considered, whereas with the cohort ageing
model, period doubling leads to chaotic dynamics for sufficiently large amplitudes of seasonality.
The cohort ageing model was then fitted to data from the 2013 outbreak in Swansea, which
produces very regular annual dynamics for all amplitudes of seasonality.

1 Introduction

Measles is a highly contagious disease — before the introduction of vaccination more than 90% of
individuals were infected before they were 10 years old [38] — which has serious associated compli-
cations such as pneumonia, encephalitis, hepatitis, acute diarrhoea and death [25, 30]. Measles is
no longer endemic in countries such as the USA, Finland and the UK due to successful vaccination
campaigns [8, 26, 28]. However, the disease does remain endemic elsewhere, and so regions which
are Measles free remain at risk of outbreaks from imports of the disease [34]. Despite the vaccine
being highly effective [6], elimination of Measles is particularly difficult due to its high basic re-
productive ratio, Rg. The basic reproductive ratio is the average number of secondary infections
from the primary infection of a single individual in a susceptible population [3], and is estimated
to be approximately 14-18 for Measles in England and Wales [1]. Taking Ry = 17, this gives a
critical minimum vaccination level [10] of V. = 1—1/Ry ~ 94% for a homogeneous population. The
World Health Organisation (WHO) therefore recommends a vaccination level of at least 93-95%
for regions aiming to eliminate Measles [38].

The vaccination level for one year olds was 93% in the UK and 91% in the US according to WHO
data from 2014 [37]. In the UK this is a significant rise from the levels is the late 90s/ early
2000s (just 81% in 2004) which is generally attributed to the scare surrounding links between the
measles, mumps and rubella (MMR) vaccine and autism [5, 23]. The recent large outbreak in
Swansea in 2013 [15] has been linked to the low vaccine uptake during the height of the MMR scare
[16, 23, 29, 36]. There have also been recent large outbreaks in California [22] and Ohio [14], but
none in London which has a much lower vaccination uptake level than the rest of the UK (x~ 88%
compared to ~ 95% for the whole of England [27]).



Measles has been modelled extensively, with a range of models based on the SEIR compartmental
model [20] which has been refined to include features such as age structure [2, 31], seasonal forcing
[4, 9, 19] and spatial structure [17, 24]. However, further work is necessary to understand the cause
of outbreaks in relatively high vaccination areas such as Swansea when London continues to go
without an outbreak. Here, we compare age structured, seasonally forced models using bifurcation
diagrams and then incorporate data from the 2013 Swansea outbreak in an attempt to better
understand its causes.

2 Age structured models for Measles

The traditional SEIR model [20] is a compartmental model in which the population is split into
four compartments: S, E, I and R. These represent the number of individuals who are susceptible,
exposed but not yet infectious, infectious and recovered, respectively, and the movement between
these classes is governed by a set of ordinary differential equations. We consider a more realistic
model for Measles by including age structure in the SEIR model. Each compartment is split into
n age classes, so that S, F,, I, and R, are the number of susceptible, exposed, infectious and
recovered individuals, respectively, in age class a. The dynamics of the system are then governed
by the equations
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where [ is the who acquires infection from whom (WAIFW) matrix governing interactions between
susceptible and infectious individuals, such that the element 8, is the level of interaction between
susceptible individuals in age class a and infected individuals in age class b. The average latency
period is 1/0, the average infectious period is 1/v, B, is the birth rate into age class a and d, is
the death rate of individuals in age class a. The total population size S+ E +1 + R = N is kept
constant by setting the birth rate to be

B, ifa=1
B, = ’ ’ 2
¢ {0, otherwise, @
and the death rate to
B, ifa=n
d, = ’ ’ 3
¢ {O, otherwise. 3)

Therefore births only occur into the first age class of susceptibles, and deaths occur from the final
age class of all states. Throughout, the values o = 1/8, v = 1/5 (corresponding to an exposed
period of 8 days and infectious period of 5 days) and B = 1/(55 x 365) are used.



2.1 Fractional ageing model

In this model the population is split into four coarse age classes corresponding to pre-school (0—4
years old), primary school (5-11 years old), secondary school (12-18 years old) and adults (18+
years old). The WAIFW matrix, 3, then takes the form below to give realistic mixing between the
age groups, with 81 = 2.089, 55 = 9.336, 83 = 2.086 and (4 = 2.037 [18].

Br B B3 Pa
Br P2 B3 P

B=15 85 B B )
Bs Ba Ba Pa

Ageing once a year moves a fraction of each group into the next, so that the number of susceptibles
updates as:

S1 — 51 —51/5,
Sy — SQ+51/5—S2/6,
S3 — Ss3 +52/6— 53/6,
Sy — S4+83/6

and the number of exposed, infectious and recovered individuals update in the same way.

Analyses of case report time series has shown that the transmission of Measles is seasonally depen-
dent, with much lower levels during school holidays [11, 12, 21, 32, 39]. Seasonal forcing is usually
incorporated into an SEIR model through the transmission rate, either using a sinusoidal term [4]
or a square wave term, which is high during term time and low during holidays [7, 9, 19]. To add
seasonal forcing to the age structured models, (2, the term governing interaction between school
age children becomes time dependent. For the sinusoidal forcing term, we take this to be

Bo(t) = B (1 + bsin(2nt/365)) , (5)

where b € [0,1] so B2(t) > 0 for all ¢ and for the square wave term,

Ba(t) = B (1 +b)Term®) (6)

where b > —1, although throughout we will consider b € [0,1] for ease of comparison with the
sinusoidal forcing term, and

—1, during school holidays,

(7)

Term(t) = { )
1, otherwise.

The value /5’ is the constant value of 89 before seasonal forcing is introduced, and b is the amplitude
of seasonality. To allow comparison of the seasonal forcing methods, bifurcation diagrams were
produced by varying the amplitude of seasonality, b. Given the same initial conditions at b = 0, the
equations were numerically integrated for 10,000 years to allow the assumption that an asymptotic
state has been reached and the total number of infectious individuals plotted against the current
amplitude of seasonality at the beginning of the calendar year (January), and at the beginning of
the epidemiological year (September) for 50 years.
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Figure 1: Bifurcation diagrams for the fractional ageing model in (a) January and (b) early Septem-
ber with sinusoidal seasonal forcing
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Figure 2: 20 year samples taken from time series of the fractional ageing model with sinusoidal
seasonal forcing for a number of values of the amplitude of seasonality, b, after a 1,000 year burn
in.

2.2 Cohort ageing model

We now consider a cohort ageing model [31] with seventy-five age classes. The WAIFW matrix,
B, is now a 75 x 75 matrix composed of blocks of the same values (1, 52, 53 and (4 as in the
fractional ageing model to simplify comparison between the models. The annual ageing process
now completely empties one age cohort into the next, so that the first class has no individuals but
is replenished through the birth of susceptibles, and the final class accumulates all individuals over
the age of 75 and is only depleted through deaths. The number of susceptibles updates as:
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Figure 3: Bifurcation diagrams for the fractional ageing model in (a) January and (b) September
with term-time seasonal forcing

S1 — 0,
SQ —>51,

S74 — S73,
S5 — S74 + S7s,

and the number of exposed, infectious and recovered individuals update in the same way.

Seasonal forcing can be included in the cohort ageing model by updating the value, 32, of each entry
of the 6 x 6 block matrix governing interactions between school children in the WAIFW matrix with
the time dependent values for sinusoidal (equation 5), and term-time (equation 6) seasonal forcing.
Bifurcation diagrams are produced as described in subsection 2.1. The bifurcation diagrams for the
cohort ageing model with sinusoidal forcing, shown in figure 4, are significantly different to those
for the fractional ageing model in figure 1 — the amplitude of seasonality needs to be much higher
to see any variation from the annual dynamics and once the dynamics do change, at an amplitude
just below b = 0.8, the dynamics become biennial but no further changes in the dynamics are seen
as b is varied and in particular, no chaotic dynamics are observed.

Furthermore, the bifurcation diagrams for term-time seasonal forcing of the cohort ageing model,
shown in figure 5, appear very different from the fractional ageing model in figure 3. As with
the sinusoidal seasonality, the range of amplitudes with annual dynamics is much larger than in
the fractional ageing model, and the dynamics become biennial just above b = 0.4, multiennial at
approximately b = 0.8 and then chaotic for larger amplitudes, which contrasts with the fractional
ageing model for which chaotic dynamics are not seen. However, for term-time forcing the ampli-
tude does not need to be restricted to b € [0, 1] so it is possible that the fractional ageing model
will display chaotic dynamics for some values b > 1, which have not been considered here.
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Figure 4: Bifurcation diagrams for the cohort ageing model in (a) January and (b) September with
sinusoidal seasonal forcing.
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Figure 5: Bifurcation diagrams for the cohort ageing model in (a) January and (b) September with
term-time seasonal forcing.

3 Data from the 2013 Swansea outbreak

Given a matrix, M, with elements M;; representing the average frequency of contacts an individual
of age i has with individuals of age j and a vector of susceptibility 8 with the probability of infection
by age, the WAIFW matrix is given by

B = BM. (8)

Therefore, by taking M to be a synthetically produced contact matrix for the UK [13] and cal-
culating the susceptibility vector using vaccination and notification time data from the Swansea
outbreak [33] the age structured, seasonally forced model can be fitted to the Swansea outbreak.

The number of notifications of infected individuals against the time since the beginning of the
outbreak is approximately exponential, I(t) ~ exp(rt). Fitting this exponential curve to the data,
as shown in figure 6 gives an early growth rate of » = 0.02265, which is equivalent to the domi-
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Figure 6: Data on the number of infected individuals against the notification time since the
beginning of the outbreak from the 2013 Swansea outbreak of Measles.

nant positive eigenvalue of the disease-free equilibrium [35]. If e, is the total number of infected
individuals in age class a, N, is the total number of individuals in age class a, v, is the percentage
of the population of age a who are unvaccinated and S,(0) = N,v,/100 is the initial number of
susceptible individuals of age a, then

e
T€q = Zﬁabﬁl;sa(o) — Y€aq
b
S e
= Z 5&Mabﬁb5’a(0) — Y€q
b b

. (r+7)e
T

; (9)

where f, is the susceptibility to infection of an individual of age a. The overall scaling of the matrix
8 = M was then fit to the data in figure 6 and used to once again create bifurcation diagrams, as

described in subsection 2.1, but using a cohort ageing model with 90 age classes to fit in with the
contact matrix.

The bifurcation diagrams for the data-fitted cohort ageing model with sinusoidal forcing in figure 7
annual dynamics of the same level of infectiousness for all amplitudes of seasonality. The term-time
forcing function gave very similar results, with annual dynamics at the same level of infectiousness
for all amplitudes, so they have not been included here.
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Figure 7: Bifurcation diagrams for the cohort ageing model fitted to data from the Swansea 2013
Measles outbreak in (a) January and (b) September with sinusoidal seasonal forcing.

4 Conclusions and further work

Bifurcation diagrams have been used as a tool to compare age structured models with seasonal
forcing. When a sinusoidal seasonal forcing term is used, the bifurcation diagrams show a marked
difference between the fractional ageing model, which exhibits chaotic dynamics when the ampli-
tude of seasonality is high enough, and the cohort ageing model which does not display chaotic
dynamics for any values of the amplitude of seasonality. When the term-time seasonal forcing term
is used, the dynamics appear to differ between the two models again. However, the amplitude
can take values outside those used here with this form of seasonal forcing, and so the dynamics
may be more similar if a larger section of the parameter space for the amplitude is considered.
The bifurcation diagrams from the cohort ageing model when fitted to the Swansea data are very
different from those produced using the parameters from historical data throughout the rest of the
paper, possibly due to fitting a lower value of Ry to the historical data, and thereby significantly
changing the observed dynamics.

Further work could include modifying the age-dependent death rate, D,, to match mortality data
instead of assuming deaths only occur from the final age class, including maternal immunity —
where children are not in born into the susceptible class, but with an immunity which is passed
on from the mother and lasts approximately six months before reverting to the susceptible class,
incorporating spatial heterogeneities and including partial vaccination levels. In addition to this,
only one attractor has been considered when comparing bifurcation diagrams here, further work
could investigate the existence of other attractors.
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