

Socioeconomic deprivation and benzodiazepine / Z-drug prescribing: a cross-sectional study of practice-level data in England

Stephanie Soyombo

Medical Student Warwick Medical School

s.soyombo@warwick.ac.uk

Background

- ~ 300,000 in the UK on long-term benzodiazepines, despite the recommendation for short-term use
 - Z-drugs have fewer side-effects but may still result in dependence
- Benzodiazepine dependence has been cited as a national priority
 - Clinical priority: linked with e.g. falls in the elderly, cognitive/driving impairment
- Both drug classes are more commonly prescribed for the elderly and for females
 - Diazepam for anxiety; zopiclone for insomnia
- Prescription rates may be higher in more socio-economically disadvantaged regions¹

Aim

To identify whether there is an association between practice-level benzodiazepine & Z-drug prescribing and practice-level socioeconomic deprivation

Methods – Data Sources

- NHS Digital
 - Monthly primary care practice prescribing data (2017)
 - Practice list sizes total, and by sex and age

- BNF
 - BNF codes for all relevant drugs

- Public Health England
 - Index of Multiple Deprivation (IMD 2015) scores, by practice

Methods – Data Processing

- Monthly prescribing data aggregated across 2017 to give:
 - Total number of items
 - 2. Total quantity prescribed

... under each BNF code per practice over the year.

- Only oral formulations (tablet and solution) included
- Only commonly prescribed drugs were included*
- All drug doses converted into milligram-equivalent of diazepam.
 - E.g. 5mg Nitrazepam = 5mg Diazepam; 10mg Clobazam = 5mg Diazepam
- Final dataset included linked information, by practice, on:
 - CCG code
 - Practice and CCG IMD score
 - List size
 - Proportion of males
 - Proportion of >65s

* Included	Excluded	
Chlordiazepoxide	Bromazepam (<0.01% of items)	
Clobazam	Zaleplon (<0.01% of items)	
Clonazepam		
Diazepam		
Lorazepam		
Nitrazepam		
Oxazepam		
Temazepam		
Zopiclone		

Methods – Analysis

- Primary outcome: total quantity prescribed in mg-equivalent diazepam per 1000 patients
- Association between practice-level IMD score and prescribing tested using multiple linear regression
 - Adjusting for: % males, % over-65s
- Results presented as:
 - Beta coefficients
- the extra amount of mg-equivalent diazepam prescribed per 1000 patients for each one-point increase in practice IMD score
- Adjusted R² values
- proportion of the variability in prescribing that is explained by the factors studied in the regression model

p values

-p < 0.05 considered statistically significant

Software:

Methods – Visualisation

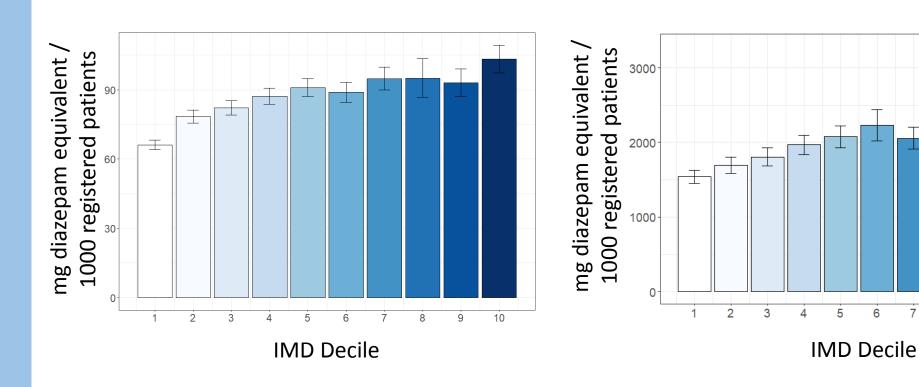
- CCG maps, aggregating prescribing / IMD by CCG
 - Bivariate choropleth map shows two variables (IMD, prescribing rate)

Summary of linear regression analyses

... of the association between practice IMD score and benzodiazepine / Z-drug prescribing levels per 1000 registered patients.

Drug		Univariate	Multivariable
Total benzo/Z-drug prescriptions	Beta	164	628
	<i>p value</i>	< 0.001	< 0.001
	multiple R ²	0.7%	18%
Chlordiazepoxide	Beta	22	20
	<i>p value</i>	< 0.001	< 0.001
	multiple R ²	6.2%	13%
Clobazam	Beta	121	162
	<i>p value</i>	< 0.001	< 0.001
	multiple R ²	8.0%	12%
Clonazepam	Beta	79	146
	<i>p value</i>	< 0.001	< 0.001
	multiple R ²	1.2%	6%
Diazepam	Beta	73	164
	<i>p value</i>	< 0.001	< 0.001
	multiple R²	1.1%	7%
Lorazepam	Beta	50	114
	<i>p value</i>	< 0.001	< 0.001
	multiple R ²	1.2%	11%
Nitrazepam	Beta	36	45
	<i>p value</i>	< 0.001	< 0.001
	multiple R ²	6%	13%
Temazepam	Beta	37	55
	<i>p value</i>	< 0.001	< 0.001
	multiple R ²	2%	8%
Zopiclone	Beta	4	83
	<i>p value</i>	0.47	< 0.001
	multiple R²	<0.1%	13%

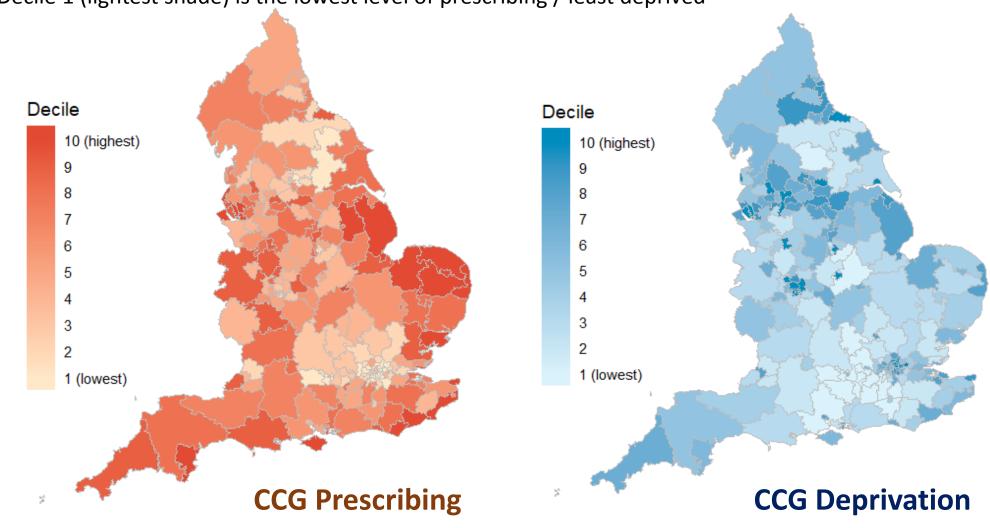
Prescribing levels by practice IMD Deciles


Diazepam

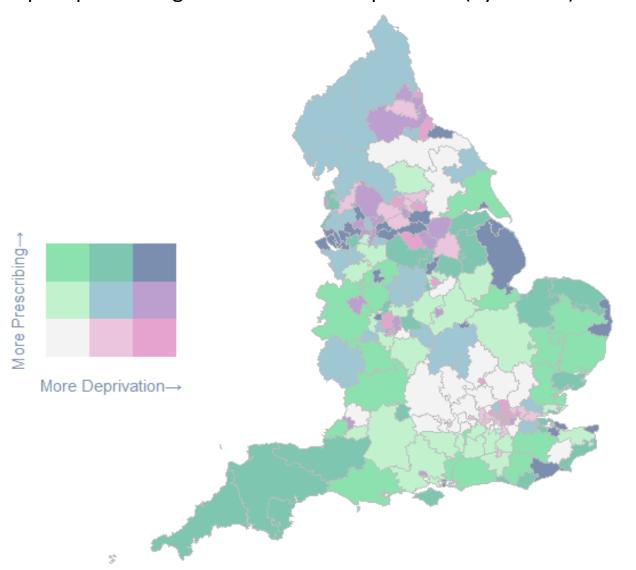
Nitrazepam

9

8


10

Prescribing by CCG


Geographical choropleth map of England, categorising CCG regions according to deciles of benzodiazepine / Z-drug prescribing (orange) or IMD score (blue).

Decile 1 (lightest shade) is the lowest level of prescribing / least deprived

Prescribing and deprivation by CCG

Bivariate choropleth map of England combining information on the level of benzodiazepine prescribing and the level of deprivation (by tertiles).

Key Findings

- IMD score is independently positively associated with prescribing
- This association is seen more strongly in some drugs than others

- IMD + age + sex still only explains a small proportion of the variation in prescribing
- Other unidentified factors contribute to the variation in prescribing

Limitations

- Analysis was restricted to 2017; no time trends were studied
- Only primary care prescriptions were included
- Data was analysed only at practice level
- The indications for prescribing are unknown

Conclusion and Further Work

- Significant association between primary care practice-level deprivation and practice-level prescribing of benzodiazepines and Z-drugs found in England
- Combination of IMD score, age and sex only explained a small proportion of the variation in prescribing
- Further work required on individual-level primary care datasets
 - Which patient-level and practice-level factors are driving the prescriptions?
 - Need to identify where interventions to reduce prescribing should be targeted

<u>Stephanie Soyombo</u>¹, Harpal Aujla¹, Rhian Stanbrook², David Capewell³, Mary Shantikumar⁴, Daniel Todkill⁵, Saran Shantikumar^{1,5}

- ¹ Warwick Medical School, University of Warwick
- ² Medwyn Surgery, Surrey
- ³ Outwood Park Medical Centre, Wakefield
- ⁴ Central Surgery, Rugby
- ⁵ Field Services, Public Health England, West Midlands

s.soyombo@warwick.ac.uk

saran.shantikumar@warwick.ac.uk

*Contact for datasets used and R script if conducting similar studies

