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Drug Development

Phase 1- Phase IV Clinical Trials:
Phase I Safety, dosage range determination, side effects are

tested in a small group.
Phase II Proof of principle to show the drug is effective and to

further evaluate its safety.
Phase III Confirmation of the efficacy of a drug, monitoring of

side effects.
Phase IV Postmarketing studies (long term use, safety,...)
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The standard Phase III Trial to Demonstrate Efficacy

• Randomize n patients to treatment and control group
• Compare the two groups in a pre-defined primary endpoint
• Perform a hypothesis test with significance level α = 0.025
(one-sided)

• The sample size n is chosen to achieve a power of 80% or 90%
for a minimal clinical relevant effect size.
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Example z-Test

• Consider an approximately normally distributed endpoint X
(larger values beneficial).

•
Xi ,C ∼ N(νC , σ

2), Xi ,T ∼ N(νT , σ
2), i = 1, . . . , n

observations in the treatment and control group (2n patients
in total).

• Test the hypotheses

H0 : νT = νC versus H1 : νT > νC .

• Assuming that σ known H0 is rejected if

Zn =
X̄C − X̄T

σ

√
n/2 > z ,

where z is a critical value and X̄k = 1
n

∑n
i=1 Xi ,k , k = C ,T .

• If z = z1−α, the 1− α quantile of the standard normal
distribution, the type I error rate is α.
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Hypothesis Testing in Phase III Clinical Trials

Regulator Sets the required critical value z .
A standard requirement is a one-sided significance
level of α = 0.025 which corresponds to z = 1.96.

Payer Sets the price p (given the treatment is approved)
Sponsor Chooses the sample size 2n of the trial.

E.g.,

n = 2σ2
(z1−α + z1−β)2

δ2

for a power of 1− β = 0.8 or 0.9, where δ is a
minimal clinically relevant treatment effect.

However, the values for α, β are ad-hoc choices.
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Payoffs for Regulators and Payers

Regulator/Payer payoff

PR =

{
N(δ − p − r) if Zn ≥ z

0 else

Sponsor payoff

PS =

{
Np − 2n c if Zn ≥ z

−2n c else
,

where
N The size of the future population
2n Trial Sample size
p The price of the drug to treat one patient
δ The true treatment effect (δ = νT − νC ).
c the cost to recruit one patient into the trial
r Additional cost to the regulator.
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Expected Utilities

At the planning stage
• the distribution of Z given δ is known;
• we assume that both players have the same prior belief on the
effect size δ, given by a prior distribution N(µ0, σ0).

Therefore, given p, z , n we can compute the expected utilities

UR(p, z , n) := EδEZ (PR)= N
[
(µ0 − r − p)Φ(−ξ) + (σ20/σx)φ(ξ)

]
US(p, z , n) := EδEZ (PS) = N p Φ(−ξ)− 2cn

where σ2x = σ20 + 2σ2/n and ξ = (2zσ/n− µ0)/σx and Φ, φ are the
standard normal CDF and density.
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Optimized Strategies

The optimal n∗ for the Sponsor, given z and p is

n∗(p, z) = argmaxnUS(p, z , n)

The optimal z and p is given by

(p∗, z∗) = argmaxp,zUR(p, z , n∗(z , p))

Numerical example: N = 10000 σ = 2.12, σ0 = 1, c = 0.5.

9



Optimal Sample Size Chosen by the Sponsor n∗(z , p)
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Sponsor’s Utility US(p
∗, z∗) as Function of n
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Regulator’s Utility UR if Sponsor Chooses n∗(p, z)

� n∗ = 0, � n∗ > 0 and UR < u, � n∗ > 0 and UR > u, where u = max(UR (∞, 0),UR (−∞, 0)) 12



Conclusion

The optimal rule for the Regulator/Payer depends on the prior:

Very Sceptical z∗ =∞, p∗ = 0 ⇒ No trial is performed.
Sceptical Intermediate z∗ and p∗: Local optima of US at n = 0

and some n > 0.
Optimistic Intermediate z∗ unique local optimum > 0.

Very Optimistic z = −∞ and p = 0: Sponsor makes no profit.
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Clinical Trials for “Precision Medicine”

For the development of targeted therapies, clinical trials with
complex objectives, confirming treatment effects in sub-populations
and/or in the overall populations are required.

• Knowledge on the genetic basis of many diseases is rapidly
increasing and therapies that target underlying molecular
mechanisms are developed.

• Patients’ responses are predicted to targeted treatments based
on genetic features or other biomarkers.

Objective: Identify subgroups (based on biomarkers) where the
treatment has a positive benefit risk balance.
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Patient Populations

Full Population F

• Assume the treatment effects in the subgroups satisfy
δS ≥ δS ′ .

• The treatment effect in F is

δF = λSδS + (1− λS)δS ′

where λS is the prevalence of subgroup S .
• Test of hypotheses HF : δF ≤ 0 and HS : δS ≤ 0.
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Which clinical trial design to choose?

Classical Design:
Recruitment from population F .
No Biomarker is determined.
Test of HF .

Stratification Design:
Recruitment from population F .
Stratified randomization by Biomarker.
Test of HF and HS .

Enrichment Design:
Recruitment only from population S .
Test of HS



Biom
arker
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esigns
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Testing Procedures for Parallel Group Comparison of Means

Classical Design:
HF is tested with a z-test at level α = 0.025.

Stratification Design:

• HS and HF are tested with a closed
Spiessens-Debois (2010) test at levels αS , αF

such that the overall type I error rate is
α = 0.025.

• To reject HF , also the consistency condition

pS ≤ τS and pS ′ ≤ τS ′ ,

for parameters τS , τS ′ , must be satisfied.

Enrichment Design:
HS is tested with a z-test at level α = 0.025.
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Optimizing Clinical trial designs

• When is a biomarker (BM) design beneficial compared to a
classical design?

• When to choose stratified, when an enrichment design?
• Which sample size?
• Which significance levels αF and αS for HF and HS in the
weighted multiple test for the stratified design are optimal?

We apply a utility based approach, (cf. Beckman et al., 2011; Graf
et al., 2015), to model the expected utilities of a particular trial
design from a sponsor’s and a public health view.
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The Utility for a design d

U(d) = −C (d)


c

︸ ︷︷ ︸
Cost

+


ϕF ,d if HF is rejected
ϕS ,d if only HS is rejected
0 if no hypothesis is rejected︸ ︷︷ ︸

Reward

.

19



The Rewards

Sponsor view

ϕF ,d = N · rF · (δ̂F ,d − µF )+

ϕS ,d = λS · N · rS · (δ̂S ,d − µS)+

• N . . . number of future patients (market size).
• rF , rS . . . revenue parameters.
• δ̂F ,d , δ̂S ,d . . . efficacy estimates.
• µF , µS . . . clinically relevant thresholds.

Public health view

ϕF ,d = N · rF · (δF − µF )

ϕS ,d = λS · N · rS · (δS − µS)

• δS , δF . . . true effect sizes.
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Trial Costs C (d)

• Classical Design

csetup + 2n cper-patient.

• Stratified Design

csetup + cBM development + 2n(cper-patient + cBM determination).

• Enrichment Design

csetup + cBM development + 2n(cper-patient +
cBM determination

λS
).
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The Expected Utility of Trial Designs in the Planning Stage
Identifying optimized trial designs

Expected Utility:
Eπ {E∆[U(d)]}

The expectation is taken over
• the prior π on the effect sizes ∆ = (δS , δS ′) and
• the sampling distribution

Optimal design: Choose the design with maximal expected utility
optimizing over

• Type of design (classical/stratified/enrichment)
• Sample size
• α allocation (for the stratified design)
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Prior Distributions π On the Effects δS , δS ′

δS 0 θ θ θ
δS ′ 0 0 θ/2 θ

Weak Biomarker Prior 0.2 0.2 0.3 0.3
Strong Biomarker Prior 0.2 0.6 0.1 0.1

θ > 0 . . . effect size parameter.
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Scenario

• Effect size parameter in the prior
θ = 0.3

• Reward parameters
NrF = NrS = 1000MUSD
µF = µS = 0.1.

• Cost Parameters in (MUSD)
csetup = 1
cper-patient = 0.05
cBM development = 1
cBM determination = 0.005.

• Consistency parameters τS = τS ′ = 0.3.
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Optimized Expected Utilities
Weak Biomarker Prior
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Optimized Sample Size
Weak Biomarker Prior
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Optimized Alpha Allocation
Weak Biomarker Prior
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Optimal Designs for the Strong Biomarker Prior
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Optimal Trial Designs
Weak Biomarker Prior

Large Market & No BM Cost No BM Cost With BM Cost

θ

λS
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Optimal Trial Designs
Strong Biomarker Prior

Large Market & No BM Cost No BM Cost With BM Cost

θ

λS

30



Discussion

• The optimal sample size under the public health view is
typically larger than in the sponsor view.

• For the considered priors, the enrichment design is never
optimal for the sponsor view

• The optimal design depends strongly on the particulars of the
situation: Subgroup prevalence, trial costs and initial beliefs.

31



Two Extensions of the Trial Designs

Partial Enrichment Design
The prevalence of the subgroup in the trial λT is a
design parameter and may differ from λS , the
prevalence in the population.
Special cases are the stratified design (λT = λS) and
the (full) enrichment design (λT = 1).

E.g., Zhao et al. (2010)

Adaptive Enrichment Designs
Two stage design, where the second stage sample size
and second stage trial prevalence may depend on the
first stage outcome.
E.g., Brannath et al. (2009); Beckman et al. (2011); Jenkins et al. (2011); Friede

et al. (2012); Simon and Simon (2013); Graf et al. (2015)

For simplicity we use as multiple testing procedure a single step
unweighted Bonferroni test.
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Partial Enrichment Design: Hypothesis test of HF

Because trial and population prevalence do not match, the standard
z-test is not a valid test for HF .
• HF is tested with a reweighted z-statistics

Z̃F = ξ

(
λS√
λT

ZS +
1− λS√
1− λT

ZS ′

)
,

where ZS ,ZS ′ denote the z-statistics for the subgroups S ,S ′

and ξ is a normalizing constant.
e.g., Zhao et.al. 2010

• As above, to reject HF , in addition the consistency condition
needs to be fulfilled.
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Optimized Utilities
Weak Biomarker Prior
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Optimal Subgroup Prevalence λT
Weak Biomarker Prior
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Optimized Utilities
Strong Biomarker Prior
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Adaptive Design

First stage
Sample size n1, subgroup trial prevalence λ1T

Second Stage
Second stage sample size n2 and subgroup trial
prevalence λ2T
are chosen based on first stage data.

Testing procedure
• Overall test statistics computed with combination function:

ZS =
√

1
2 Z

1
S +
√

1
2 Z

2
S

Z̃F =
√

1
2 Z̃

1
F +
√

1
2 Z̃

2
F

where Z 1
S ,Z

2
S and Z̃ 1

F , Z̃
2
F are stage wise z-statistics.

• Unweighted Bonferroni test boundaries applied to ZS and Z̃F

(if λ2T < 1).
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Optimal Adaptive Design
Based on Backwards Induction

Optimal Adaptation Rule
• In the interim analysis choose n2, λ

2
T such that the expected

utility conditional on the first stage data is maximized.
• Especially, n2 = 0 corresponds to stopping for futility, λT = 1
to a second stage enrichment design.

Optimizing first stage parameters
• Choose n1, λ

1
T such that the expected utility (given the

optimal adaptation rule is applied at interim) is maximized.
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Example for the Optimal Decision Rule
Weak Biomarker Prior (n1 = 100, λS = λ1

T = 0.5)
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Optimized Utilities
Weak Biomarker Prior
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Optimized Utilities
Strong Biomarker Prior
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Summary

• Partial Enrichment Designs can increase the utility mainly for
the sponsor utility function.

• Adaptive Enrichment Designs further increase the expected
utility, also for the public health utility function.
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Optimal Sample Size of the Partial Enrichment Design
Weak Biomarker Prior
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Example for the Optimal Decision Rule
Weak Biomarker Prior (n1 = 100, λS = λ1

T = 0.5)
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Example for the Optimal Decision Rule
Strong Biomarker Prior (n1 = 100, λS = λ1

T = 0.5)
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Optimal Sample Size Chosen by the Sponsor n∗(z , p)
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Sponsor’s Utility US(p
∗, z∗) as Function of n
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Regulator’s Utility UR if Sponsor Chooses n∗(p, z)

� n∗ = 0, � n∗ > 0 and UR < u, � n∗ > 0 and UR > u, where u = max(UR (∞, 0),UR (−∞, 0))
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