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·· The random-effects model

The common problem in meta analysis is to com-

bine individual parameter estimates and standard

errors into a pooled one.
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It is usually reasonable and necessary to allow or

account for heterogeneity between the estimates.

·· Parameters and likelihood

The inference problem essentially presents itself

with the following key figures:

data: parameters:

• estimates yi • true parameter value Θ

• standard errors σi • heterogeneity τ

Most commonly, a simple Normal model is uti-

lized, which may be stated as

yi ∼ Normal(Θ, σ2
i + τ 2).

When we allow for heterogeneity (τ > 0), this is a

special case of a random-effects model. The like-

lihood function follows immediately as the sum-of-

squares expression
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·· Commonly encountered issues

Although the problem is easily stated, a (“frequen-

tist”) solution is far from obvious. The nuisance

parameter τ is commonly dealt with by deriving

a plug-in-estimate, on which the following analy-

sis is conditioned. One may test for zero hetero-

geneity, although such tests commonly have little

power, and a plethora of heterogeneity estimators

exists for τ , which sometimes may yield counter-

intuitive results (e.g. zero estimates or confidence

bounds).

·· The Bayesian approach

A Bayesian solution on the other hand is rather

straightforward once the prior for the unknowns

is specified. In the following we restrict ourselves

to assuming a priori independence,

p(Θ, τ ) = p(Θ)× p(τ ),

and to a uniform or normal prior p(Θ) for Θ, and

an arbitrary prior p(τ ) for the heterogeneity.
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Posterior for example data (uniform priors).

·· Marginalization

It turns out that in this two-parameter problem we

can integrate out the effect parameter Θ, leaving

us with a one-dimensionalmarginal likelihood for

the heterogeneity τ
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where µΘ|τ is the conditional posterior mean of Θ

for given τ :

µΘ|τ = E
[
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(Integration works similarly for a normal prior p(Θ)).

·· Inferring the heterogeneity τ

Themarginal posterior density of τ is simply

p
(
τ
∣
∣ ~y, ~σ

)
∝ p

(
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∣
∣ τ

)
× p(τ )

Now one may specify an arbitrary prior p(τ ) and

use numerical integration for the 1-dimensional

posterior to compute quantiles, moments, . . .
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Marginal posterior for the heterogeneity τ .

·· Inferring the effect Θ
Themarginal posterior ofΘ is a normal mixture:

p
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The mixture distribution may then easily be ap-

proximated via a discrete grid in τ :

p
(
Θ
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)
≈

m∑
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p
(
Θ
∣
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)
wj.
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A discrete grid of τj values “slicing” the param-

eter space.

The mixture weights wj are derived by integrating

over the heterogeneity’s marginal distribution. For

a given set of τj values the conditional posterior

distributions p
(
Θ
∣
∣ τj, ~y, ~σ

)
again are Normal.
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The effect’s Normal conditional distributions for

given τ values.
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The effect’s marginal posterior distribution as a

weighted sum of the Normal conditionals.

·· Conclusions

For the common task of a random effects meta analysis, the Bayesian solution is easily implemented.

Computations reduce to seconds of CPU time, the resulting estimates and credibility levels are accurate.

The grid approximation may be set up so that a pre-specified accuracy is guaranteed. The use of (almost)

arbitrary priors allows for quick sensitivity checks. Furthermore, calculation of the prediction interval

for θ⋆, the effect yet to be observed in a new study, is straightforward. The methods shown here are

implemented in the bmeta R package which is to appear on CRAN soon.


