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Framework

Full Population F

Subgroup S

Complement S ′ = F \ S

Overall treatment e�ect

δF = λδS + (1− λ)δS ′

where λ is the prevalence of subgroup S .

We assume δS ′ ≤ δS .
Allows for investigating the hypotheses HF : δF ≤ 0 and HS : δS ≤ 0.
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Classical, Strati�cation and Enrichment Design

Classical Design: Recruit from the full population F . No Biomarker is
determined.

Strati�cation Design: Include patients of subgroup S (say Biomarker +)
and patients from S ′ (Biomarker �). Stratify randomization
by biomarker status.

Enrichment Design: Randomize only patients of subgroup S . Patients of
the complement S ′ are excluded from the trial.

With the classical design one can test HF .

With the strati�cation design one can test HS and HF .

With the enrichment design one can test HS , i.e., for a treatment
e�ect in the subpopulation.
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The Testing Procedures

Parallel group comparison of the means of normal distributions.

Classical Design: Test HF with a z-test.

Strati�cation Design: Test HS and HF with closed Spiessens-Debois test
at levels αS , αF (see Spiessens and Debois (2010)).

If one hypothesis is rejected the other is tested at full
level α.
To reject HF in addition to the multiple test we require
for �xed consistency parameters τS , τS ′ that pS ≤ τS
and pS ′ ≤ τS ′ .

Enrichment Design: Test HS with a z-test.
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Clinical trial designs

When is it bene�cial to include the biomarker into the clinical trial, i.e.
which type of design (Classical Design/Strati�ed Design/Enrichment
Design) to choose?

Which sample size?

Which signi�cance levels αF and αS for HF and HS in the weighted
multiple test for the strati�ed design are optimal?

We apply a utility based approach, see e.g. Graf et al. (2015); Beckman
et al. (2011), to model the expected utilities of a particular trial design
from a sponsor's and a public health view.
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The utility function

The choice of the trial design is determined by a utility function:

U(d) = −C (d) +


ϕF ,d if ψF ,d = 1

ϕS ,d if ψF ,d = 0 and ψS ,d = 1

0 if ψF ,d = 0 and ψS ,d = 0

.

C (d) cost for the trial.

ϕF ,d reward if drug is licensed in F .

ϕS ,d reward if drug is licensed in S only.

ψF ,d and ψS,d : Decision functions of tests for HF ,HS .

For Enrichment designs ψF ,d = 0.

For Classical designs ψS,d = 0.

6 / 1



The utility function

The choice of the trial design is determined by a utility function:

U(d) = −C (d) +


ϕF ,d if ψF ,d = 1

ϕS ,d if ψF ,d = 0 and ψS ,d = 1

0 if ψF ,d = 0 and ψS ,d = 0

.

C (d) cost for the trial.

ϕF ,d reward if drug is licensed in F .

ϕS ,d reward if drug is licensed in S only.

ψF ,d and ψS,d : Decision functions of tests for HF ,HS .

For Enrichment designs ψF ,d = 0.

For Classical designs ψS,d = 0.

6 / 1



The utility function

The choice of the trial design is determined by a utility function:

U(d) = −C (d) +


ϕF ,d if ψF ,d = 1

ϕS ,d if ψF ,d = 0 and ψS ,d = 1

0 if ψF ,d = 0 and ψS ,d = 0

.

C (d) cost for the trial.

ϕF ,d reward if drug is licensed in F .

ϕS ,d reward if drug is licensed in S only.

ψF ,d and ψS,d : Decision functions of tests for HF ,HS .

For Enrichment designs ψF ,d = 0.

For Classical designs ψS,d = 0.

6 / 1



The utility function

The choice of the trial design is determined by a utility function:

U(d) = −C (d) +


ϕF ,d if ψF ,d = 1

ϕS ,d if ψF ,d = 0 and ψS ,d = 1

0 if ψF ,d = 0 and ψS ,d = 0

.

C (d) cost for the trial.

ϕF ,d reward if drug is licensed in F .

ϕS ,d reward if drug is licensed in S only.

ψF ,d and ψS,d : Decision functions of tests for HF ,HS .

For Enrichment designs ψF ,d = 0.

For Classical designs ψS,d = 0.

6 / 1



The utility function

The choice of the trial design is determined by a utility function:

U(d) = −C (d) +


ϕF ,d if ψF ,d = 1

ϕS ,d if ψF ,d = 0 and ψS ,d = 1

0 if ψF ,d = 0 and ψS ,d = 0

.

C (d) cost for the trial.

ϕF ,d reward if drug is licensed in F .

ϕS ,d reward if drug is licensed in S only.

ψF ,d and ψS,d : Decision functions of tests for HF ,HS .

For Enrichment designs ψF ,d = 0.

For Classical designs ψS,d = 0.

6 / 1



The utility function

The choice of the trial design is determined by a utility function:

U(d) = −C (d) +


ϕF ,d if ψF ,d = 1

ϕS ,d if ψF ,d = 0 and ψS ,d = 1

0 if ψF ,d = 0 and ψS ,d = 0

.

C (d) cost for the trial.

ϕF ,d reward if drug is licensed in F .

ϕS ,d reward if drug is licensed in S only.

ψF ,d and ψS,d : Decision functions of tests for HF ,HS .

For Enrichment designs ψF ,d = 0.

For Classical designs ψS,d = 0.

6 / 1



The rewards

Sponsor view

ϕF ,d = N · rF · (δ̂F ,d − µF )+

ϕS ,d = λ · N · rS · (δ̂S ,d − µS)+

N denotes the number of future patients (market size).
rF , rS are revenue parameters.
µF , µS denote clinically relevant thresholds.
δ̂F ,d and δ̂S,d are the observed e�cacy estimates.

Public health view

ϕF ,d = N · rF · (δF − µF )

ϕS,d = λ · N · rS · (δS − µS)

δS , δF denote true e�ect sizes.
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The costs of a trial

Classical Trial
C (d) = csetup + 2ncper-patient.

Strati�ed Trial

C (d) = csetup + cBiomarker development + 2n(cper-patient + cscreening).

Enrichment Trial

C (d) = csetup + cBiomarker development + 2n(cper-patient +
cscreening

λ
).

8 / 1



The costs of a trial

Classical Trial
C (d) = csetup + 2ncper-patient.

Strati�ed Trial

C (d) = csetup + cBiomarker development + 2n(cper-patient + cscreening).

Enrichment Trial

C (d) = csetup + cBiomarker development + 2n(cper-patient +
cscreening

λ
).

8 / 1



The costs of a trial

Classical Trial
C (d) = csetup + 2ncper-patient.

Strati�ed Trial

C (d) = csetup + cBiomarker development + 2n(cper-patient + cscreening).

Enrichment Trial

C (d) = csetup + cBiomarker development + 2n(cper-patient +
cscreening

λ
).

8 / 1



Optimizing the expected utility

π...prior on the e�ect sizes ∆ = (δS , δS ′) in S and S ′.

The optimal design is given by

d∗ ∈ argmaxd∈DEπ [E∆[U(d)]]
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A numerical example

Prior:

Point prior on δS : Pπ(δS = 0.3) = 1

Discrete prior on δS ′
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Parameter values

We choose the following parameter con�guration:

csetup = 1MUSD, cper-patient = 0.05MUSD, µF = µS = 0.1

NrF = NrS = 1000MUSD, cBiomarker development = cscreening = 0.

For the public health view we use the same reward and cost parameters.

Consistency parameters

We set τS = τS ′ = 0.3 in the sponsor view.

We set τS = 0.3 and optimize τS ′ in the public health view.
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Utility
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For both views the classical design is optimal for low prevalences and
the strati�ed design is optimal for large prevalences.

The enrichment design is never optimal.
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Per group sample size
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In the public health view it is optimal to conduct larger trials.

13 / 1



Weights

0.2 0.4 0.6 0.8

0.
00

0
0.

01
0

0.
02

0

Sponsor

λ

O
pt

im
al

 s
ig

ni
fic

an
ce

 le
ve

ls

Significance level for HF

Significance level for HS

0.2 0.4 0.6 0.8

0.
00

0
0.

01
0

0.
02

0

Public Health

λ
O

pt
im

al
 s

ig
ni

fic
an

ce
 le

ve
ls

0
0.

5
1

Optimized licensing Threshold

For low prevalences more weight is put on HF , for large prevalences
HS is more important.
As the subgroup gets larger, the optimal consistency parameter τS ′

gets larger.
14 / 1



What happens if we add biomarker costs?

We change the biomarker related costs from

cBiomarker development = cscreening = 0

to
cBiomarker development = 1MUSD, cscreening = 5000USD
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Changes in the sponsor view
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Cutpoint is shifted to the right.

Classical designs is not a�ected.
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Changes in the public health view
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In addition, the classical designs is also optimal for very large
prevalences.
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Conclusions

In general, the decision theoretic approach gives guidance regarding
the choice of the trial design (including the type of the trial, the
choice of the sample size and the weights in the multiple test)

The analysis of the example shows that the optimal sponsor decision
depends strongly on the particulars of the situation. Subgroup
prevalence, trial costs and initial beliefs are all important to consider
when making the design choice.

Allows for comparing optimal designs from sponsor's and public health
perspective.

The model can be extended in several directions.

Allow for partial enrichment.

Include adaptive enrichment designs.
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