Network meta-analysis using integrated nested Laplace approximations (INLA)

Burak Kürsad Günhan 1 Tim Friede 1 Leonhard Held 2

¹Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany

²Epidemiology, Biostatistics and Prevention Institute, University of Zürich, Zürich, Switzerland

Mainz, December 02, 2016

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement number FP HEALTH 2013-602144.

Systematic review

- Review of evidences from different studies
- On a specific question, methods to identify, select, appraise and summarize similar but separate studies
- Study selection: inclusion and exclusion criteria

Meta-analysis (The analysis of analyses)

- Quantitative part of systematic review
- SR may or may not include a meta-analysis
- Using statistical methods to combine results from different studies

Conventional meta-analysis

- Only two treatments are compared
- Trt 1 vs Trt 2 can be estimated (d_{1,2})
- Direct estimate
- Heterogeneity between trials
- Pairwise meta-analysis
- Meta-regression

More than two treatments?

- Increasing number of treatments
- Solid lines indicate comparisons are available
- A generalization of pairwise meta-analysis
- Indirect estimate of 2 vs 3

$$d_{2,3}^{Ind} = d_{1,2}^{Dir} - d_{1,3}^{Dir}$$

Terminology in NMA (Salanti, 2012)

- If both direct and indirect estimates are available for $d_{1,2}$
- **Consistency**: No discrepancy between indirect and direct estimates

$$d_{1,2}^{Dir} = d_{1,2}^{Ind}$$

Consistency relation

$$d_{1,2}^{Dir} = d_{1,3}^{Dir} - d_{2,3}^{Dir}$$

- Trials of different comparisons were undertaken in different periods
- Right-hand side parameters are basic parameters (d_b)
 ⇒ Parametrization of the network
- Others are functional parameters (d_f)

Terminology in NMA

- From Graph theory: vertex, edge, cycle, spanning tree
- **Design**: set of treatments included in a trial; 1-2 design, 1-2-3 design

• Example $d_b = \{d_{12}, d_{13}, d_{14}\} \text{ (red lines)}$ $\Rightarrow d_f = d_{24} = d_{12} - d_{14}$ Consistency relation $\Rightarrow 3\text{-cycle}$

Statistical models for NMA

- Arm-based instead of contrast-based models
 ⇒ Advantage: one-stage approach, exact likelihood
- Bayesian hierarchical models, more specifically generalized linear mixed models (GLMMs)
- Datasets with different endpoints (binomial, continuous, survival) can be modelled
- Basic model is same, but likelihood and link function can change

Consistency models (Dias et al., 2011)

- For convenience, consider data with binomial endpoints
- In trial i; j, k is treatment pair where j baseline treatment, k remaining treatment
- Number of events, $y_{ik} \sim Bin(\pi_{ik}, n_{ik})$ and $y_{ij} \sim Bin(\pi_{ij}, n_{ij})$
- Logit link, model equations:

$$\begin{aligned} \mathsf{logit}(\pi_{ij}) &= \mu_i \\ \mathsf{logit}(\pi_{ik}) &= \mu_i + d_{jk} + \gamma_{ijk} \end{aligned}$$

where μ_i nuisance parameter and d_{jk} basic parameters

• Heterogeneity random effects: $\gamma_{ijk} \sim \mathcal{N}(0, \tau^2)$

Consistency models (Dias et al., 2011) (cont.)

- But, for a multi-arm trial: dependency within trial!
- Example: A three-arm trial *i* with the design 1-2-3
 - $\boldsymbol{\gamma}_i = (\gamma_{i12}, \gamma_{i13})^T \sim \mathcal{N}_2(\mathbf{0}, \boldsymbol{\Sigma}_{\gamma})$
 - A simple but a convenient structure is as follows (Higgins and Whitehead, 1996):

$$\boldsymbol{\Sigma}_{\gamma} = \begin{bmatrix} \tau^2 & \tau^2/2 \\ \tau^2/2 & \tau^2 \end{bmatrix}$$

Some comments

- Basic parameters can be any T-1 treatment comparisons
- For continuous endpoints, normal likelihood and identity link
- Consistency is assumed in the network!
- Models are needed to account for inconsistency in the network

Lu-Ades Model (Lu and Ades, 2006)

- Uses cycle-inconsistency approach
- Assumption: inconsistency only occurs from 3-cycles
- Basic parameters should form a spanning tree
- Cycle-specific inconsistency random effects: $\omega_{jkl} \sim \mathcal{N}(0,\kappa^2)$
- Multi-arm trials are inherently consistent
- Number of inconsistency random effects: $ICDF = #\mathbf{d}_f S$ where S is the number of cycles only formed by a multi-arm trial
- Algorithm for ICDF (van Valkenhoef et al., 2012), but not efficient
- In the presence of multi-arm trials, **results depend on treatment ordering!**

Jackson Model (Jackson et al., 2014)

- Uses design-inconsistency approach (Higgins et al., 2012)
- **Design inconsistency**: occurs between trials involving different designs
- 1,2,3 trials can be inconsistent with 1,2 trials
- Adding more inconsistency parameters to the model
- Inconsistency parameters as random effects

$$\mathsf{logit}(\pi_{ik}) = a_{ij} + d_{jk} + \gamma_{ijk} + \omega_{jk}^D$$

 $\boldsymbol{\omega}^D = (\omega_{jk_1}, \omega_{jk_2}, \dots) \sim \mathcal{N}_c(\mathbf{0}, \boldsymbol{\Sigma}_{\omega})$ such that $\boldsymbol{\Sigma}_{\omega}$ has diagonal entries κ^2 and all others are $\kappa^2/2$

• NMA-regression: incorporating trial-specific covariates to the model in order to explain sources of inconsistency

Fully-Bayesian inference for NMA models

Markov Chain Monte Carlo (MCMC)

- A simulation-based technique and the most popular
- Popular MCMC-tools: WinBUGS, JAGS or Stan

Integrated Nested Laplace Approximations (INLA)

- An approximate Bayesian method (Rue et al., 2009) for latent Gaussian models (LGMs)
- Fast and accurate alternative to MCMC
- How INLA works (Rue et al., 2016)? Laplace approximations & numerical integration
- Implemented in R-INLA (http://www.r-inla.org/)

INLA for NMA models

- By Sauter and Held (2015), INLA can be used for many NMA models
- My goal: Extend INLA implementation to different NMA models (Jackson model, NMA-regression) and also automation
- How NMA models are LGMs? Three stages:

() Observational model: $p(\boldsymbol{y}|\boldsymbol{\alpha})$ where $\boldsymbol{\alpha} = (\boldsymbol{\mu}, \boldsymbol{d_b}, \boldsymbol{x}, \boldsymbol{\gamma}, \boldsymbol{\omega})$

② Latent Gaussian field:
$$p(oldsymbol{lpha}|oldsymbol{ heta})$$

③ Hyperparameters: $\boldsymbol{\theta} = (\tau^2, \kappa^2)$

Smoking dataset (Hasselblad, 1998)

- 24 trials investigating four interventions to aid smoking cessation
- Coding; 1: no contact, 2: self-help, 3: individual counseling and 4: group counseling
- Area of circle: participants; width of line: trials
- 8 designs, 1-3-4 and 2-3-4 three arm trials

MCMC vs INLA

- $\mathbf{d}_b = \{d_{12}, d_{13}, d_{14}\}$
- Priors:
 - $d_{1x} \sim \mathcal{N}(0, 1000),$ $\tau \sim \mathcal{U}(0, 5),$ $\kappa \sim \mathcal{U}(0, 5).$
- MCMC using JAGS
- JAGS code (Jackson et al., 2014)
- Convergence diagnostics

Jackson model

Jackson vs Lu-Ades model using INLA

		ICDF	κ	au
• 4 interventions, $4! = 24$ possibilities of coding	Consistency	0	0.00	0.81
• Lu-Ades model substantially	Lu-ades	10	0.39	0.82
ordering!	1234, 1243	3	0.52	0.84
· Confirmation of Higgins	1324, 1423	3	0.60	0.83
	1342, 1432	3	0.55	0.84
et al. (2012)	2314, 3214	3	1.39	0.79
	3412, 4213	3	1.40	0.79

nmainla R package

Installation via devtools(Wickham and Chang, 2016) R package

```
devtools::install_github('gunhanb/nmainla')
```

Data preparation

Fitting a Jackson model

```
nma_inla(SmokdatINLA, likelihood = 'binomial', fixed.par = c(0, 1000),
   type = 'jackson', tau.prior = 'uniform', tau.par = c(0, 5),
   kappa.prior = 'uniform', kappa.par = c(0, 5))
```

Discussion

- No analytical expression for approximation error of INLA
- INLA may be less accurate for binomial data, for example (quasi) complete separation (Sauter and Held, 2016)
- We have encountered (little) inaccuracy for one application (binomial endpoints), can be addressed with more informative priors

Conclusions

- Common framework for arm-based NMA models to analyze dataset with different endpoints
- Faster, no need to check convergence diagnostics
- nmainla extracts features needed for NMA
- Reassurance that MCMC estimates are reliable

Outlook

- CRAN submission of nmainla
- NMA-regression with baseline risk as covariate: a generalized **nonlinear** mixed model
- Usage of **penalized complexity** (PC) priors (Simpson et al., 2014) which are implemented in R-INLA
- Sensitivity analysis for prior specifications

References I

Acknowledgements

Dr. Rafael Sauter

- Dias, S., Welton, N. J., Sutton, A. J., and Ades, A. (2011). NICE DSU Technical Support Document 2: A Generalised Linear Modelling Framework for Pairwise and Network Meta-analysis of Randomised Controlled Trials. last updated September 2016.
- Hasselblad, V. (1998). Meta-analysis of multitreatment studies. Medical Decision Making, 18(1):37–43.
- Higgins, J. P. T., Jackson, D., Barrett, J. K., Lu, G., Ades, A. E., and White, I. R. (2012). Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. *Research Synthesis Methods*, 3(2):98–110.

References II

- Higgins, J. P. T. and Whitehead, A. (1996). BORROWING STRENGTH FROM EXTERNAL TRIALS IN A META-ANALYSIS. *Statistics in Medicine*, 15(24):2733–2749.
- Jackson, D., Barrett, J. K., Rice, S., White, I. R., and Higgins, J. P. (2014). A design-by-treatment interaction model for network meta-analysis with random inconsistency effects. *Statistics in Medicine*, 33(21):3639–3654.
- Lu, G. and Ades, A. E. (2006). Assessing Evidence Inconsistency in Mixed Treatment Comparisons. *Journal of the American Statistical Association*, 101(474):447–459.
- Rue, H., Martino, S., and Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. *Journal of the Royal Statistical Society: Series B* (*Statistical Methodology*), 71(2):319–392.
- Rue, H., Riebler, A., Sørbye, S. H., Illian, J. B., Simpson, D. P., and Lindgren, F. K. (2016). Bayesian Computing with INLA: A Review. arXiv preprint arXiv:1604.00860.

References III

- Salanti, G. (2012). Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis tool. *Research Synthesis Methods*, 3(2):80–97.
- Sauter, R. and Held, L. (2015). Network meta-analysis with integrated nested Laplace approximations. *Biometrical Journal*, 57(6):1038–1050.
- Sauter, R. and Held, L. (2016). Quasi-complete separation in random effects of binary response mixed models. *Journal of Statistical Computation and Simulation*, 86(14):2781–2796.
- Simpson, D. P., Rue, H., Martins, T. G., Riebler, A., and Sørbye, S. H. (2014). Penalising model component complexity: A principled, practical approach to constructing priors. arXiv preprint arXiv:1403.4630.
- van Valkenhoef, G., Tervonen, T., de Brock, B., and Hillege, H. (2012). Algorithmic parameterization of mixed treatment comparisons. *Statistics and Computing*, 22(5):1099–1111.
- Wickham, H. and Chang, W. (2016). *devtools: Tools to Make Developing R Packages Easier.* R package version 1.12.0.9000.

Extra slides

- **Transitivity**: indirect comparison validly **estimates** unobserved comparison
- It can be tested epidemiologically, but not statistically

INLA inaccuracy

Using informative priors

Using informative priors

More informative priors

But why?

- Design inconsistency between 2-4 (from two-arm trial) and 2-4 (from three-arm trial)
- Only **some** Lu-Ades models allow this inconsistency.