Effect and shrinkage estimation in meta-analyses of two studies

Christian Röver

Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany

December 2, 2016

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement number FP HEALTH 2013-602144.

- meta-analysis
- frequentist and Bayesian approaches
- two-study meta-analysis
- examples + simulations
- shrinkage estimation
- examples + simulations
- conclusions

The random-effects model

• assume normal-normal hierarchical model (NNHM)

$$y_i | heta_i \sim \operatorname{Normal}(heta_i, s_i^2), \quad heta_i | \Theta, au \sim \operatorname{Normal}(\Theta, au^2)$$

$$\Rightarrow y_i | \Theta, \tau \sim \text{Normal}(\Theta, s_i^2 + \tau^2)$$

model components:

Data:

- estimates *y_i*
- standard errors s_i

Parameters:

- effect Θ
- heterogeneity τ
- (study-specific effects θ_i)

The random-effects model

• assume normal-normal hierarchical model (NNHM)

$$y_i | \theta_i \sim \text{Normal}(\theta_i, s_i^2), \quad \theta_i | \Theta, \tau \sim \text{Normal}(\Theta, \tau^2)$$

$$\Rightarrow y_i | \Theta, \tau \sim \text{Normal}(\Theta, s_i^2 + \tau^2)$$

model components:

Data:

- estimates y_i
- standard errors s_i

Parameters:

- effect Θ
- \bullet heterogeneity τ
- (study-specific effects θ_i)

- $\Theta \in \mathbb{R}$ of primary interest ("effect")
- $\tau \in \mathbb{R}^+$ nuisance parameter ("between-trial heterogeneity")

Christian Röver

- usual frequentist procedure:
 - (1) derive heterogeneity estimate $\hat{\tau}$
 - (2) conditional on $\tau = \hat{\tau}$, derive
 - estimate Ô
 - standard error $\hat{\sigma}_{\Theta}$

- usual frequentist procedure:
 - (1) derive heterogeneity estimate $\hat{\tau}$
 - (2) conditional on $\tau = \hat{\tau}$, derive
 - estimate $\hat{\Theta}$
 - standard error $\hat{\sigma}_{\Theta}$
- confidence interval via Normal approximation:

$$\hat{\Theta} \pm \hat{\sigma}_{\Theta} \mathbf{z}_{(1-lpha/2)}$$

- usual frequentist procedure:
 - (1) derive heterogeneity estimate $\hat{\tau}$
 - (2) conditional on $\tau = \hat{\tau}$, derive
 - estimate Ô
 - standard error $\hat{\sigma}_{\Theta}$
- confidence interval via Normal approximation:

$$\hat{\Theta} \pm \hat{\sigma}_{\Theta} \mathbf{z}_{(1-lpha/2)}$$

(uncertainty in τ not accounted for)

Frequentist approaches

- Hartung-Knapp-Sidik-Jonkman approach (accounting for τ estimation uncertainty)¹:
 - compute

$$q := \frac{1}{k-1} \sum_{i} \frac{(y_i - \hat{\Theta})^2}{s_i^2 + \hat{\tau}^2}$$

• confidence interval via Student-*t* approximation:

$$\hat{\Theta} \pm \sqrt{q} \, \hat{\sigma}_{\Theta} \, t_{(k-1);(1-\alpha/2)}$$

Christian Röver

¹G. Knapp, J. Hartung. Improved tests for a random effects meta-regression with a single covariate. Statistics in Medicine 22(17):2693–2710, 2003.

² C. Röver, G. Knapp, T. Friede. Hartung-Knapp-Sidik-Jonkman approach and its modification for random-effects meta-analysis with few studies. *BMC Medical Research Methodology* 15:99, 2015.

Frequentist approaches

- Hartung-Knapp-Sidik-Jonkman approach (accounting for τ estimation uncertainty)¹:
 - compute

$$q := \frac{1}{k-1} \sum_{i} \frac{(y_i - \hat{\Theta})^2}{s_i^2 + \hat{\tau}^2}$$

• confidence interval via Student-*t* approximation:

$$\hat{\Theta} \pm \sqrt{q} \, \hat{\sigma}_{\Theta} t_{(k-1);(1-\alpha/2)}$$

- modified Knapp-Hartung approach²:
 - quadratic form q may turn out < 1, confidence intervals may get shorter
 - truncate q to get more conservative interval:

$$\hat{\Theta} \pm \max\{\sqrt{q}, 1\} \hat{\sigma}_{\Theta} t_{(k-1);(1-\alpha/2)}$$

Christian Röver

G. Knapp, J. Hartung. Improved tests for a random effects meta-regression with a single covariate. Statistics in Medicine 22(17):2693–2710, 2003.

² C. Röver, G. Knapp, T. Friede. Hartung-Knapp-Sidik-Jonkman approach and its modification for random-effects meta-analysis with few studies. *BMC Medical Research Methodology* 15:99, 2015.

- Bayesian approach ³
 - set up model likelihood (same as frequentist)
 - specify prior information about unknowns (Θ , τ)
 - posterior: \propto prior \times likelihood
 - inference requires integrals, e.g. $p(\Theta | y, \sigma) = \int p(\Theta, \tau | y, \sigma) d\tau \dots$
 - use numerical methods for integration (MCMC, bayesmeta R package⁴, ...)
 - straightforward interpretation, no reliance on asymptotics, consideration of prior information, ...

4
http://cran.r-project.org/package=bayesmeta

³A. J. Sutton, K. R. Abrams. Bayesian methods in meta-analysis and evidence synthesis. Statistical Methods in Medical Research, 10(4):277, 2001.

- *normal-normal hierarchical model (NNHM)* applicable for many endpoints: only need estimates and std. errors of some *effect measure*
- k = 2 to 3 studies is a common scenario: majority of meta analyses in Cochrane Database⁵
- frequentist methods run into problems for few studies (small k)
- two-study case: no satisfactory frequentist procedure⁶
- despite extreme setting, error control crucial⁷

⁵R.M. Turner et al. Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane Database of Systematic Reviews. International Journal of Epidemiology 41(3):818–827, 2012.

E. Kontopantelis et al. A re-analysis of the Cochrane Library data: The dangers of unobserved heterogeneity in meta-analyses. PLoS ONE 8(7):e69930, 2013.

⁶A. Gonnermann et al. No solution yet for combining two independent studies in the presence of heterogeneity. Statistics in Medicine 34(16):2476–2480, 2015

[']European Medicines Agency (EMEA). Guideline on clinical trials in small populations. CHMP/EWP/83561/2005, http://www.ema.europa.eu/docs/ en_GB/document_library/Scientific_guideline/2009/09/WC500003615.pdf, 2006.

Examples

2-study meta analyses

- two examples of two-study meta-analyses^{8,9}
- binary endpoints (log-ORs)
- Bayesian analyses:
 - uniform effect (Θ) prior
 - half-normal heterogeneity (τ) priors with scales 0.5 and 1.0
- frequentist analyses:
 - normal approximation
 - Hartung-Knapp-Sidik-Jonkman (HKSJ) interval
 - modified Knapp-Hartung (mKH) interval
 - for k = 2 studies *DerSimonian-Laird*, *ML*, *REML* and *Paule-Mandel* heterogeneity estimates coincide¹⁰

⁸N.D. Crins et al. Interleukin-2 receptor antagonists for pediatric liver transplant recipients: A systematic review and meta-analysis of controlled studies. *Pediatric Transplantation* 18(8):839–850, 2014.

⁹R.C. Davi et al. KrystexxaTM (Pegloticase, PEG-uricase and puricase). Statistical Review and Evaluation STN 125293-0037, U.S. Department of Health and Human Services, Food and Drug Administration (FDA).

¹⁰A.L. Rukhin. Estimating common mean and heterogeneity variance in two study case meta-analysis. Statistics & Probability Letters 82(7):1318-1325, 2012.

Crins et al. example: acute graft rejection

Krystexxa example: infusion reaction

- How do methods compare in general?
- motivation: log-OR endpoint
- simulate data (according to NNHM) on log-OR scale
- consider combinations of studies of sizes $n_1, n_2 \in \{25, 100, 400\}$ (standard errors $\sigma_i = \frac{2}{\sqrt{n_i}}$)
- heterogeneity $\tau \in \{0.0, 0.1, 0.2, 0.5, 1.0\}$

Simulation study

heterogeneity estimation: zero estimates

• Percentages of zero heterogeneity estimates (effectively *fixed-effect* analyses):

	true heterogeneity $ au$									
n ₁ / n ₂	0.0	0.1	0.2	0.5	1.0					
25 / 25	68	67	62	47	29					
100 / 100	68	63	52	29	15					
400 / 400	68	53	34	16	8					
25 / 100	68	65	60	41	23					
100 / 400	68	61	46	24	13					
25 / 400	68	65	59	39	22					

Simulation study effect CI coverage (two equal-sized studies)

• undercoverage for normal approx.

Simulation study effect CI coverage (two unequal-sized studies)

- undercoverage for normal approx.
- undercoverage for HKSJ at unequal sizes

Christian Röver

Simulation study effect CI coverage (two unequal-sized studies)

- undercoverage for normal approx.
- undercoverage for HKSJ at unequal sizes

Christian Röver

Effect and shrinkage estimation...

Bayesian intervals as expected

mKH very conservative

Simulation study effect CI length (two equal-sized studies)

Simulation study effect CI length (two unequal-sized studies)

substantially shorter intervals for Bayesian methods

Christian Röver

- two-study meta-analysis is a common scenario
- common frequentist methods tend to be either very conservative or too liberal
- small *k* technically not a problem for Bayesian approach (no reliance on asymptotics)
- w.r.t. long-run performance, Bayesian meta-analysis provides a middle ground
- interpretation is straightforward
- paper to appear¹¹

¹¹ T. Friede, C. Röver, S. Wandel, B. Neuenschwander. Meta-analysis of two studies in the presence of heterogeneity with applications in rare diseases. Biometrical Journal, (in press), 2016. URL: http://dx.doi.org/10.1002/bimj.201500236.

Introduction

different aims of meta analysis:

- overall mean of studies?
 - \rightarrow effect estimation (Θ)

Int	200	LIOTI	00
	100	aou	

study	estimate	95% CI	
Heffron (2003)	-2.31	[-3.48, -1.13]	
Gibelli (2004)	-0.46	[–1.55, 0.63]	
Schuller (2005)	-2.30	[-4.03, -0.58]	
Ganschow (2005)	-1.76	[-2.65, -0.86]	
Spada (2006)	-1.26	[-2.52, -0.00]	
Gras (2008)	-2.42	[-5.41, 0.58]	
mean	-1.59	[-2.40, -0.82]	•
prediction	-1.59	[-3.27, 0.02]	
			-5 -4 -3 -2 -1 0 log-OR

different aims of meta analysis:

- overall mean of studies?
 - \rightarrow effect estimation (Θ)
- future studies?
 - \rightarrow prediction (θ_{k+1})

Introduction

quoted estimate + shrinkage estimate

study	estimate	95% CI	
Heffron (2003)	-2.31	[-3.48, -1.13]	
Gibelli (2004)	-0.46	[–1.55, 0.63]	
Schuller (2005)	-2.30	[-4.03, -0.58]	_
Ganschow (2005)	-1.76	[-2.65, -0.86]	
Spada (2006)	-1.26	[-2.52, -0.00]	
Gras (2008)	-2.42	[-5.41, 0.58]	
mean	-1.59	[-2.40, -0.82]	•
prediction	-1.59	[-3.27, 0.02]	
			-5 -4 -3 -2 -1 0 1

different aims of meta analysis:

- overall mean of studies?
 - \rightarrow effect estimation (Θ)
- future studies?
 - \rightarrow prediction (θ_{k+1})
- individual studies?
 - \rightarrow shrinkage estimation (θ_i)

log_OR

Introduction

- specific for the *i*th study
- estimate of study's specific mean θ_i
- based on all estimates $(y_1, \ldots, y_k, \sigma_1, \ldots, \sigma_k)$
- (more or less) "shrunk" towards the overall mean Θ
- joint analysis informs hyperprior $p(\Theta, \tau)$ and prior $p(\theta_i | \Theta, \tau)$ \rightarrow more informative posterior based on data y_i .

- two ways to analyze *i*th estimate:
 - Meta-analytic-combined (MAC) approach: perform joint meta-analyis of all studies, determine *i*th shrinkage estimate
 - Meta-analytic-predictive (MAP) approach: meta-analyze all but *i*th study; resulting posterior yields *meta-analytic predictive (MAP)* prior, use MAP prior and data y_i to infer θ_i
- both approaches yield identical results¹²

¹²H. Schmidli, et al. Robust meta-analytic-predictive priors in clinical trials with historical control information. *Biometrics* 70(4):1023–1032, 2014.

Inference for single trials

- often of primary interest: a particular study (-outcome) (not a more general evidence synthesis)
- example:

phase III studies additional information: studies from earlier phases

- aim is not a synthesis of all available data, but use of MAP prior may be readily motivated¹³
- separate consideration of (MAP) prior and data yields a transparent analysis
- allows to consider external information when data are sparse (e.g. rare diseases)

¹³S. Wandel, B. Neuenschwander, C. Röver, T. Friede. Using phase II data for the analysis of phase III studies: an application in rare diseases. (submitted for publication), 2016. Preprint: http://arxiv.org/abs/1609.03367.

The HSV example

quoted estimate + shrinkage estimate

HSV example

(cure rate endpoint, non-inferiority)^a:

end of phase II:
 3 studies available,
 prediction interval constitutes
 prior for planned phase III study

Preprint: http://arxiv.org/abs/1609.03367.

^aS. Wandel, B. Neuenschwander, C. Röver, T. Friede. Using phase II data for the analysis of phase III studies: an application in rare diseases. (*submitted for publication*), 2016.

The HSV example

quoted estimate + shrinkage estimate

study	estimate	95% CI	
study 4	0.13	[-0.19, 0.44]	
study 5	0.17	[-0.20, 0.54]	•
study 6	0.19	[-0.05, 0.43]	
phase III	-0.04	[-0.14, 0.07]	
mean	0.07	[-0.15, 0.34]	
prediction	0.06	[-0.41, 0.60]	
			-0.5 0 0.5

HSV example

(cure rate endpoint, non-inferiority)^a:

- end of phase II:
 3 studies available,
 prediction interval constitutes
 prior for planned phase III study
- phase III: new trial's shrinkage interval summarizes trial considering informative "phase II" prior

Preprint: http://arxiv.org/abs/1609.03367.

^aS. Wandel, B. Neuenschwander, C. Röver, T. Friede. Using phase II data for the analysis of phase III studies: an application in rare diseases. (*submitted for publication*), 2016.

in 2-study meta-analysis

- common case: inference on a **single** study
- consideration of external information / data (single estimate)
- consideration of potential heterogeneity
- $\bullet \ \rightarrow$ use NNHM framework and shrinkage estimate

The Creutzfeld-Jakob disease (CJD) example

- Creutzfeld-Jakob disease (CJD) is a rare disease
- A small **randomized trial** on the use of Doxycycline was conducted, external **registry data** was considered in addition¹⁴
- heterogeneity suspected between randomized and observational evidence
- both (randomized and observational) estimates were meta-analyzed using NNHM
- originally, interest was in overall effect (Θ)

¹⁴D. Varges et al. Doxycycline in early CJD – a double-blinded randomized phase II and observational study. General Neurology (accepted for publication).

The Creutzfeld-Jakob disease (CJD) example

two-study scenario

- consider: primary interest in randomized trial outcome (no "breaking of randomization" by pooled analysis)
- does it make sense to consider shrinkage estimates from a 2-study meta-analysis?
- how do shrinkage estimates behave in general?

two-study scenario

- consider: primary interest in randomized trial outcome (no "breaking of randomization" by pooled analysis)
- does it make sense to consider shrinkage estimates from a 2-study meta-analysis?
- how do shrinkage estimates behave in general?
- investigate example cases
- investigate long-run behaviour
- consider again pairs of studies $(n_1, n_2 \in \{25, 100, 400\}, \ p(\tau) = HN(0.5), ...)$

two-study scenario

two-study scenario

two-study scenario

two-study scenario

• $n_1 = 25$, $n_2 = 400$, $p(\tau) = HN(0.5)$, interested in θ_1

Christian Röver

two-study scenario

two-study scenario

• $n_1 = 25$, $n_2 = 400$, $p(\tau) = HN(0.5)$, interested in θ_1

Christian Röver

two-study scenario

- 'robust' behaviour
- ratio of CI widths: gain may be substantial
- probability density of $(y_2 y_1)$: unlikely to exceed $|y_2 - y_1| = 5$

two-study simulations

- how do shrinkage intervals behave on average?
- what gain can we expect (if any)?
- investigate:
 - coverage
 - interval width
- may translate shortened intervals into sample size gain
 (assuming standard errors scale approximately with ¹/_{√n}), e.g.:

 relative interval with of 90% corresponds to a (0.90⁻² − 1) = 26% gain in sample size

two-study simulations: coverage (%)

τ p	rior:		HN(0.5)							HN(1.0)						
<i>n</i> ₁ / <i>n</i> ₂	au:	0.0	0.1	0.2	0.5	1.0	2.0	*	0.0	0.1	0.2	0.5	1.0	2.0	*	
25/400		99.8	99.5	99.0	93.4	84.1	79.4	94.7	99.4	99.2	99.1	96.6	92.6	90.8	95.1	
25/100 100/400		98.7 98.5	98.8 98.1	98.3 97.2	93.6 93.3	86.1 90.7	79.9 90.6	95.1 94.9	98.3 98.0	98.7 97.6	98.5 97.3	96.3 95.1	93.2 93.5	90.4 93.6	94.4 95.3	
25/25 100/100 400/400		96.7 96.8 96.9	96.8 96.7 96.7	96.1 96.4 95.0	94.6 94.0 93.9	90.4 91.3 93.9	84.5 91.0 94.1	95.0 95.7 95.0	97.1 96.7 96.6	97.1 96.6 96.6	96.6 96.8 95.0	95.8 95.3 94.7	94.1 93.8 94.9	92.1 93.8 95.0	94.9 94.9 95.0	
100/25 400/100		96.0 95.2	95.8 95.8	95.1 95.2	94.8 94.8	93.9 93.7	92.6 93.8	94.7 95.1	96.0 95.4	95.9 95.7	95.4 95.3	95.2 95.1	94.8 94.4	94.4 94.6	94.8 95.1	
400/25		95.2	94.9	95.3	94.7	94.8	94.5	95.3	95.1	94.9	95.3	94.8	94.9	95.2	95.2	

*: heterogeneity τ drawn from prior distribution

Christian Böver

two-study simulations: relative interval width (%)

au prior:				HN(0.5))						HN(1.0))		
n_1/n_2 $ au$:	0.0	0.1	0.2	0.5	1.0	2.0	*	0.0	0.1	0.2	0.5	1.0	2.0	*
25/400	62.3	62.7	63.0	65.6	72.1	83.1	65.1	75.6	75.9	76.2	78.6	83.8	90.9	81.5
25/100 100/400	67.5 78.5	67.4 78.7	67.9 79.9	69.8 85.2	75.2 91.4	84.2 95.9	69.5 83.4	78.5 85.7	78.4 85.9	78.8 86.9	80.8 90.9	85.2 95.1	91.4 97.8	83.2 92.1
25/25 100/100 400/400	78.9 85.1 89.9	79.0 85.4 90.5	79.0 85.7 91.9	79.7 88.5 95.5	81.8 92.5 97.8	86.8 96.2 99.0	79.7 87.5 93.7	85.2 89.9 93.0	85.2 90.1 93.4	85.3 90.4 94.5	86.2 92.7 97.2	88.3 95.6 98.7	92.4 97.9 99.5	87.6 93.9 97.3
100/25 400/100	92.9 95.0	92.9 95.1	93.0 95.4	93.4 96.7	94.6 98.1	96.6 99.1	93.3 96.2	95.0 96.5	95.0 96.6	95.1 96.9	95.6 97.9	96.7 98.9	98.1 99.5	96.1 98.2
400/25	98.0	98.0	98.1	98.2	98.6	99.2	98.2	98.6	98.6	98.6	98.8	99.1	99.5	99.0

*: heterogeneity τ drawn from prior distribution

Christian Röver

two-study simulations: relative sample size gain (%)

au pri	or:				HN(0.5))						HN(1.0))		
<i>n</i> ₁ / <i>n</i> ₂	au:	0.0	0.1	0.2	0.5	1.0	2.0	*	0.0	0.1	0.2	0.5	1.0	2.0	*
25/400		162	160	158	144	113	68.4	147	77.8	76.5	75.4	67.1	50.5	28.8	58.3
25/100 100/400		123 64.5	123 64.0	121 60.0	111 43.8	89.6 25.7	56.3 12.7	113 49.4	64.8 37.4	65.0 37.1	63.6 34.3	57.1 23.9	43.5 13.3	25.6 6.2	50.0 20.7
25/25 100/100 400/400		61.2 38.8 24.2	60.9 38.1 22.9	60.7 37.1 19.4	58.4 29.6 11.0	51.8 19.4 5.5	36.9 10.1 2.4	58.7 32.3 15.1	38.7 24.4 16.1	38.5 23.8 15.1	38.1 23.0 12.5	35.8 17.4 6.6	30.0 10.7 3.1	19.6 5.3 1.3	32.2 14.8 6.3
100/25 400/100		15.9 11.0	16.0 10.7	15.8 10.0	14.8 7.3	11.9 4.2	7.5 2.0	14.9 8.3	10.9 7.4	10.9 7.2	10.7 6.6	9.6 4.5	7.2 2.5	4.2 1.1	8.4 3.9
400/25		4.1	4.1	4.0	3.7	2.9	1.7	3.7	2.9	2.8	2.8	2.5	1.8	1.0	2.1

*: heterogeneity τ drawn from prior distribution

Christian Böver

two-study simulations: fraction of shortened intervals (%)

au prior:					IN(0.5)				HN(1.0)						
<i>n</i> ₁ / <i>n</i> ₂	au:	0.0	0.1	0.2	0.5	1.0	2.0	*	0.0	0.1	0.2	0.5	1.0	2.0	*
25/25		100.0	99.9	100.0	99.7	97.4	81.9	99.5	99.4	99.1	99.1	97.7	91.1	68.8	91.4
25/100		99.9	99.9	99.9	99.1	92.3	68.6	98.6	99.2	99.3	98.9	96.4	83.9	57.4	86.9
25/400		99.9	99.9	99.9	98.8	90.7	64.0	98.1	99.3	99.3	99.1	95.8	82.3	53.9	85.8
100/25		99.7	99.8	99.7	98.7	89.9	65.3	98.1	98.2	98.1	97.9	94.6	80.3	53.8	85.2
100/100		99.3	98.9	98.5	90.9	68.6	39.7	91.5	97.6	96.6	95.6	83.7	59.8	33.5	71.3
100/400		99.2	98.7	97.3	84.2	56.9	31.1	87.2	97.5	96.8	94.5	77.0	50.1	26.9	65.4
400/25		99.6	99.8	99.5	97.6	86.7	58.9	96.9	98.1	98.1	97.1	93.0	76.3	48.7	82.3
400/100		98.7	98.2	95.8	80.4	54.4	29.5	84.7	96.1	95.1	91.6	72.4	47.0	24.9	62.3
400/400		97.6	96.0	88.5	60.3	34.1	17.7	72.0	95.1	92.6	83.0	54.2	30.4	15.5	48.6

*: heterogeneity τ drawn from prior distribution

The Creutzfeld-Jakob disease (CJD) example

The Creutzfeld-Jakob disease (CJD) example

quoted estimate + shrinkage estimate

 shrinkage interval width: 66%, 129% gain in sample size (≈27 instead of 12 patients)

- readily motivated
- robust behaviour
- potentially substantial gain despite 'pathological' setting (k = 2)
- especially if $\sigma_2 \leq \sigma_1$
- good coverage

- readily motivated
- robust behaviour
- potentially substantial gain despite 'pathological' setting (k = 2)
- especially if $\sigma_2 \leq \sigma_1$
- good coverage
- install.packages("bayesmeta")
 library("bayesmeta")

+++ additional slides +++

CJD example

```
cjd <- cbind.data.frame("study" = c("observational", "randomized"),
                       "logHR" = c(-0.49948, -0.17344),
                       "logHR.se" = c(0.2493, 0.6312), stringsAsFactors=FALSE)
# analyze:
require("bayesmeta")
bm <- bayesmeta(y = cjd$loqHR,</pre>
                sigma = cjd$logHR.se,
                labels = cjd$study,
                tau.prior = function(t){dhalfnormal(t, scale=0.5)})
# show results:
print(bm)
# show forest plot:
forestplot(bm, xlab="log-HR")
forestplot(bm, exponentiate=TRUE, xlog=TRUE, xlab="hazard ratio")
# show shrinkage estimates:
```

print(bm\$theta)