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Framework

Full Population F

Subgroup S

Complement S ′ = F \ S

Overall treatment e�ect

δF = λδS + (1− λ)δS ′

where λ is the prevalence of subgroup S .

We assume δS ′ ≤ δS .
Allows for investigating the hypotheses HF : δF ≤ 0 and
HS : δS ≤ 0.
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Classical, Enrichment and Strati�cation Design

Enrichment Design: Randomize only patients of subgroup S (say
Biomarker +). Patients of the complement S ′ are
excluded from the trial (Biomarker � ).

Classical Design: Recruit from the full population F . No
Biomarker is determined.

Strati�cation Design: Include Biomarker + and Biomarker �
patients. Stratify randomization by biomarker status.

With the enrichment design one can test HS , i.e., for a
treatment e�ect in the subpopulation.

With the classical design one can test HF .

With the strati�cation design one can test HS and HF .
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Testing Problem

Parallel group comparison of the means of normal distributions.

Enrichment Design:

Test HS with a z-test.

Classical Design:

HF with a z-test.

Strati�cation Design:

Test HS and HF with a (strati�ed) z-test
adjusting for multiplicity with a weighted test
(Song and Chi, 2007; Spiessens and Debois,
2010)
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The Spiessens-Debois test in the Strati�ed Design

For adjusted signi�cance levels αF , αS the Spiessens and Debois
test rejects

HF if pF ≤ αF and HS if pS ≤ αS ,

where pF , pS are the p-values of the z-tests for HF and HS .

Some remarks:

For �xed αF and α, the level αS is chosen such that

PHF∩HS (pF < αF or pS < αS) = α.

For �xed αF the level αS increases with the prevalence λ
because the correlation of the test statistics increases.

Formulas well known from group sequential tests.
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Optimizing trial designs

Traditionally power arguments can be the basis for determining
the best trial design.

An alternative is to apply a utility based approach (Graf et al.,
2015; Beckman et al., 2011)

We model the sponsors gain and costs of a particular trial
design.

Best trial design is determined by maximizing the sponsors
pro�t.

In particular we optimize the following aspects of a clinical trial:

Which type of design (Enrichment Design/Classical
Design/Strati�ed Design) to choose?

Which sample size?

Which signi�cance levels αF and αS for HF and HS in the
weighted multiple test for the strati�ed design are optimal?
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The Sponsors Pro�t

Price approval rule for the subgroup S . Measure of the
revenue if the drug is licensed for the subgroup.

U = λ · ϕS,d + (1− λ) · ϕS ′,d − (c1,d + c2,dn)

Prevalence

Price approval rule for S ′

Costs

Costs split up into setup costs c1,d and costs per patient c2,d .
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Price Approval Rules of Payers and Regulators

We assume that the price approval rules ϕS , ϕS ′ depend on the
data via

the observed e�ect sizes,

a signi�cant result in the respective statistical test.

If the drug is licensed in the full population, then ϕS = ϕS ′ .
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Price Approval Rule for the Enrichment and the Classical

Design

Enrichment Design:

ϕS = ψS · g ·
(
δ̂S − µ

)+

Test decision

Revenue parameter
E�cacy estimate
Clinically relevant threshold
ϕS ′ = 0

Classical Design:

ϕS = ϕS ′ = ψF · g · (δ̂F − µ)+.
ψF denotes the test decision, based on the z-test
(in the full population).
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Price Approval Rule for the Strati�ed Design

If ψF = 1 then

ϕS = ϕS ′ = 1{δ̂S ,δ̂S′≥µ}
· ψF · g · (δ̂F − µ)+.

If the drug is not licensed in the full population but ψS = 1
then

ϕS = ψS · g · (δ̂S − µ)+.
ϕS ′ = 0
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Numerical Results - Parameters

Parameters Classical Enrichment Strati�ed

Revenue parameter g 1 Billion$ 1 Billion$ 1 Billion$
E�cacy threshold µ 0.1 0.1 0.1

Fixed costs 1Mio$ 16Mio$ 16Mio$
Costs per Patient 100K$ 100K + 10

λ K$ 100K$ + 10K$
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Numerical Results - Priors & Optimization

Optimal design is determined by maximizing the expected utility.
Single point prior on δS = 0.3 (with weight 1).
Two scenarios for δS ′ :

Single point prior on δS ′ = 0.

Discrete prior on δS ′ on a grid in [0, δS ].

Optimization of sample size and local signi�cance levels over a grid
(minimum sample size n = 50 per group).

Sample size n ∈ {50, 55, . . . , 400}
αF ∈ {0, 0.001, . . . , 0.025}
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Point prior on δS ′ = 0: Optimal sample size and

corresponding utility
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For low prevalences all designs have negative or very low utilities.

For intermediate prevalences enrichment dominates

For larger prevalences the strati�cation design dominates.

For very large prevalences the classical design dominates.
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Point prior on δS ′ = 0: Optimal Signi�cance Levels for the

Strati�ed Design
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Low prevalences: optimal test puts most of the weight on HF .

Intermediate prevalences: weight is more evenly distributed on
HF and HS .

Large prevalences: test statistics highly correlated. Both
hypotheses can be tested at nearly unadjusted levels.
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A sceptic prior for δS ′

Point prior with weight 1 on δS = 0.3.

Sceptic prior on δS ′ corresponding to the belief that the
e�cacy in S ′ is some fraction of that in S .

Larger probabilities attached to smaller e�ects.
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Sceptic prior for δS ′: Optimal sample size and corresponding

utility
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For low prevalences the qualitative results are as for the case
of δS ′ = 0.

For intermediate prevalences the strati�cation design is
optimal (The possibility that δS ′ > 0 increases its utility).

As above, for very larger prevalences the classical design is
optimal.
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Conclusions

In general, the decision theoretic approach gives guidance
regarding the choice of the trial design (including the type of
the trial, the choice of the sample size and the weights in the
multiple test)

The analysis of the example shows that the optimal sponsor
decision depends strongly on the particulars of the situation.
Subgroup prevalence, trial costs and initial beliefs are all
important to consider when making the design choice.

The model can be extended in several directions.

Include the public health perspective

Allow for partial enrichment.

Include adaptive enrichment designs.
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No Biomarker Costs, Point Prior on δS ′ = 0, Optimal

Sample Size and corresponding Utility
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