Enrichment Designs for the Development of Personalized Medicines

Martin Posch, Alexandra Graf, Franz Koenig

Section of Medical Statistics Center for Medical Statistics, Informatics, and Intelligent Systems Medical University of Vienna www.meduniwien.ac.at/medstat martin.posch@meduniwien.ac.at

IGES 2014, Vienna

This project has received funding from the European Union's 7th Framework Programme for research, technological development and demonstration under the InSPiRe Grant Agreement no 602144.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Identifying Target Populations

In recent years, clinical trials with more complex objectives, confirming treatment effects in sub-populations and/or in the overall populations, have raised more and more attention.

- The knowledge on the genetic basis of many diseases is increasing rapidly and therapies are developed that target underlying molecular mechanisms.
- Patients' responses are predicted to targeted treatments based on genetic features or other biomarkers.

Objective: Identify subgroups (based on biomarkers) where the treatment has a positive benefit risk balance.

・ロン ・回 ・ ・ ヨン・

• Overall treatment effect

$$\theta_{F} = \lambda \theta_{S} + (1 - \lambda) \theta_{S^{c}}$$

where λ is the prevalence of subgroup *S*.

- Test the null hypotheses $H_F : \theta_F \leq 0$ and $H_S : \theta_S \leq 0$.
- If θ_{S^c} ≪ θ_S and the prevalence of the subgroup is small, the power to reject H_F is low.

Enrichment and Stratification Design

Enrichment Design: Randomize only patients of subgroup S (say Biomarker +). Patients of the complement S^C are excluded from the trial (Biomarker –).

Stratification Design: Include Biomarker + and Biomarker – patients. Stratify randomization by biomarker status.

- With both designs one can test *H*_S, i.e., for a treatment effect in the subpopulation.
- With the stratification design one can test in addition H_F .
- With equal overall sample size *n*, the enrichment design has a larger number of biomarker+ patients.

イロト イポト イヨト イヨト

Testing Problem

- Parallel group comparison of the means of normal distributions.
- Total sample size *n* is chosen to detect an effect size Δ with a two sample one-sided *z*-test with α = 0.025 and power of about 90%.

Enrichment Design:

• Test *H_S* with a z-test.

Stratification Design:

- Test *H_S* with a *z*-test
- Test H_F with a stratified z-test
- Correct for multiplicity with the Hochberg test.

To Enrich or not to Enrich?

- The power to reject any hypothesis depends on the effect sizes $\Theta = (\theta_S, \theta_{S^c})$
- Assume we suspect that θ_{S^c} ≤ θ_S but believe that θ_{S^c} > θ_S is not plausible.
- Then, the enrichment design (recruiting only patients in *S*) always leads to the highest power:
 - If $\theta_{S^c} = \theta_S$ the enrichment design has the larger power than the stratification design using a multiple testing procedure.
 - If $\theta_{S^c} < \theta_S$ the enrichment design has larger power.

Thus, is enrichment always preferable?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

To Enrich or not to Enrich?

- The power to reject any hypothesis depends on the effect sizes $\Theta = (\theta_S, \theta_{S^c})$
- Assume we suspect that θ_{S^c} ≤ θ_S but believe that θ_{S^c} > θ_S is not plausible.
- Then, the enrichment design (recruiting only patients in *S*) always leads to the highest power:
 - If $\theta_{S^c} = \theta_S$ the enrichment design has the larger power than the stratification design using a multiple testing procedure.
 - If $\theta_{S^c} < \theta_S$ the enrichment design has larger power.

Thus, is enrichment always preferable?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Different Gains, different Costs...

The argument results from an oversimplification. The Power to reject any null hypotheses is not the only criteria.

- The stratification design tests the full population H_F : θ_F ≤ 0, demonstrating that the treatment works "on average".
- The enrichment design tests a limited null hypothesis H_S : θ_S ≤ 0 leading to a limited indication.
- Ethical problem if patients that may benefit are excluded.
- Enrichment maybe costly (e.g. due to longer patient recruitment, ...).

To account for these aspects we may use an approach based on utility functions.

・ロット (母) ・ ヨ) ・ ヨ)

The utility function approach

A sponsor view:

Rejection of	Gain	
H _F	G_F	G < G (for example $G = (G)$
H_S only	G_S	$G_S \ge G_F$ (ioi example, $G_S = \lambda G_F$)
none	0	

 $U_{C}(\Theta) = G_{F}P_{\Theta}(\text{reject } H_{F}) + G_{S}P_{\Theta}(\text{reject only}H_{S})$

A public health view:

		Rejection of	Gain
+	+	H_F	G_F
+	+	H_S only	G_S
+	0	H_F	G_S
+	0	H_S only	G_S
0	0	H_S, H_F	0
0	0	None	0

 $\begin{aligned} U_{P}(\Theta) &= G_{F} \mathbf{1}_{\{\theta_{S}, \theta_{S^{c}} > 0\}} P_{\Theta}(\text{reject } H_{F}) + G_{S} \mathbf{1}_{\{\theta_{S}, \theta_{S^{c}} > 0\}} P_{\Theta}(\text{reject only } H_{S}) + \\ G_{S} \mathbf{1}_{\{\theta_{S} > 0, \theta_{S^{c}} \leq 0\}} P_{\Theta}(\text{reject } H_{F}) + G_{S} \mathbf{1}_{\{\theta_{S} > 0, \theta_{S^{c}} \leq 0\}} P_{\Theta}(\text{reject only } H_{S}) \end{aligned}$

The utility function approach

A sponsor view:

Rejection of	Gain	
H _F	G _F	G < G (for example $G = (G)$
H_S only	G_S	$G_S \ge G_F$ (ioi example, $G_S = \lambda G_F$)
none	0	

 $U_{C}(\Theta) = G_{F}P_{\Theta}(\text{reject } H_{F}) + G_{S}P_{\Theta}(\text{reject only}H_{S})$

A public health view:

θ_{S}	$\theta_{\mathcal{S}^c}$	Rejection of	Gain
+	+	H _F	G _F
+	+	H _S only	G_S
+	0	H _F	G_S
+	0	H _S only	G_S
0	0	H_S, H_F	0
0	0	None	0

 $\begin{aligned} U_{P}(\Theta) &= G_{F} \mathbf{1}_{\{\theta_{S}, \theta_{S^{c}} > 0\}} P_{\Theta}(\text{reject } H_{F}) + G_{S} \mathbf{1}_{\{\theta_{S}, \theta_{S^{c}} > 0\}} P_{\Theta}(\text{reject only } H_{S}) + \\ G_{S} \mathbf{1}_{\{\theta_{S} > 0, \theta_{S^{c}} \leq 0\}} P_{\Theta}(\text{reject } H_{F}) + G_{S} \mathbf{1}_{\{\theta_{S} > 0, \theta_{S^{c}} \leq 0\}} P_{\Theta}(\text{reject only } H_{S}) \end{aligned}$

The utility function approach

A sponsor view:

Rejection of	Gain	
H _F	G _F	G < G (for example $G = (G)$
H_S only	G_S	$G_S \ge G_F$ (ioi example, $G_S = \lambda G_F$)
none	0	

 $U_{C}(\Theta) = G_{F}P_{\Theta}(\text{reject } H_{F}) + G_{S}P_{\Theta}(\text{reject only}H_{S})$

A public health view:

θ_{S}	$\theta_{\mathcal{S}^c}$	Rejection of	Gain
+	+	H _F	G _F
+	+	H_S only	G_S
+	0	H _F	G_S
+	0	H _S only	G_S
0	0	H_S, H_F	0
0	0	None	0

 $\begin{aligned} U_{P}(\Theta) &= G_{F} \mathbf{1}_{\{\theta_{S}, \theta_{S^{c}} > 0\}} P_{\Theta}(\text{reject } H_{F}) + G_{S} \mathbf{1}_{\{\theta_{S}, \theta_{S^{c}} > 0\}} P_{\Theta}(\text{reject only } H_{S}) + \\ G_{S} \mathbf{1}_{\{\theta_{S} > 0, \theta_{S^{c}} \leq 0\}} P_{\Theta}(\text{reject } H_{F}) + G_{S} \mathbf{1}_{\{\theta_{S} > 0, \theta_{S^{c}} \leq 0\}} P_{\Theta}(\text{reject only } H_{S}) \end{aligned}$

Bayesian expected Utility

If $G_S = G_F = 1$ then $U_C = U_P$ is equal to the power of rejecting any hypothesis.

Consider a prior π on $\Theta = (\theta_S, \theta_{S^c})$. Then the expected utilities are

$$U_{\pi,C} = E_{\pi}(U_C(\Theta)), \quad U_{\pi,P} = E_{\pi}(U_P(\Theta))$$

We use the simple prior

$$P\{\Theta = (\Delta, \Delta)\} = \pi$$
$$P\{\Theta = (\Delta, 0)\} = (1 - \pi)$$

setting $G_F = 1$.

Utility for different Priors and Gains G_S Prevalence $\lambda = 0.3$

$$G_S = 1$$

Martin Posch, Alexandra Graf, Franz Koenig (IMS)

Utility for different Priors and Gains G_S Prevalence $\lambda = 0.3$

$$G_{\rm S} = 0.5$$

Martin Posch, Alexandra Graf, Franz Koenig (IMS)

IGES 2014 10 / 23

Utility for different Priors and Gains G_S Prevalence $\lambda = 0.3$

$$G_{\rm S} = 0.3$$

Martin Posch, Alexandra Graf, Franz Koenig (IMS)

Fixed Overall Sample Size: n

Sample size Stage 1:

F: n₁=r*n S: λ*n₁

Interim Analysis Planning of Second Stage Subgroup Selection

• First stage data is used to choose the second stage population

Fixed Overall Sample Size: n

```
Sample size Stage 1:
```

F: n₁=r*n S: λ*n₁

Example:

Decision based on the interim p-value \mathbf{p}_{sc} of the Complement $\mathsf{S}^{\texttt{C}}$

Introducing a "stopping-for-futility"-boundary α_C for S^c

Interim Analysis Planning of Second Stage Subgroup Selection

• First stage data is used to choose the second stage population

- First stage data is used to choose the second stage population
- Efficacy is demonstrated with Stage 1 and 2 data

- First stage data is used to choose the second stage population
- Efficacy is demonstrated with Stage 1 and 2 data

The Adaptive Closed Test

• To control the family wise error rate apply the closure principle using adaptive combination tests at level α for

$$H_S$$
, H_F , $H_{FS} = H_S \cap H_F$.

(Bauer and Kieser, 1999, Hommel, 2001)

• Reject $H_j, j \in \{S, F\}$ if H_{FS} and H_j are rejected at local level α .

- Compute stage wise p-values
 - First stage elementary p-values p_S, p_F
 - Second stage elementary p-values q_S, q_F (computed from second stage data only)
- Define a combination function *C*(*p*, *q*) and critical value *c* such that for independent and uniformly distributed p-values

 $P(C(p,q) \leq c) = \alpha.$

• Reject H_S if

 $C(p_S,q_S) \leq c$

• If the trial continues in F, reject H_F if

 $C(p_F, q_F) \leq c,$

otherwise retain H_F .

イロト イヨト イヨト イヨト

- Compute stage wise p-values
 - First stage elementary p-values p_S, p_F
 - Second stage elementary p-values q_S, q_F (computed from second stage data only)
- Define a combination function *C*(*p*, *q*) and critical value *c* such that for independent and uniformly distributed p-values

 $P(C(p,q) \leq c) = \alpha.$

• Reject H_S if

 $C(p_S,q_S) \leq c$

• If the trial continues in F, reject H_F if

 $C(p_F, q_F) \leq c,$

otherwise retain H_F .

イロン イヨン イヨン -

- · Compute stage wise p-values
 - First stage elementary p-values p_S, p_F
 - Second stage elementary p-values q_S, q_F (computed from second stage data only)
- Define a combination function *C*(*p*, *q*) and critical value *c* such that for independent and uniformly distributed p-values

 $P(C(p,q) \leq c) = \alpha.$

Reject H_S if

 $C(p_S,q_S) \leq c$

• If the trial continues in F, reject H_F if

 $C(p_F, q_F) \leq c,$

otherwise retain H_F .

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- · Compute stage wise p-values
 - First stage elementary p-values p_S, p_F
 - Second stage elementary p-values q_S, q_F (computed from second stage data only)
- Define a combination function *C*(*p*, *q*) and critical value *c* such that for independent and uniformly distributed p-values

$$P(C(p,q) \leq c) = \alpha.$$

Reject H_S if

 $C(p_S, q_S) \leq c$

• If the trial continues in F, reject H_F if

$$C(p_F, q_F) \leq c,$$

otherwise retain H_F .

イロト イポト イヨト イヨト

Test of the intersection hypothesis $H_F \cap H_S$

• First stage p-value for $H_F \cap H_S$ with Simes test:

 $p_{FS} = \min[\max(p_F, p_S), 2\min(p_F, p_S)]$

- Second stage p-value for $H_F \cap H_S$
 - If both populations are continued with Simes test:

 $q_{FS} = \min[\max(q_F, q_S), 2\min(q_F, q_S)]$

• If only *H_S* is selected:

 $q_{FS} = q_S$

• Final Analysis: Reject H_{FS} if

 $C(p_{FS}, q_{FS}) \leq c$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Test of the intersection hypothesis $H_F \cap H_S$

• First stage p-value for $H_F \cap H_S$ with Simes test:

 $p_{FS} = \min[\max(p_F, p_S), 2\min(p_F, p_S)]$

- Second stage p-value for $H_F \cap H_S$
 - If both populations are continued with Simes test:

 $q_{FS} = \min[\max(q_F, q_S), 2\min(q_F, q_S)]$

• If only *H_S* is selected:

 $q_{FS} = q_S$

• Final Analysis: Reject H_{FS} if

 $C(p_{FS}, q_{FS}) \leq c$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Test of the intersection hypothesis $H_F \cap H_S$

• First stage p-value for $H_F \cap H_S$ with Simes test:

 $p_{FS} = \min[\max(p_F, p_S), 2\min(p_F, p_S)]$

- Second stage p-value for $H_F \cap H_S$
 - If both populations are continued with Simes test:

 $q_{FS} = \min[\max(q_F, q_S), 2\min(q_F, q_S)]$

• If only *H*_S is selected:

 $q_{FS} = q_S$

Final Analysis: Reject H_{FS} if

 $C(p_{FS}, q_{FS}) \leq c$

The Adaptive Closed Test

Adaptive Closed Test

- Reject $H_i, i \in \{F, S\}$ if
 - $C(p_{FS}, q_{FS}) \leq c$ and
 - $C(\boldsymbol{\rho}_i, \boldsymbol{q}_i) \leq c.$
 - The population selection rule may depend on the interim data and external data in any way.
 - The selection rule needs not to be specified in detail.
 - Sample sizes may be adapted based on unblinded interim data
 - The familywise error rate is controlled in the strong sense.

イロト イポト イヨト イヨト

Adaptation Rule: Example

- Selection rule:
 - *p_{SC}*... the interim p-value for the z-test in the complement of the subpopulation.
 - α_C...selection threshold
 - Continue with F if $p_{SC} < \alpha_C$, otherwise enrich and continue with S only.
- Two types of adaptation: If the trial continues in the subpopulation only
 - Selection of hypothesis: H_F is dropped.
 - Reassessment of sample size: The sample size for H_S is increased.
- Combination Function: Inverse normal method (Lehmacher and Wassmer, 1999)

→ $r = 0, \alpha_{C} = 0$ Fixed Sample Trial in *S* only → $0 < r, \alpha_{C} < 1$ Adaptive Design integrating both phases → $r = 1, \alpha_{C} = 1$ Fixed Sample Trial in F

 $\pi = 0$

< ≣ →

 $\pi = 0.2$

< ≣ →

 $\pi = 0.4$

Utility $U_{\pi,C} = U_{\pi,P}$ for $G_S = 1$

 $\pi = 0.8$

Utility $U_{\pi,C} = U_{\pi,P}$ for $G_S = 1$

$$\pi = 1$$

Utility $U_{\pi,C}$ for $\mathbf{G_S} = .5$

$$\pi = 0$$

< ≣ →

Utility $U_{\pi,C}$ for $\mathbf{G}_{\mathbf{S}} = .5$

 $\pi = 0.2$

Utility $U_{\pi,C}$ for $\mathbf{G_S} = .5$

< Ξ

Utility $U_{\pi,C}$ for $\mathbf{G_S} = .5$

 $\pi = 0.6$

Utility $U_{\pi,C}$ for $\mathbf{G}_{\mathbf{S}} = .5$

 $\pi = 0.8$

Utility $U_{\pi,C}$ for $\mathbf{G_S} = .5$

$$\pi = 1$$

Utility $U_{\pi,C}$ for $\mathbf{G}_{\mathbf{S}} = .3$

$$\pi = 0$$

Utility $U_{\pi,C}$ for $\mathbf{G}_{\mathbf{S}} = .3$

 $\pi = 0.2$

Utility $U_{\pi,C}$ for $\mathbf{G_S} = .3$

 $\pi = 0.4$

Utility $U_{\pi,C}$ for $\mathbf{G_S} = .3$

 $\pi = 0.6$

Utility $U_{\pi,C}$ for $\mathbf{G}_{\mathbf{S}} = .3$

 $\pi = 0.8$

Utility $U_{\pi,C}$ for $\mathbf{G}_{\mathbf{S}} = .3$

$$\pi = 1$$

Utility $U_{\pi,P}$ for $\mathbf{G_S} = .3$

$$\pi = 0$$

< ≣ →

Utility $U_{\pi,P}$ for $\mathbf{G}_{\mathbf{S}} = .3$

 $\pi = 0.2$

Utility $U_{\pi,P}$ for $\mathbf{G}_{\mathbf{S}} = .\mathbf{3}$

 $\pi = 0.4$

Utility $U_{\pi,P}$ for $\mathbf{G_S} = .3$

 $\pi = 0.6$

Utility $U_{\pi,P}$ for $\mathbf{G}_{\mathbf{S}} = .3$

 $\pi = 0.8$

Utility $U_{\pi,P}$ for $\mathbf{G}_{\mathbf{S}} = .3$

$$\pi = 1$$

Public View Utility Function

1 -0.9 -0.8 0.7 -0.6 -**∺** 0.5 -0.4 -0.3 -0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 gs

(A) PV: $\lambda = 0.3$

Martin Posch, Alexandra Graf, Franz Koenig (IMS)

< E

Sponsor View Utility Function

1 -0.9 -0.8 0.7 -0.6 -**∺** 0.5 -0.4 -0.3 -0.2 0.1 0 0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9 0 0.4 gs □ Adaptive ■ Enrichment

(D) SV: $\lambda = 0.3$

Stratification

-

Public View Utility Function

1 -0.9 -0.8 0.7 -0.6 -**∺** 0.5 -0.4 -0.3 -0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 gs

(C) PV: $\lambda = 0.5$

Martin Posch, Alexandra Graf, Franz Koenig (IMS)

-

Sponsor View Utility Function

1 -0.9 -0.8 0.7 -0.6 -**∺** 0.5 -0.4 -0.3 -0.2 0.1 0 0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9 0 0.4 gs □ Adaptive ■ Enrichment

(F) SV: $\lambda = 0.5$

Stratification

ъ

Summary and Limitations

- For enrichment designs investigating the power to reject any null hypothesis may not be sufficient.
- The optimized design depends critically on the prior.
- We investigated a very simple adaptation rule, that depended on the effect size of the complement of S only.
- Designs can be extended to optimize the conditional expected utility, taking into account also the effect size S.
- The loss resulting from false positive rejections of H_S and H_F is accounted for only through the multiple testing procedure but not included in the utility function.

References

Bauer P, Kieser M. Combining different phases in the development of medical treatments within a single trial. *Statistics in Medicine* 1999; **18**:1833–1848.

Brannath, Zuber, Branson, Bretz, Gallo, Posch, Racine-Poon. Confirmatory adaptive designs with Bayesian decision tools for a targeted therapy in oncology *Statistics in Medicine* 2009; **28**:1445-63.

Bretz F, König F, Brannath W, Glimm E, Posch M. Adaptive Designs for Confirmatory Clinical Trials. *Statistics in Medicine* 2010; **28**:1181-217.

Hommel G. Adaptive modifications of hypotheses after an interim analysis. *Biometrical Journal* 2001; **43**:581–589.

Jenkins M, Stone A, Jennison C. An adaptive seamless phase II/III design for oncology trials with subpopulation selection using correlated survival endpoints. *Pharmaceutical Statistics* 2010; Online preview.

Lehmacher W, Wassmer G. Adaptive sample size calcualtions in group sequential trials. *Biometrics* 1999; **55**: 1286–1290.

Posch M, König F, Branson M, Brannath W, Dunger-Baldauf C, Bauer P. Testing and estimation in flexible group sequential designs with adaptive treatment selection. *Statistics in Medicine* 2005; **24**:3697-3714.

