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Patient Populations

Full Population F

Subgroup S
Complement
S ′ = F \ S

• The overall treatment effect is

δF = λSδS + (1− λS)δS ′

where λS is the prevalence of subgroup S .
• Assume δS ′ ≤ δS .
• Test of hypotheses HF : δF ≤ 0 and HS : δS ≤ 0.
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Which clinical trial design to choose?

Classical Design:
Recruitment from population F .
No Biomarker is determined.
Test of HF .

Stratification Design:
Recruitment from population F .
Stratified randomization by Biomarker.
Test of HF and HS .

Enrichment Design:
Recruitment only from population S .
Test of HS


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Testing Procedures for Parallel Group Comparison of Means

Classical Design:
HF is tested with a z-test.

Stratification Design:

• HS and HF are tested with a closed
Spiessens-Debois (2010) test at levels αS , αF .
If a hypothesis is rejected, the other is tested at
level α.

• To reject HF , also the consistency condition

pS ≤ τS and pS ′ ≤ τS ′ ,

for parameters τS , τS ′ , must be satisfied.

Enrichment Design:
HS is tested with a z-test.
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Optimizing Clinical trial designs

• When is a biomarker (BM) design beneficial compared to a
classical design?

• When to choose stratified, when an enrichment design?
• Which sample size?
• Which significance levels αF and αS for HF and HS in the
weighted multiple test for the stratified design are optimal?

We apply a utility based approach, (cf. Beckman et al., 2011; Graf
et al., 2015), to model the expected utilities of a particular trial
design from a sponsor’s and a public health view.
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The Utility Function

U(d) = −C (d)


c

︸ ︷︷ ︸
Cost

+


ϕF ,d if HF is rejected
ϕS ,d if only HS is rejected
0 if no hypothesis is rejected︸ ︷︷ ︸

Reward

.
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The Rewards

Sponsor view

ϕF ,d = N · rF · (δ̂F ,d − µF )+

ϕS ,d = λS · N · rS · (δ̂S ,d − µS)+

• N . . . number of future patients (market size).
• rF , rS . . . revenue parameters.
• δ̂F ,d , δ̂S ,d . . . efficacy estimates.
• µF , µS . . . clinically relevant thresholds.

Public health view

ϕF ,d = N · rF · (δF − µF )

ϕS ,d = λS · N · rS · (δS − µS)

• δS , δF . . . true effect sizes.
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Trial Costs C (d)

• Classical Design

csetup + 2n cper-patient.

• Stratified Design

csetup + cBM development + 2n(cper-patient + cBM determination).

• Enrichment Design

csetup + cBM development + 2n(cper-patient +
cBM determination

λS
).
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The Expected Utility of Trial Designs in the Planning Stage
Identifying optimized trial designs

Expected Utility:
Eπ {E∆[U(d)]}

The expectation is taken over
• the prior π on the effect sizes ∆ = (δS , δS ′) and
• the sampling distribution

Optimal design: Choose the design with maximal expected utility
optimizing over

• Type of design (classical/stratified/enrichment)
• Sample size
• α allocation (for the stratified design)
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Prior Distributions π On the Effects δS , δS ′

δS 0 θ θ θ
δS ′ 0 0 θ/2 θ

Weak Biomarker Prior 0.2 0.2 0.3 0.3
Strong Biomarker Prior 0.2 0.6 0.1 0.1

where θ > 0 is an effect size parameter.
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Scenario

• Effect size parameter in the prior
θ = 0.3

• Reward parameters
NrF = NrS = 1000MUSD
µF = µS = 0.1.

• Cost Parameters in (MUSD)
csetup = 1
cper-patient = 0.05
cBM development = 1
cBM determination = 0.005.

• Consistency parameters τS = τS ′ = 0.3.
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Optimized Expected Utilities
Weak Biomarker Prior
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Optimized Sample Size
Weak Biomarker Prior

0.2 0.4 0.6 0.8

50
15

0
25

0

Sponsor

λS

S
am

pl
e 

S
iz

e

0.2 0.4 0.6 0.8
50

15
0

25
0

Public Health

λS

S
am

pl
e 

S
iz

e

13



Optimized Alpha Allocation
Weak Biomarker Prior
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Optimized Expected Utilities – Impact of the Prior

Weak Biomarker Prior gStrong Biomarker Prior
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Optimal Trial Designs
Weak Biomarker Prior

Large Market & No BM Cost No BM Cost With BM Cost

θ

λS
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Optimal Trial Designs
Strong Biomarker Prior

Large Market & No BM Cost No BM Cost With BM Cost

θ

λS
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Some General Observations and Conclusion

• The decision theoretic model can inform the choice of
• the type of trial design,
• the sample size and the weights in the multiple test.

• The optimal sample size under the public health view is
typically larger than in the sponsor view.

• The enrichment design is never optimal for the sponsor view
• For some scenarios the optimized designs differ, but the
expected utilities of different design options are often small.

• The optimal design depends strongly on the particulars of the
situation: Subgroup prevalence, trial costs and initial beliefs.
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