Project No.	Supervisor 1	Supervisor 2	Supervsor 3	Title	Track record	Background	Project	Strategy	Training	Resources	Management	3-6 month	Student
1	Rodger	Roper	Turner	Bacterial cell div	1	1	1	1	1	1	1	1	
2	Bugg	Dowson	Roper	Quantitative Enz	1	1	1	1	1	1	1	1	
3	Bretschneider	Vance	(Ott)	Transcriptional	signatures of	single-cell line	ages in large ce	ll populations					
4	Macpherson/U	Newton	Robinson	pore platforms for	or the Investigation	on of Dynamic Ev	ents in Ion Chan	nels					
5	Ott	Tripathi		Development an	d Application of [Diamond Based I	Nanopore platforr	ns for the Investi	gation of Dynami	c Events in Ion C	hannels		
6	Ott	Beynon		Modelling TF B	inding Sites ar	nd their Combin	natorial Effects						
7	Roemer	Pinheiro		Rigidity dilution a	analysis as a met	thod of studying	prion protein foldi	ng					
8	Bull	Chandler		Disease resistar	nce in highly socia	al organisms: a s	tudy of the innate	immune respon	se in the Europe	an honey bee			
9													
10	Nicodemi	Koentges		Statistical med	chanics modelli	ng of MyoD ge	ne transcription	& regulatory	module interac	tions			
11	Lochner	Dale		Synthesis and bi	iological study of	E-NTPDase inhi	bitors						
12	Covington	Koentges		Microfluidic devi	ces for probing D	NA-protein intera	actions in cells: A	new interface ac	ross Engineering	, Systems Biolog	gy and DNA Cher	nistry	
13	Dixon	Allen	Brown	Membrane Prote	eins in their Natur	ral Environment:	Solid-state Nuclea	ar Magnetic Reso	nance and Mole	cular Dynamics S	Simulation for Det	ermination of Str	ucture and Dyna
	Denby	Wild											Cook
	Blindauer	Ladds											Chu
							1		İ				
							1		İ				
				-		l	 				 		l