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Abstract

Many organisms keep track of passing time by means of a cellular mechanism
called circadian clock. This clock supposedly relies on a central pacemaker that gen-
erates oscillations via a transcriptional feedback loop. The gene LONG ELONGATED
HYPOCOTYL (LHY ) has been identified to be part of this central feedback loop in
Arabidopsis. Another component of this loop is TIMING OF CAB EXPRESSION1
(TOC1), which induces an increase in LHY transcription. It is yet unclear how TOC1
exerts this effect on the LHY promoter, but it is believed that other factors like
PHYTOCHROME INTERACTING FACTOR-3 (PIF3) or EARLY FLOWERING-3
(ELF3) are involved. Here the effect of overexpressing ELF3 on the expression of
LHY was studied by comparing LHY expression levels of a transgenic elf3ox plant
line carrying a constitutively overexpressed copy of the ELF3 gene to normal LHY
expression of wild type plants. elf3ox plants were found to show a decreased response
to light signals and an overall lower expression of the LHY gene.

The experimental time series were transformed by removing trends and normalis-
ing amplitude heights and then analysed by the fitting of two different models. An
approximation model, consisting of a modified Fourier sum, was used to characterise
the expression patterns. Secondly, using the Metropolis-Hastings algorithm a model
based on a stochastic differential equation was fitted to the data in order to uncover
the corresponding transcription rates. To overcome the problem of the low time reso-
lution of the data (2h) an interpolation procedure based on modified Brownian bridges
was implemented.

1 Introduction

The Circadian clock is a cellular mechanism by which an organism can keep track of
passing time so that it is able to anticipate changes in the environment like light and
temperature and to respond accordingly.

Circadian clocks have been found in organisms ranging from bacteria and fungi
to animals and plants [Young 2001]. Though these clocks show a certain degree of
homogeneity in the design, they seem to based on unrelated genes, which suggests
that they may have involved independently several times in nature.

For the plant world the weed Arabidopsis thaliana has recently been established
as a model organism for circadian clocks. Several studies have uncovered important
clock genes [Salomé 2004].

It is believed that at the centre of any circadian clock there exists a mechanism gen-
erating stable oscillations. This central oscillator would then be set by environmental
signals (input pathways) like light to local time, a process referred to as entrainment.
The central oscillator would also control the expression of other genes via certain reg-
ulatory pathways, called output pathways. This three component structure consisting
of the central oscillator, input and output pathways seems to be applicable to all
circadian clocks studies so far.

In Arabidopsis a first model of the central oscillator was based on a transcriptional
feedback loop between the genes LHY, CCA1 and TOC1 [Alabadi 2001]. The gene
products LHY and CCA1 are transcription factors which repress the expression of
TOC1. The protein TOC1 in turn was shown to induce the transcription of LHY and
CCA1, though the mechanisms of the regulation is yet unclear. Transcription of LHY
and CCA1 peaks in the morning, while that of TOC1 peaks in the evening.

Though this is a convenient working model, the picture is not that simple. For ex-
ample losing the function of TOC1 does not disrupt circadian rhythms [Strayer 2000],
though this would be expected in the light of the proposed model. This observation
suggests that there are different levels of regulation and redundancy in the clock so
that the loss of individual genes can be compensated.

A combined biology and mathematics project, as a part of the MSc program
“Molecular Organisation and Assembly of Cells” (MOAC) at the University of War-
wick, addressed the issue of the regulation of the LHY gene. Apart from the positive
regulation of TOC1, whose details are not yet understood, the LHY expression is
also subject to light induction. This project focused on the proteins PIF3 and ELF3,
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which are believed to play a role in the regulation of LHY by either mediating the
impact of TOC1, being involved in light signalling, or both.

PIF3 belongs to a class of bHLH transcription factors. It is known to interact
with TOC1 and PHYTOCHROME-B (PHYB). It also binds with high affinity to the
G-BOX, a DNA motif present in the promoter regions of many light regulated genes
like LHY. This make PIF3 a likely candidate in the mediating the LHY activation by
TOC1 and the clock entrainment by light [Martinez-Garcia 2000].

Mutations in ELF3 lead to loss of circadian rhythms in the light and a reduction
in LHY mRNA levels Also, plants overexpressing ELF3 show a low sensitivity to light
signals. [Hicks 2001].

LHY transcription activity in the Arabidopsis seedlings was tracked by a lumines-
cence assay, where the promoter of the LHY gene was coupled with the gene luciferase
(LUC ), whose gene product emanates light when it reacts with its substrate luciferin.

Plants carrying the loss-of-function mutant pif3-1 showed little effect on LHY
expression activity [Janus 2005]. Here we present the results of transgenic elf3ox
plants carrying a constitutively overexpressed copy of the ELF3 gene.

When dealing with data in general it is desirable to be able to extract relevant infor-
mation in an objective and clearly defined manner. In biology this is often complicated
due to variations between experiments and also the lack of appropriate mathematical
tools.

Here we applied a number of mathematical and statistical methods originally im-
plemented by A. Morton [Morton 2004] to identify and characterise differences in the
patterns of LHY expression, extract information about period and transcription dy-
namics. The analysis consisted of the following steps.

Firstly, the overall trends and the trend of the amplitudes were removed by the
application of kernel smoothing. This procedure removed the data fluctuations due to
degradation of luciferin over time.

Secondly, to extract information about period length and to characterise the wave
form of LHY expression, the time series were fitted to a fourier series by ordinary
least squares (OLS) regression. This step is referred to as the approximation model.

Thirdly, to simulate the dynamics of a transcription factor, the time series were
fitted to a simple dynamical model defined by a stochastic differential equation (SDE).
For the fitting Monte Carlo Markov Chain (MCMC) simulations using a Metropolis-
Hastings algorithm were carried out.

In the MCMC simulation the sparsity of the sampled data posed a problem, as
they made the estimates of the transition probabilities very inaccurate. This problem
was addressed by interpolating the data by modified Brownian bridges [Durham 2002],
replacing the previous simpler interpolation method used by Morton.

2 Data Analysis

2.1 Postprocessing by kernel regression

Time series data from luminescence assays typically show experimental artifacts like
upwards or downward trends of the overall curve or the amplitude heights. One would
like to have a means to extract these trends from the data so that the data can be
adjusted accordingly.

A way to extract these trends is the application of kernel regression. Kernel re-
gression is a way to fit a trend to a time series or two-variate data set. In contrast to
parametric regression like linear regression, which fits a given function characterised
by a certain number of parameters to the data, kernel regression makes no prior as-
sumptions on the trend. Rather the trend is generated locally by making a linear or
higher order parametric regression around each time point taking neighbouring data
points into account according to weights distributed like the Gaussian bell curve. If
the with of the Gaussian, referred to as the bandwidth of the kernel regression, is
chosen well, then the resulting regression line will capture the overall trend but not
follow the individual oscillations.
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More precisely, consider a number of observations (ti, xi), i = 1, . . . , n, which are
assumed to be generated by

xi = m(ti) + σεi,

where εi are normally distributed independent random variables, σ2 the variance. m

is called the regression function, which we want to estimate.
This is done by performing a weighted least squares regression for each observation

(ti, xi), where a m is taken to be linear and the weighs are normally distributed around
the respective observation.

More precisely for each t the estimator

m̂(t, h) = β̂0 (1)

of m is obtained by fitting the line

β0 + β1(ti − t)

to the observations by weighted least squares regression. The weights are given by the
kernel function Kh(ti − t).

Kh(u) =
1

h
φ
(u

h

)

,

where φ(x) is the density of the normal distribution N(0, 1) and h is called the band-
width. This means that values close to t have higher weights than those which are
further away.

The estimators β̂ = (β̂0, β̂1)
′ are the minimisers of

n
∑

i=1

(xi − β0 − β1(ti − t))
2
Kh(ti − t).

If the respective matrix is invertible, the minimiser β′ is given in closed form by

β′ = (T ′

tWtTt)
−1T ′

tWtX,

Here X = (x1, . . . , xn)′ is the vector of observations,

Tt =







1 x1 − x
...

...
1 xn − x







is an n × 2 matrix and

Wt = diag{Kh(t1 − t), . . . , Kh(tn − t)}

is an n×n diagonal matrix of the weights. This method is usually presented in a more
general form, where m is taken as a polynomial of degree p ≥ 1. For a more detailed
description of kernel smoothing see [Wand].

Application to the collected time series data. Let

L(t) := m̂(t, h) (2)

denote the trend line resulting from applying kernel regression as described above
(comp. (1)). The bandwidth was chosen manually to be h = 10. This seems to be a
good value for capturing the trend while preserving the overall waveform. It would be
preferable to have a means to automatically choose h, but as typical circadian clock
related time series can be expected to have a similar period one should do fine with
fixed bandwidth. The experimental data typically provided about 50 time series xi(t)
from seedlings of the same genotype. The trend lines were estimated individually and
then averaged point-wise. This is illustrated in figure 1 a), where the (point-wise)
mean of the individual time series xi(t) is displayed together with the (point-wise)
mean of the individual trend lines Li(t). These trend lines are then simply subtracted
from the corresponding time series to yield the detrended time series denoted by
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x̃i(t) = xi(t) − Li(t). Figure 1 b) is based on the same data as 1 a) and shows the
mean of the detrened time series x̃i.

Looking at 1 b) we see that though the overall trend is taken out there are still
differences in amplitude. Given the experimental setup it can be assumed that most
of these differences are experimental artifacts (degradation of luciferin) and carry no
relevant biological information. The variations of the amplitude was eliminated as
follows. Kernel smoothing was applied to the absolute values of each detrended time
series (̃x)i(t), which yielded a trend for the amplitude Ai(t). This is illustrated in figure
1 c) for the example data set. The figure shows that mean of the absolute values of
the detrended time series together with the mean of the individual amplitude trends.
Notice that the mean was taken over the absolute values of the individual time series
as opposed of the absolute values of the mean, which is why the curve never actually
touches the x-axis. To remove the amplitude trend Ai(t), the detrended times series
is divided by it to yield the transformed time series

˜̃xi(t) =
xi(t) − Li(t)

Ai(t)
. (3)

The mean of all the ˜̃xi(t) time series of the example data set is displayed in figure (1)
d). The curve in this figure was also rescaled by first multiplying it by the average
over all time points of all amplitude trends Ai(t) and then adding the average over all
time points of all trend lines Li(t).

All following data analysis is based on the completely detrended data series ˜̃x,
which for the ease of notation will still be denoted by x.

2.2 An approximation model

This section formulates a simple approximation model. The corresponding parameters
of the fitted model portray information about certain characteristics of the time series
like period and the wave pattern.

After detrending the time series we expect it to be ,,close” in some sense to a peri-
odic function with a period of 24h in 12h-12h light-dark conditions. This assumption
motivates modelling the time series x(t) as being generated by a Fourier sum x̂(t)
while subject to a certain noise level. More precisely, the model is of the form

x(t) ≈ x̂(t) = α0 +

p
∑

k=1

[αk cos(ωkt) + βk sin(ωkt)] , (4)

where α0, αk, βk, k = 1, . . . , p are the Fourier coefficients and ω = 2π
T

, where T

is period of the periodic function x(t) and K = 2p + 1 is the number of Fourier
parameters.

As each experiment yielded a number m (≈ 50) time series with n data points,
the optimal parameters were fitted by taking observation of all time series (tj

i , x
j
i ), i =

1, . . . , n j = 1, . . . , m into account. .
For fixed p, the parameter values αk, βk, ω were estimated by OLS, i.e. by min-

imising the sum of squares,

SS(θ, ω) =

n
∑

i=1

m
∑

j=1

[

x
j
i −

(

α0

p
∑

k=1

(αk cos(ωkti) + βk sin(ωkti))

)]2

,

with respect to θ = (αβ), α = (α1, . . . , αp), β = (β1, . . . , βp). This was done sub-
sequently over a certain range of ω to determine the estimate for the period. The
feasibility of different numbers of Fourier parameters was estimated based on the
Akaike Information Criterion (AIC), which adjusts the Log-likelihood function for a
penalty proportional to the number of paramters:

AIC = −2l(θ, ω) + 2K,

where l(θ, ω) is the Log-likelihood function

l(θ, ω) = −0.5nm log
SS(θ, ω)

nm
.
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Figure 1: Example for the detrending algorithm described in section 2.1 applied to wild
type data of exp. B consisting of 44 seedlings in LD (12h light, 12h darkness) conditions
(comp. figure 4b, 6a). Before imaging the seedlings were entrained for 3-5 days. LD
conditions were maintained for 96h. The luminescence levels were measured at a time
resolution of δt = 2h. a) shows the curve resulting from taking the mean of the 44
individual time series at each time point. The plotted trend line is the result of calculating
the trend line Li(t) (defined in (1), (2)) with a bandwidth of h = 10 for each individual time
series xi(t) and taking the average at each time point. b) shows the result of subtracting
each trend line Li(t) from its corresponding time series xi(t) and taking the average over
all time series at each time point. c) shows the curve by taking the average at each time
point of the absolute values of the detrended time series |x̃i| = |xi(t)−Li(t)|, i = 1, . . . , 44
together with the amplitude trendline A(t). A(t) is the time point-wise average of the
individual amplitude trends Ai(t) attained by applying the kernel smoothing to the |x̃i|
(h = 10). d) shows the curve resulting from taking the average at each time point of the
detrended time series after amplitude correction ˜̃xi(t) as defined in (3), i.e. after dividing
the detrended series x̃i by the corresponding amplitude trendline Ai(t). The resulting
curve was further rescaled by first multiplying it with the average over all time points of
all amplitude trends Ai(t) and than adding the average over all time points of all trend
lines Li(t).
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For this project K = 11 was used as it had proved to be sufficient for reasonably
good approximations. If the fitting algorithm yielded parameters of very low absolute
values, these were set to zero.

2.3 A dynamical model

2.3.1 Synopsis

This section describes a modelling approach based based on the assumption that the
observed time series is the solution of a differential equation subject to some noise.
When we assume that the measured luminescence levels are proportional to the levels
of LHY protein in the plant we may propose a very simple model of how they change
over time: The increase of LHY levels is described by a function β(t) representing
the lumped effect of transcription of the gene and translation into the protein. The
decrease of the LHY level in turn is described by degradation term δx(t) proportional
to the protein level at the given time t. The only assumption about the expression
rate β(t) is that it is a periodic function and is therefore taken to be a Fourier sum.

Unfortunately the matter of fitting the model to the data and generating estimates
for the parameters is not as straight forward as for the approximation model. What
we want is to find parameters which maximise the likelihood that the proposed model
generated the observed data. This process is also referred to as Bayesian inference.
One method to find these parameter estimates and which is applicable to our situation
is the Monte Carlo Markov Chain (MCMC) algorithm of Metropolis and Hastings.

Here the idea is that initial guesses of the parameters are subsequently perturbed.
Depending on how the perturbation improves the likelihood of the observed data given
the model parameters the new parameter values are either accepted or rejected. This
updating procedure is done many times until a distribution of the parameter values
emerges. At best a given parameter will approach and oscillate around a certain
value. It may also be that the parameter will traverse and a large range of values with
no easily distinguishable best fit. This phenomenon could simply mean that several
parameter values may equally likely have generated the data. It may also be due to
noisy data or an unappropriate model.

2.3.2 The model

Going back to the model we assume that the observed time series x(t) corresponds to
the level of LHY and that is can be described by a (stochastic) differential equation.
Changes is x(t) over time are assumed to be due to an periodic expression function
β(t), representing transcription and translation, and a linear degradation rate δx(t).
More precisely we assume that the time-series is generated by the differential equation

dx

dt
= β(t) − δx(t), (5)

subject to noise. The rate of expression β(t) was taken to be a Fourier sum of fixed
order p, i.e.

β(t) = a0 +

p
∑

k=1

(ak cosωkt + bk sin ωkt) , (6)

where again ω = 2π
T

and T is the period of β(t). So the parameters that need to
be estimated are the Fourier coefficients a0, ak, bk; k = 1, . . . , p, the period ω and the
degradation rate δ. The order of the Fourier sum was kept fixed, though the program
might be adapted so that p would also be estimated.

Data from plants under 12h in light - 12h in darkness (LD) conditions typically
shows a strong increase at the dark-light transition which is difficult to capture with
a β(t) of the form (6). In order to allow a discontinuous increase in the transcription
rate an addition parameter was introduced an β(t) replaced by

β̃(t) = β(t) + cχL, (7)

where c is a positive parameter and χL is an indicator function which is 1 in the
intervals corresponding to light periods and 0 during the time intervals corresponding
to darkness.
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2.3.3 Bayesian Inference

The process of estimating the model parameters is not as straightforward as for the
approximating model. The more complex setup requires the more involved machinery
of Markov Chain Monte Carlo (MCMC) methods. Therefor we quickly recall the
principles of Bayesian inference and the implemented MCMC algorithm established
by Metropolis and Hastings.

The Bayesian approach considers the probability distribution p(θ) of the parame-
ters. This distribution might be uniform on the parameter space or may include some
prior knowledge and is called the prior distribution. The model then yields a likelihood
function

l(θ) = f(x|θ),

which is the probability that the observed time series x was created by the model
equations with parameters θ. Bayes theorem then provides a mean to incorporate the
information of the observation x into the distribution of model parameters θ:

π(θ) := p(θ|x) =
f(x|θ)p(θ)

f(x)
, (8)

where

f(x) =

∫

f(x|θ)p(θ)dθ.

π(θ) is called the posterior distribution. When considering only one observation, we
can treat the integral f(x) as a constant. So we have the proportionality

π(θ) ∝ l(θ)p(θ). (9)

Assuming that the posterior distribution π is well behaved (i.e. normal-like), we
can simply take the mean of π as our parameter estimate. Unfortunately we cannot
sample from π directly, but need to deduce information about π by constructing a
Markov chain, which has π as its limiting distribution.

2.3.4 The Metropolis-Hastings algorithm

A random process is called Markov if, given the present state, past and future states
are independent. That means that any state depends on the past only through its
direct predecessor. The Markov chains used in MCMC algorithms are homogeneous,
i.e. it can be defined by transition probabilities P (θ, φ) from θ to φ. For continuous
state spaces the chain can be defined by transition densities p(θ, φ).

Under suitable conditions (see below), the sequence of the distributions (πn)n∈N
of

each step of the Markov chain converges to a limiting distribution π(φ) = limn→∞ P n(θ, φ).
MCMC now exploits the fact that if a Markov chain is reversible, i.e. if for a

distribution π it holds that

π(θ)p(θ, φ) = π(φ)p(φ, θ) (10)

then π is the limiting distribution of that Markov chain.
The Metropolis-Hastings algorithm describes how to choose the transition proba-

bilities, so that they define a Markov chain, whose limiting distribution is equal to the
posterior distribution, which we need to sample from. These transition probabilities
are of the form

p(θ, φ) = q(θ, φ)α(θ, φ), θ 6= φ,

where q is an arbitrary transition kernel and α a probability. The introduction of the
acceptance probability α means that the chain has a positive probability to remain in
the same state, i.e.

p(θ, θ) = 1 −

∫

q(θ, φ)α(θ, φ)dφ.

The acceptance probabilities are defined to be

α(θ, φ) = min

{

1,
π(φ)q(φ, θ)

π(θ)q(θ, φ)

}

=(9) min

{

1,
l(φ)q(φ, θ)

l(θ)q(θ, φ)

}

(11)
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For these transition probabilities (10) holds, which means that the chain has π as its
limiting distribution.

For the implementation the algorithm can be sketched as follows:

(i) Initialize counter j = 1 and set initial value θ(0).

(ii) Sample a proposal value φ from the density q(θ(j−1), ·).

(iii) Accept proposal (θ(j) = φ) with probability α(θ(j−1), φ). If the move is rejected,
set θ(j) = θ(j−1)

(iv) Increase counter j and return to step 2 until a convergence criterion is met.

This algorithm was implemented using Ox as the programming language. The
parameters were updated in turn. After each iteration of parameter updates there
followed an update of the interpolated data points (see section 2.3.5 below). Figure 2
shows examples of processes generated by updating the model parameters.
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Figure 2: Example on the processes generated by updating the model parameters (see
equations (5), (6) and (7)). The respective values for the parameters δ (degradation
rate), T (period) and c (light induction) are plotted versus the number of iterations.
These processes were the generated while fitting the dynamical model to the LD wild type
data from exp B depicted in figures 1, 4b and 6a. The figure shows how the respective
parameters developed over the performed iterations from their starting values (left). The
densities illustrate where each parameter ,,spent most of its time”(right). Compare figure
6 for the model results.

2.3.5 Interpolating sparse data with Brownian bridges

When fitting the SDE model to the measured time series the problem arises, that the
intervals between data points are too large to allow reliable estimates of the MCMC
transition probabilities. A way to get around this problem is by introducing a number
of intermediate data points. One way to do this, which tries to reflect the noise element
of the data, is the Brownian bridge. The bridge between to neighbouring data points
is constructed by starting a Brownian motion at the first data point which is biased
towards and conditioned to terminate at the second data point. The algorithm is laid
out in more detail below.
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Given two data points xs and xt at times s < t. Let s = τ0 < · · · < τM = t

be a partition of the interval [s, t]. We then want to sample the intermediate points
(u0, τ0), . . . , (uM , τM ), where u0 = xs and uM = xt are fixed.

The following approach, the modified Brownian bridge, is described in more detail
in [Durham 2002]. The idea is to start a Brownian motion at u0 conditioned to end
at uM . At each step, the next data point um+1 is sampled from a Gaussian density
with mean and variance depending on the position of um in relation to the endpoint
uM . More precisely we sample um+1 from the Gaussian density

φ(um+1; um + µ̃mδ, σ̃2
mδ),

where δ = t−s
M

and

µ̃m =
uM − um

t − τm

, σ̃2
m =

(

M − m − 1

M − m

)

σ̄2

and σ̄ = σ(um) is the standard deviation of noise as given by the model parameters
at each step of the Markov chain. This means that at each step of the Brownian
bridge is sample from a normal distribution centered around the drift µ̃m, which is
biased towards the endpoint uM . Further as the bridge approaches its endpoint uM

the variance decreases to minimise the probability of large jumps close to the end.
Figure 3 show an example of data interpolated with Brownian bridges.
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Figure 3: Example for interpolation with Brownian bridges. This interpolation was the
generated while fitting the dynamical model to the detrended wild type data of exp. B
in LD conditions (see figure 1). a) shows the detrended data set with the individual data
points marked by ,+’; b) shows the the data after performing 2000 iterations of the MCMC
algorithm. The result of the fitting is displayed in figures 6h,j.

2.4 Outline of the work

The described algorithms except for the interpolation with Brownian bridges were
implemented in Ox by Alex Morton. See [Morton 2004] for the original code and its
description.

This code was changed to improve flexibility in the treatment of different data sets
as well readability. Several small functions were added to automatically preprocess
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experimental data coming from the imaging software, for some additional analytical
tools and the generation of graphical output.

The previous algorithm used for interpolation between data points based on ran-
domly perturbing points along the straight line between neighbouring data points was
replaced by the modified Brownian bridge interpolation described in section 2.3.5.

The code was applied to the data from several experiments with transgenic Ara-
bidopsis seedlings. Selected results are presented below.

3 Results

3.1 Consistency of wild type data between experiments A and
B

Analysing and comparing wild type data from two separate experiments yielded mixed
results (figure 4). Plants in both experiments were entrained in 12h-12h light-dark
(LD) conditions, which were maintained during the first 72h (exp A) respective 96h
(exp B) before plants were released into constant light (LL) conditions. Panels 4
a) (exp. A) and b) (exp. B) show the detrended time series corresponding to the
respective LD time intervals. The approximation (panels 4 c), d) ) and the dynamical
(panels 4 e), f)) were fitted to the detrended LD data. Though the fitted transcription
rates β(t) show similar behavior in the light, they diverge in the dark interval. Also
the light induction parameters c were estimated differently (comp. panels 5h) for exp.
A and 6j) for exp. B).

3.2 Comparison between LD and LL regimes for wild type data
(exp A)

The differences of LD and LL wild type data (fig. 5 a)) of exp. A were investigated
by fitting the approximation and dynamical models to each of the respective time
intervals. Figure 5 b) and c) shows the wild type series after removing trends (see
section 2.1). Fourier sums (see section 2.2) were fitted to the two time intervals (fig. 5
d) and e)). The results for the fitting of the dynamical model (section 2.3) are shown
in figure 5 f) - i). The model fittings reflected the missing of the light induction by
leading to an overall flatter curve for the LL period than for LD. Also the estimate for
the period T was longer for LD than for LL (panels 5h,i). But the period estimates
overall are somewhat confusing as they are distinctively larger than 24h, which did
not fit with the actual for of the transcription rate β(t).

3.3 The elf3ox transgenic line (exp B)

Comparing the LHY expression between the elf3ox transgenic line and the wild type
in experiment B showed a number of differences (figure 6a. The light induced peaks
at dawn were lower and wider for the elf3ox line than for wild type. This supports the
notion that ELF3 is a negative regulator of the light input into the clock. Luminescence
levels of the elf3ox were significantly lower than wild type (panels 6b and c). These
observation were supported by a repeat experiment (results not shown).

The described models were fitted to the LD time intervals of wild type and the
elf3ox line. Panels 6d and e show the detrended LD data. The corresponding fits
of the approximation model (panels 6f and e) expose the ,,high shoulder” in elf3ox
waveform in contrast to the lower one visible in the wild type model fit.

The fits of the transcription rates β(t) of the dynamical model (panels 6h and i)
stressed the higher light response of the wild type compared to the elf3ox line. This
feature was also reflected in the different estimates of the light induction parameter c

(panels 6j and k). The estimates for the period T seemed again to be a bit errated,
though the wild type period was actually estimated to be close to 24h. Reassuringly
similar estimates for the degradation rate δ were found (again panels 6j and k).
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Figure 4: Comparison of wild type data from two experiments. For details of these
experiments see figure 5 (exp. A) and figure 6 (exp. B). (a),(b) Average luminescence levels
of the seedlings, (c),(d) Data of the 12h-12h light-dark (LD) interval after detrending, (e),
(f) Fit of the approximation model to the detrended data, (g), (h) Fit of transcription
function β(t) to the detrended data.
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Figure 5: Comparison of wild type LD and LL data (exp. A). Time series of
luminescence of a set 109 wild type seedlings. All seedlings carried the -929 LHY :LUC
promoter con- struct. Red and black bars at the bottom indicate the periods of red light
and darkness respectively. Images were taken with a time resolution of 2h. Plants were
entrained in white light for 7 days and then transferred to red light for imaging. Normal LD
conditions were maintained for the first 72 hours. After that plants were kept in constant
light. The signal strength for the two different sets of seedlings were averaged and the
respective background signal subtracted (a). Detrended data for LD and LL are compared
in panel (b) and (c) respectively. Fit of the approximation model are shown in panel (d)
for LD data and (e) for LL data. Transcription rates β(t) of the fit of the dynamical model
are shown in panels (f) for LD data and (g) for LL data. The corresponding developments
of the model parameters δ (degradation rate), T (period) and c (light induction) are shown
in panels (h) for LD and (i) for LL.

12



0 250 500 750 1000 1250
0

5

b) Luminescence histogram: wild type

average luminescenceno
. o

f s
ee

dl
in

gs

0 250 500 750 1000 1250

10

20

c) Luminescence histogram: elf3ox

average luminescenceno
. o

f s
ee

dl
in

gs

24 48 72 96 120 144 168 192

1000

2000

a) luminescence averaged over all seedlings,  wild type vs elf3ox
ph

ot
on

 c
ou

nt
s

time (h)

Wild Type (Luc1 Col) × Time in hours Elf3ox in Luc1 Col × Time in hours 

24 48 72 96

0

2

4
f) approximation model fit, wild type

time (h)

ex
pr

es
si

on Data × Time in hours Model fit × Time in hours 

24 48 72 96

−1
0
1
2

g) approximation model fit  elf3ox

time (h)

ex
pr

es
si

on Data × Time in hours Model fit × Time in hours 

24 48 72 96

500
1000
1500

d) detrended wild type data

time (h)

ph
ot

on
 c

ou
nt

s

24 48 72 96

250

500

e) detrended elf3ox data

time (h)

ph
ot

on
 c

ou
nt

s

24 48 72 96

100

200

300

h) transcription rate β(t) wild type

j) Model parameters wild type time (h)

tr
an

sc
rip

tio
n

24 48 72 96

50

100

150

i) transcription rate β(t) elf3ox

time (h)

tr
an

sc
rip

tio
n

0 1000 2000

0.75
1.00

degradation rate δ
k) Model parameters elf3ox

0.6 0.8 1.0

5
10

Density

0 1000 2000

24

26

period T

0 1000 2000
0

25
50

light induction c
24 26

0.5
1.0

0 25 50

0.025

0.050

0 1000 2000
0.75
1.00
1.25

degradation rate δ

0.75 1.00 1.25

5
10

Density

0 1000 2000

30
40
50

period T

20 30 40 50
0.0

0.1

0 1000 2000

25
50

light induction c

0 20 40
0.00

0.05

Figure 6: The elf3ox transgenic line vs. wild type (exp. B. 45 seedling of the
elf3ox transgenic line and 44 wild type seedlings were imaged after entrainment in LD
conditions. The LD conditions were maintained for the first 96 hours of imaging. Then
plants were released in constant light (LL). The red and black bars indicate the light
conditions. (a) Averaged luminescence levels of the transgenic and wild type seedlings
after noise adjustment. (b),(c) Average luminescence over the whole imaging time (0-
194h) were calculated for each seedling. The frequencies of different average levels are
displayed in histograms for wild type and elf3ox line respectively. (d),(e) LD data with
trends removed. (f),(g) Fitting of the approximation model. (h),(i) Transcription rate
β(t) from fitting of the dynamical model. (j),(k) Parameter evolution from starting values
generated while fitting the dynamical model. (Axis label are the same as figure 5)

13



4 Discussion and Conclusion

4.1 Discussion

The results presented in this paper are two-fold in nature. On the one hand side there
is the experimental result of the effect of overexpressing ELF3 on the expression of
the LHY gene, on the other hand we have the application of mathematically based
analytical methods, whose performance was tested on the experimental data.

The application of the methods on different data sets originating from wild type
plants revealed that despite the recovering of common features the models results also
showed some significant variations. Reasons for this may lie in the experimental data
as well as in the analysis. For one the data were difficult to treat because of the low
time resolution, a relatively high noise level and variability between experiments. One
the other hand problems with the model implementation and the fine tuning of the
model fit may also play a role. So what needs to be performed on in the future is a
extended and careful analysis of a number of reliable wild type assays to build a sound
basis which further studies can then be set on.

The detrending and the approximation model algorithms worked reasonably well.
The model estimated the period T close to 24h as expected. The algorithm for the
dynamical model was mathematically and computationally more involved and also
produced some difficult to interpret results. As seen in the comparative studies of
the two wild type experiments, the estimate of the light induction showed significant
variations. In terms of the data the reason for this might lie with problems of the plant
entrainment or the noise in the data collection. It may also be that the model needs
to be improved. Instead of the Fourier series in combination with a step function one
might also just model the LD and LL time intervals independently by polynomials, or
implement some biological knowledge about the effect of light induction. Other issues
of the dynamical model were that many parameter densities had medium to high
variances, and that the period T was often estimated far too large. This behaviour
needs to be analysed to decide whether the problem lies with the data, the model
or the implementation of the algorithm. The problem of the sparsity of the data
was successfully addressed by implementation of the modified Brownian bridge. The
acceptance rate was reasonably high (about 20 %).

The data from the assay of the transgenic elf3ox line revealed a lower response to
light signals and an overall lower degree of LHY expression than in wild type plants.
These results were confirmed in a repeat experiment (data not shown). This finding
supports the idea of ELF3 to act as a repressor of light signalling to the clock. Despite
the issues of the dynamical model described above the comparative analysis revealed
interesting differences between the expression patterns of LHY under LD conditions of
the wild type and elf3ox line, which would have to be confirmed by repeat experiments.
Generally these expression patterns are hard to interpret biologically, as a detailed
model of the underlying transcriptional network is still missing. But even though the
analytical results should be taken with some care, they demonstrate that the presented
modelling approach can be useful in accessing hidden layers of information in the data.

4.2 Conclusion

The elf3ox assay was performed as a part of a bigger project focusing on the regulation
of the LHY gene. Recent analysis of the LHY promoter has revealed two likely binding
sites for regulatory factors (Spensley 2005, unpublished results). Future work needs
to be performed in order to reveal if the induction of transcription of LHY by TOC1
is transmitted via any of those binding sites. For one, the effects of mutations of
other likely regulatory factors on LHY transcription need to be studied. Assays with
plants carrying pif3ox (overexpression of PIF3 ) or TOC1RNAi (here the TOC1 gene is
,silenced’ by a complementary mRNA strand) were performed, but failed to yield useful
results and need to be repeated. The data of these experiments could then be compared
to the LHY transcription in plants carrying transformed promoter constructs, where
one or both of the identified binding sites are missing or non-functional. In this
comparative analysis the presented methods may prove very useful.
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All in all it is still a long way to a thorough understanding of the regulation of the
central oscillator in Arabidopsis and that of LHY particular. But should it be reached
it will be an important step forward in understanding the workings of the Arabidopsis
clock and probably other plant clocks as well.

5 Experimental Methods

5.1 Plant materials and growth condidtions

The wild type ecotype Columbia (Col) of Arabidopsis was obtained from The Ara-
bidopsis Stock Centre. The promoter regions of the LHY gene were fused to the
luciferase (luc) reporter gene and to terminator sequences from the nopaline synthase
(nos) gene, referred to as -929 lhy:luc construct. The construct was made by Jac-
Yean Kim in the Carré laboratory. The promoter construct was introduced into the
Columbia ecotype of Arabidopsis. These wild type plants were crossed with plants
containing the elf3ox mutation. This was done by Mark Spensley in the Carré labo-
ratory.

Plants were grown on a 1:1 mixture of compost (B & Q plc, UK) and vermiculite
(Silvaperl, UK). The soil was soaked with water containing 2g/litre of insecticide
(Intercept, Scotts,UK) before the seedlings were transferred to soil. Plants were grown
in the greenhouse under 16 hour photoperiods.

Seeds were sterilized with 50 % (w/v) bleach (Fisher Scientific) and 0.01% (v/v)
Tween 20 (Aldrich Chemical Co., UK) for 10 minutes and then rinsed with sterile dis-
tilled water four times. Seeds were sown on MS-agar medium [4.2g/litre of Murashige
and Skoog powder (Sigma), 1% (w/v) agar, pH adjusted to 5.3-5.7 with 1M KOH, 3%
(w/v) sucrose]. Seeds were stratified at 4◦C for 4-5 days to synchronize germination.

5.2 Luminescence assay with photon-counting cameras

Two weeks before imaging, seeds were sterilized, sowed on MS medium containing
3% (w/v) sucrose and stratified as described above (see section. Plants were then
grown for 7 days under 80 µmolm−2s−1 of white light in temperature-controlled in-
cubators (Sanyo electronic Co., Japan). The photoperiod was 12h of light and 12h of
darkness. Plants were kept at a constant temperature of 22◦C. For imaging plants
were transferred to red light conditions. During imaging light-dark cycles were main-
tained for 72h, then plants were kept in constant light. One day before, and then on
the day when imaging started plants were pre-sprayed with the luciferase substrate
luciferin (BIOSYNTH AG, Switzerland) at a 5mM concentration in 0.01% Triton X-
100, to remove luciferase activity accumulated prior to the first luciferin treatment.
Luminescence was imaged for 10 or 25 minutes every 2 hours of for 5-6 days using a
photon-counting camera (Hamamatsu). The luminescence levels were quantified from

the images using MetamorphTM software (Universal Imaging).
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