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  Abstract: The main population of a recently discovered species of landsnail, 

Poweliphanta Augusta, has been taken entirely into captivity. Using data from a 
sample population we model their growth with von Bertalanffy, logistic and 
Gompertz functions. We model their fecundity and mortality using data both from 
their distribution of sizes at capture and dynamics in captivity. We construct 
population matrix models for their population dynamics both in the wild and 
captivity.  Using these matrix models we asses their ability to survive in these two 
environments, and calculate their stable size distribution in captivity. Additionally we 
evaluate the elasticity of these matrices to see the relative importance of their entries 
to their eigenvalues. Using these we evaluate the effects of small changes, and make 
recommendations about what changes to their dynamics would cause them to increase 
or decrease in number. 
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INTRODUCTION 

 
Poweliphanta Augusta1is a recently discovered 

species of carnivorous land snail of the Poweliphanta 
genus, native only to the Stockton coal plateau of 
Mount Augustus in New Zealand (Walker, Trewick, & 
Barker, 2008; Walker K. 2006;) . Due to coal mining 
of their habitat by a New Zealand resource company, 
Solid Energy, most of the native population of snails 
has been removed. These snails are now held in 
captivity by the New Zealand Department of 
Conservation (DoC) or have been released outside their 
original habitat.   

Before the mining, the Stockton plateau had highly 
acidic and infertile soil, low drainage and was exposed 
to heavy wind and rain. Despite these harsh 
characteristics it had become home to highly complex 
ecosystem, including many animals and plants that had 
been uniquely adapted to survive there. On the basis of 
this it was recommended for government protection on 
the basis of its complex ecology and biodiversity.  
(Overmars, Kilvington, Newell, & Rhodes, 1998).   

The Poweliphanta  genus are exclusively found in 
New Zealand, and like P.Augusta,  most  have 
extremely small habitats and  generally suffer from 
declining populations due to predation (Walker K. , 
2003). As a result the species and subspecies of this 
genus have been given a high conservation status. 

One of the characteristics that differentiates 
P.Augusta from the majority of snails in their genus is 
their ability to survive in the harsh terrain of the 
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Stockton plateau. Large land snails require both 
calcium for shell and egg formation, and plentiful 
earthworms for prey. As a result genera other than 
P.Augusta generally live in the areas where these prey 
are plentiful, areas with alkaline and well drained soil. 
(Walker, Trewick, & Barker, 2008)   

On the basis of the work done on their 
mitochondrial DNA by (Trewick, 2008) they are 
believed to have a sister taxon relationship with the 
lowland species P.Lingaria, but are also believed to 
have been isolated for thousands of years during which 
they became a part of the unique Stockton ecosystem. 
(Walker K. , 2006;) 

Like all of New Zealand, the Stockton plateau was 
protected by the 1991 Resource Management Act 
(Ministry for the Environment, 1991). Under this act, a 
project detrimental to the environment as the open cast 
mining of an area so ecologically valuable would not 
be allowed. However Solid Energy had a license to 
mine the area pre-dating it, and were allowed to 
expand their mining operation to encompass 94% of 
the natural habitat of P.Augusta (Save Happy Valley 
Coalition, 2009). Whilst this mine extension was legal 
it was described as “noxious” by the Environmental 
court who also went on to say “we think there is little 
doubt that from the scientific and environmental point 
of view, the snails should not be moved” and “We 
record our disappointment at what has occurred”. 
(Kenderdine, 2006) 

A contributing factor to the courts negative view of 
the decision to let this area be mined was likely an 
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affidavit by Kathleen Walker (Walker K. , 2006) in it 
she notes that P.Augusta had neither been successfully 
bred in captivity, nor successfully transplanted to 
another area and that in the past other genera of 
Powelliphanta had usually faired poorly when 
relocated outside of their natural range.   

We have modelled the growth of an individual snail 
using the Gompertz, logistic and Von Bertalanffy 
functions as discussed in (Hernandez-Llamas & 
Ratkowsky, 2004; Turner Jr., Bradley Jr., Kirk, & 
Pruitt, 1976). Due to changing growth rates, we create 
separate models for their growth at capture and their 
growth in the first and second year of captivity. 

These models of individual growth were used to 
develop matrix models of the dynamics of populations 
in the wild and in captivity, similar to those discussed 
in (Caswell, 2001; Lefkovich, 1965). We calculate the 
elasticity of these matrices to find the sensitivity of 
their parameters to proportional perturbations, and 
discuss the effect that this should have on the priorities 
of people working with the captive snails or looking 
for a new habitat. 

Conditions in captivity 
 

In their statistics, the Department of Conservation 
divided snails into five size classes, based on the 
maximum diameters of their shells: hatchlings 
(<13mm), juveniles (13-20mm), sub adults 1 (20-
27mm) , sub adults 2 (27-32mm) and adults (>32mm) 
(DoC, 2009). We number these classes 1-5 
respectively.  Table 1 shows the numbers of snails 
found in each of these classes. 

Not all snails were captured at the same time. We 
define the period that they were found in, from 
25/07/2006 to 30/05/2007 as the capture period. In this 
period a total of 6044 snails were found. In addition to 

this 7 snails were taken into captivity four months 
later, on the date 09/09/2007. In this body of work we 
define 30/05/2007, the end of the capture period, as 
day zero, taking all dates after and before as relative to 
it. Labelling the periods form 31/05/2007-30/05/2008 
and 31/05/2008-30/05/2009 as year 1 and year 2 
respectively 

The maximum diameter and weight of all the snails 
when they were captured was recorded, as well as the 
maximum diameter of the parent of each egg that has 
been found. Additionally we have the size class of 
every snail on its death, although in the data provided 
by the Department of Conservation there is no 
distinction made between members of the classes sub 
adults 1 and 2. (DoC, 2010) Measurements of 
maximum diameter are thought to be  accurate to 
within 1mm, with errors being caused by the angle the 
snail is held at (Gerraty, 2010).  

Whilst we do not have more than one measurement 
for the majority of snails in the population, we have 
multiple measurements of the snails in a small sample. 
It contains 240 snails from the wild, picked to 
represent so that for each size class there were 10 
snails each from the 10 sub areas their habitat was 
divided into. (DoC, 2009) In addition to the snails that 
were captured from the wild put in this sample, it also 
contains 146 snails that were born in captivity.  

These snails were measured at intervals of roughly 
once a year initially, although in the second year of 
captivity some snails begin to be measured more often, 
in intervals as small as 100 days. As a result the 
number of measurements for each snail varies.    

Because we do not have data for all snails after the 
second year of captivity, we create our models 
exclusively from data obtained in those years and have 
three to five measurements for the majority of our 

  
 

 

 
Fig. 1 Average growth rates for size classes, based on the linear interpolation of sizes of individuals. 
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snails. The rates at which these snails have grown in 
different years are shown in Fig. 1.  

Due to the fact that we have comparatively few 
measurements we use linear interpolation to estimate 
each snail’s size on a given date. As each snail may 
enter or leave a size class between measurements we 
also use linear interpolation to estimate the length of 
time each snail spends in each class.  During the 
capture period, year 1 and year 2, we average the 
interpolated amount grown by each snail on each day 
to find the average growth rate.  

Members of the classes 1,2 and 3 growing at a rate 
of almost 3 mm per year on average (2.8, 2.9 and 2.7 
mm per year  respectively),  members of classes 4 and 
5 grow slower at rates of 2.0 and 0.9 mm per year 
respectively.  In the first year of captivity classes 1 2 
and 3 reduce their average growth rates to 1.8, 2.6 and 
2.4 per year. Class 4 shows a small increase to 2.1mm 
per year and class 5 reduces to 0.8 mm per year.   In 
the second year we see even greater reductions in 
growth rate with the five classes reaching 0.1, 0.5, 1.0, 
0.7 and 0.3 mm per year respectively.  

In Fig. 2 we see an estimate of the rate that eggs had 
been laid. Notably within the capture period we see 
just over half of all eggs being laid, despite the fact that 
on average during this time there were fewer adult 
snails in captivity, even for an adult snail captured on 
the first day of this period it would represent less than a 
third of its total time in captivity.   

Because after the capture period we see rapid 
declines in fecundity, we needed a method to calculate 
that could cope with the capture period, where number 
of snails varies each day.  We also create a rolling 
estimate, so it won’t be biased by extremely short 
periods of unusually high or low fecundity  

We consider the number of eggs produced by the 
day � to be a sum of Bernoulli trials and assume that 
every snail has an equal chance of producing an egg on 

any day. We label this chance �day As not all snails 
have been in captivity for the same length of time we 
use�(�) to represent the total number of days in 
captivity spent by snails before day �.  
Correspondingly we use �(�) to represent the number 
of eggs produced before day�. We then find the mean 
number of eggs produced per adult snail per day and 
per year before the day�, with the formulas: 
�day(�)=	
  

������year(�)=365�day(�) 
 

 
 
(1) 

In Fig. 2 we see our rolling estimate of fecundity. 
Our estimate of adult fecundity �year� reaches a 
maximum of 0.57 during the capture period, and 
rapidly declines afterward to less than 0.2 eggs per 
adult per year for almost all of year 1 and year 2. 

Additionally we run these models through year 1 
and year 2 separately to get the fecundity and 
mortalities we shall use for our models of the 
population in captivity. These results are shown in 
Table 2 

The Hatchlings produced in captivity, initially had 
maximum diameters were closely grouped (standard 
deviation of 0.6mm) around a mean of 8.15mm.  

We develop a similar estimate of mortality. If class	
  
� has ��(�)	
  deaths before day �  the per individual 
per day mortality rate �day is calculated as 

�day�(�)=	
  ��(�)	
  �(�) 
 

 
(2) 

Because each snail may only die once but have 
multiple eggs the  method of calculating the annual 
mortality form the daily one is more complicated than 
calculating annual fecundity from daily fecundity (1).  

�year�(�)=	
  1−1−�day�(�)	
  365 
 

 
(3) 

In Fig. 3 we see the estimated rate of deaths in the 
classes snails are divided into.  Notably graphs of data 
for the hatchlings are on different axes to the same data 
for the other size classes. The death rates of the larger 
size classes (Fig. 3b) have been almost zero throughout 
the capture period and the first year, and began to rise 
in the second year. The hatchling death rate saw sharp 
spikes in the capture period, reaching 0.43, remained 
low in the first year, and increased slowly throughout 
the third year. 

 
Fig. 2 Rolling estimate of fecundity  

 
Fig. 3 Rolling death rate estimates for a)  hatchlings b) other 
classes 
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  During the time the snails have been in captivity 

they have seen dramatic change in birth rates, death 
rates and growth rates (Fig. 1-3). As a result it is hard 
to determine which of these dynamics is consistent 
with those of a population living in the wild. 

 
METHODS 

Overview 
 
We attempt to model the population living both in 

captivity and in the wild. Because we do not have 
accurate growth data for individuals living in the wild, 
and the growth rates of individuals in captivity is 
declining, we fit our models to the initial growth rates 
and sizes of individuals in captivity. As a result we 
determine the lengths of time that individuals spend in 
the five size classes. 

We then construct matrix models of the population 
as a whole, using these lengths of time to calculate the 
probability an individual will move out of a size class. 

Due to the variability of our estimates of birth rate 
and death rate in captivity, we derive the relationship 
between these unknown parameters and the stable size 
distribution of our population in the wild which is also 
the right eigenvector of our population matrix. 

After calculating the components of this matrix we 
consider its elasticity to determine the effects of 
changing individual parameters on long term 
population growth. 

We develop models of the captive population using 
the growth, death and birth data from each individual 
year. Using these we consider the long term stability of 
the captive population. 

Finally we calculate the elasticises of the matrix 
representing the population in the second year of 
captivity, and examine the importance of its 
components  

Creating and comparing models of growth 
 
We chose to test growth models of three different 

kinds, Von Bertalanffy, Logistic and Gompertz 
(Turner, Bradley Jr., Kirk, & Pruitt, 1976) all of which 
have two parameters to be estimated. The first of these 
parameters is �∞, measured in millimetres, which is 
the size the creature will cease to grow at, and � a 
parameter determining the rate of growth.  

 
Von	
  

Bertalanffy�=��∞−�(4)Gompertz�=��log�∞�(5)	
  
Logistic�=��∞�(�∞−�)(6) 

 
These models, assume that the creature at a given 

size,	
  �, will always grow at a given rate, �, however 
we have seen that snails of a given size grow less in 
later years of captivity  than snail of that size when first 
captured (Fig. 1). As a result, rather than fitting a 
growth function that relates � to � for an individual  
(Ricklefs, 1967) (Hernandez-Llamas & Ratkowsky, 
2004) we fit � to� for the entire sample populatino 
between their first two size measurements. 

We estimate the parameters � and �∞, by dividing 
our models into and a non linear term and use a method 
of least squares to estimate their coeficients, with data 
from the snails measurements at capture, and their first 
measurement in captivity. We choose these first two 
measurements to minimize the effect of the snails 
slowing growth.   

We find � with the formula, and pair it with � 
which is defined in terms of the first two measurements 
�1	
  and	
  �2: 

 
�=�2−�1�2−�1�=�2+�12  

 
(7) 

 
Fig. 4 shows the curves in eq. 4-6 being fitted to the 

data. Each blue datapoint represents a pairing  (�,�). 
Curves were also fit ro pairings of the form  (�1,�) 
and (�2,�) but it made little differerance to the 
parameter values of the models. 

Data points that had � values in excess of two 
standard deviations, away from the mean � value for 
the group were removed, alongside data points with 
negative �  values.  

In Table 4 we see that the logistic model has a 
considerably beter R-squared value  (0.44) than either 
of the other two models  (0.28 and 0.38).  Because this 
data represents growth between the first and second 
measurements made on different snails,  and these 
measurements were not made a constant interval of 
time apart, we have several sources of error. In 
addition to measurement error, we have potential for 
error due to varying growth rates between snails and 
varying growth rates caused by different lengths of 
time in captivity. Bearing this in mind the data is quite 
well fitted by the logistic model. 

Fig. 4 Growth curves fit to the growth rate between the 
first two measurements of each snails maximum diameter 
and its average size 
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To model the growth of each individual during 

years 1 and 2 of captivity we use the same process, but 
rather than using the size of each individual on its first 
measurements we use a linear interpolation on each 
individuals maximum diameter, to find it at the 
beggining and end of year 1 and year 2. The parameter 
values of these models and their R-squared terms are 
also shown in Table 4. 

Due to the dramatically better fit atchieved with the 
logistic model in each case, we assume logistic growth 
throught the rest of this paper. 
 

Estimating time spent in each life stage 
 
Before we can develop population models we need 

to know how long it will take for a hatchling to become 
ready to breed.  

We solve the eq. 4-6 to find the length of time it 
would take for an individual of a given size to reach 
another given size. 

From this we can estimate the time taken spent in 
each life stage, for a hatchling to reach adult, using the 
parameters we established by fitting the curves.  

Because in our models growth is dependant on size, 
we also need a starting size for hatchlings. In our data 
8.15mm has been the mean initial maximum diameter.  

The predicted length of time spent in each class, 
according to the model we made for initial growth and 
growth in year 1 and year 2 are shown in Table 3. 

Modelling a population in the wild 
 
We compose the population vector �(�)  from 

entries of the form ��(�), representing the number of 
individuals in the ��ℎ  class at the time � 

��+1=��(�) (8) 

Whilst the snails have been previously divided into 
5 stages, the data we have suggests that there is little 
difference between classes 2-4, juveniles, sub adults 1, 
sub adults 2 respectively.  In this model we merge 
these classes into one larger class of sub adult with a 
maximum diameter between 13 and 32 mm. As a result 
we now have three classes: juveniles, sub adults and 
adults.  

We also assume that the lengths of time spent in 
each class shown in Table 3 based on the logistic 
model are an accurate portrayal of what will happen in 
the wild. We create the probabilities �� and �� 
representing the probability that a snail remains in, or 
grows out of the �th class in a year given that it 
survives for that year. If the expected time a snail will 

remain in the ��ℎ class is ��then we set ��=1�� 

and ��=��−1�� respectively. 
We define the value �� as the probability an 

individual survives 1 year in the ��ℎ class, and � to 
be the number of hatchlings produced per adults per 
year, because data relating to these values has varied so 
much (Fig. 2 and Fig. 3) we will be unable to estimate 
them from �year(�) and �year�. 

Using these components we can construct a 
population matrix to be used in eq.8 of the form 

�=�1�10��1�1�2�200�2�2�3 (9) 

This population will have a stable size 
distribution�, which will also be the right eigenvector 
corresponding to the matrixes largest eigenvalue, �. 

��=	
  �� (10) 

We have additional information about the structure 
of their population in the wild shown in Table 1. 
Because hatchlings are comparatively small (<13mm) 
we shall assume that this table represents the correct 
numbers for the other classes of snails (�2	
   and	
  �3), 
but that the full number of hatchlings in the wild 
�1was not collected.    

Solving this to obtain components of the 
eigenvector in terms of our parameters we obtain a 
system of equations: 

�1=��3�1�1+��2=�1�1�1�2�2+�
�3=�2�2�2�−�3 

 

11(12)(
13) 
	
   

Initially we have 6 unknowns (�1,�,	
  �,	
  �1,	
  �2,	
  �3) 
however we can simplify this with a small number of 
assumptions. The population of P.Augusta on the 
Stockton plateau has remained there for thousands of 
years (Trewick, 2008) over this time it has neither 
disappeared, nor expanded to any great size, as a result 
we assume it had reached a stable size, and as a result 
had �≈1 as its eigenvalue. 

Having seen the death rates of the larger size 
classes remain very close to each other in captivity in 
Fig. 3 we assume that they will have similar death rates 
from natural causes in the wild. Additionally as snails 
in these classes are much larger than the hatchlings, we 
also assume that they will have similar death rates form 
predation. As a result we give snails in the adults class 
the same annual survival probability as snails in the 
sub adult class and set	
  �3=�2. 

In eq.13 �2 is related exclusively to known 
parameters. From this equation we can derive its value 
0.83. Our remaining unknown parameters are related to 
each other in eq. 12 and 13. We solve these for �1 and	
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� and substitute the value of our known parameters to 
obtain   
 

�=−0.41+0.00047�1�1=1731�1 (14)(15) 
 

These dependencies are graphed together in Fig. 5.  

 
Fig. 5 Dependence of � and ��on �� 

 
We can constrain  �1 so it corresponds with the 

range of values for �1 and � seen in captivity. In Fig. 
2 we see estimated fecundity, �year , ranging from 0-
0.71  If these values are representative of a population 
in the wild we can get an upper bound on the value 
of�1 of 2097.  

The region where �1<2097 corresponds to 	
  
�1>0.82. Comparing this with Fig. 3a we can see that 
estimated mortality has been consistent with this after 
the capture period (�year1<0.18). Assuming that 
hatchling deaths in the wild remain in this range would 
give us a new lower bound for �1 of 1845 

As a result the range of values for  �1 supported by 
our data on �1 and �, (1845-2097) is very narrow.  

We can now calculate possible population matrices 
based on these bounds. Assuming �1 is at its minimum 
bound 1845 we obtain: 
Conversely, assuming �1 is at its maximum bound 
2097  we obtain: 

�=0.4100.570.410.70000.130.82 (17) 

We can use the method to find elasticity set out in 
(Caswell, 2001) this will show us the population 
response to proportional perturbations. For ���, an 
element of �, the corresponding value of the elasticity 
matrix �, is defined as ���=𝜕����𝜕���.  

 
For �1=1845 we obtain 

�=0.0800.200.120.21000.030.44 (18) 

 

For �2=2097 we have 

The element �33 in either case exceeds all other 
elements. As a result the population would be by far 
most sensitive to changes in the survival probability of 
the breeding population, �33.  

In captivity we have seen extremely low mortality 
rates amongst adult snails Fig. 3. These correspond to 
much higher survival probabilities than those predicted 
in the wild �2=�3=0.82. this discrepancy could be 
explained by the predation of Poweliphanta snails by 
other species as noted in (Walker K. J., 2003).  

Because of the large value of �33 even small 
increases in predation over that of their original habitat 
could destabilise an otherwise stable population, once 
they are returned to the wild. Conversely a small 
decrease would allow them to thrive. 

Modelling a population in captivity 
 
The captive population has different dynamics to 

those predicted for the wild. Whilst there is no 
predation, so much lower death rates for the larger size 
classes, fecundity and growth rates are gradually 
dropping as shown in Fig. 1 and Fig. 2.  

Because key characteristics of the population are 
changing whilst they are in captivity, our aim here is to 
create two separate matrix models for the dynamics 
observed in the first and second years of captivity. As a 
result our model is of the form: 
��+1=�(�)�(�) (20) 

Where �(�) is a matrix of the form shown in eq.9, 
but with all of the parameters in its entries also being 
functions of time. These entries can be calculated from  
Table 2, and Table 3. 

In Table 3 we see the effect of the changed values 
of our models. Snails spend longer in all classes. The 

time required for snails to reach adult hood is also 
dangerously long.  Whilst Poweliphanta lifespans have 
been estimated to be as long as 20 years (DoC, 2010) it 
would be potentially very dangerous for a population 
for it to take 18 years for hatchlings to reach breeding 
age.   

We choose not to create models for the capture 
period, due to the additional complexity caused by 
each snail being in captivity for a different period of 

�=0.4700.450.470.70000.130.82 
 

(16) 

�=0.0600.300.090.22000.030.44 
 

(19) 
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time, and the fact that most snails spend considerably 
less than half of a year in captivity during this period 

MATRIX MODELS OF CAPTIVITY  
 
We can create matrices in the form of (eq. 10) to 

model the population whilst it remains in captivity. For 
the data from year 1 

�1=0.7400.130.220.92000.070.999 
This has a dominant eigenvalue of �=1.053 

corresponding to the stable size distribution 
(eigenvector) of 1.57 adults and 1.03 sub adults for 
every hatchling. 

For the data from year 2 
�2=0.7700.130.320.97000.010.995 
This has a dominant eigenvalue of �=1.003 

corresponding to the stable size distribution 
(eigenvector) of 2.38 adults and 1.81 sub adults for 
every hatchling. 

It may be noted that the dominant eigenvalues for 
the matrix model of the population both in Year 1 and 
Year 2 are greater than 1. These suggest that the 
population of the snails in captivity will increase in the 
long term.  

However, it seems unlikely that adult snail death 
rates will remain as low as they are in Table 2.  The 
year 2 death rate in this table is 	
  
5.5×10−3, if a population were to have this as their 
death rate we would expect snails to live for an average 
of 181 years after becoming adults, which is 
unrealistic. 

In Fig. 6 we see estimates of the sizes of the three 
classes of snails in captivity for the next 20 years. The 
estimate for 0 years in captivity corresponds to the 
number of snails in each class after they were captured 
minus the deaths in this period. The estimate for year 1 
corresponds to the product of �1 with the class sizes in 
the zero years. Estimates for year two and beyond are 
from the product of �1 with the previous year’s class 
sizes. 

Due to the very low death rates of the adult class it 
continues to increase in number for the period of time 
show in this graph. This increase in number 
corresponds with increasing numbers of hatchlings, 
despite the low fecundity. However as hatchling 
growth is slow, the number of sub adults decreases. 

 

 
Fig. 6 Estimates of class sizes for 20 years of captivity 

 
Whilst this model predicts that the number of 

snails shall increase it is very sensitive to changes in 
adult mortality. The elasticity matrix corresponding to 
�2	
  is 

�2=0.0200.070.000.20000.000.75 
The value corresponding to �33 is vastly in excess 

of all other elements of this matrix. 
If we solve the equation �2�=�� for an unknown 

value of �33, adult survival, we get that �33<0.985 
corresponds to �<1, and a decreasing population. As a 
result it is imperative to keep adult mortality as low as 
possible. 

DISCUSSION 
 

       One problem encountered by our models was the 
difference in growth rates between individual snails.  
Because we fit our curves to information that described 
the majority of snails and excluded outliers it is 
possible that there are a still group of snails growing 
faster than the majority of the population, who will 
reach breeding size much earlier. Whilst this is 
possible, it is also possible that the apparent faster 
growth of some snails is due to measurement error. As 
we have only a small number of measurements per 
snail it is hard to determine which.  

If a small number of snails were growing faster 
they could contribute to sustaining the breeding 
population of adults, despite increasing death rates. 

As a result a good extension could be to model the 
snails growth individually, although as growth rates  
are declining such a model may have to they include 
functions of the length of time these snails have spent 
in captivity.   

Our models of the population in captivity suggest 
that the population is stable for the immediate future. 
However as the observed death rates within the adults 
class have been increasing since the beginning of their 
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time in captivity, it is very possible that population 
dynamics will become stable in the near future. 

However it is clear that with individuals having 
such dangerously low growth rates, it is clear that 
biological reasons for these effects have to be found, so 
that we can increase these growth rates again. 

The difference between the growth rates observed 
in the second year of captivity, when compared to the 
third year illustrate that these snails growth rates can 
change extremely quickly. If a biological explanation 
is found it is possible that current growth rates could be 
improved greatly. 

Our models of the population in the wild illustrate 
the importance of adults remaining from year to year. 
As a result it is important to put them in an area of low 
predation. 

Further modelling of the population in the wild 
could include density dependence. Due to the nature of 
the data we have we were unable to include it.  As we 
do not have the details of which snails are kept 
together, or the numbers of snails in each container, we 
do not have the data necessary to assess the effects of 
varying densities on their reproduction. 

A second addition that could be made to the models 
developed here is time delay. In captivity eggs have 
taken 12-15 months to hatch (although this may be 
much shorter in the wild) It is possible that the number 
of eggs that hatch in any year depends both on the 
number of adults in that year, and the last. 
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Class number Classification Range of maximum 
diameters (mm) 

Number captured Number of eggs 
produced during 

captivity 
1 Hatchlings 0<�≤13 848	
   0	
  
2 Juvenile 13<�≤20 954	
   0	
  
3 Sub adult 1 20<�≤27 902	
   0	
  
4 Sub adult 2 27<�≤32 1046	
   17	
  
5 adult 32≤� 2150	
   546	
  

Table 1 initial class sizes and egg production 
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Death rates Year Birth rate 

Hatchlin
gs 

Sub adults Adults 

1 0.13 0.30×
10−1 

0.50×10−2 0.90×10−3 

2 0.15 0.20 0.15×10−2 0.55×10−2 
Table 2 Table of Birth rates and death rates in year 1 and year 2 
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Predicted length of time at each stage(in 
years) 

 
Stage 

First two 
measurements 

Year 1 Year 2 

Hatchlings 2.01	
   4.2 24.6	
  

Juvenile 2.32	
   4.8	
   27.6	
  

Sub adult 1 2.31	
   4.9	
   25.9	
  

Sub adult 2 2.05	
   4.2 20.6	
  

Total time 
to adulthood 8.69 18.2 98.8 
Table 3 Estimates of time spent in each stage of growth 
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Values used for �1 Values used for �2 Model type � �∞ R squared 
Von Bertalanffy 0.09 52.59 0.28 

Logistic 0.31 40.31 0.44 
Measurement on 

capture 
First Measurement 

in captivity 
Gompertz 0.20 43.20 0.38 

Von Bertalanffy 0.04 53.2 0.28 
logistic 0.15 40.6 0.41 

Interpolated size at 
the beginning of 

year1 

Interpolated size at 
the end of year1 

Gompertz 0.09 43.5 0.37 

Von Bertalanffy 0.03 103.1 0.023 
Logistic 0.02 44.1 0.15 

Interpolated size at 
the beginning of 

year2 

Interpolated size at 
the end of year2 

Gompertz 0.01 51.3 0.10 

Table 4 The R-squared values  and parameters for growth models  
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