A Model for Cellular Blebbing

M. Lougher

Aims of the Model

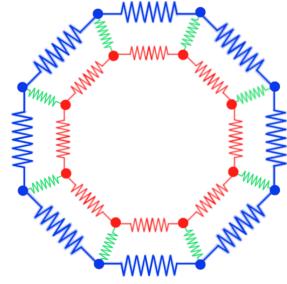
- Replicate observed bleb behaviour during formation.
- Investigate relationship between curvature and peak bleb speed.
- Investigate whether bleb formation rate depends on local curvature.

- Active Contours
 - Main basis of model.
 - Internal energy from tension and curvature, plus elastic energy and pressure.
 - External energy from deformation force.

$$E_{snake} = \int_{0}^{1} (E_{internal} + E_{external}) ds$$

Tension and curvature defined by derivatives of position.

$$\nabla E_{internal} = \alpha \frac{\partial^2 v}{\partial s^2} + \beta \frac{\partial^4 v}{\partial s^4}$$


Approximated these using Finite Differences.

Elastic Energy

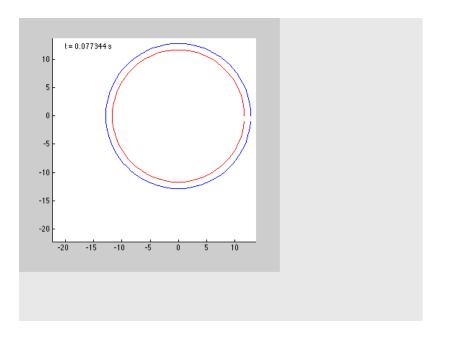
 Plasma Membrane (PM), actin cortex and linkers (FREM proteins) modelled as Hookean springs.

- Spring coefficient for PM 10x less than linkers & cortex.
- Rest length of PM & cortex the same, so no inherent curvature.
- Linker rest length smaller.

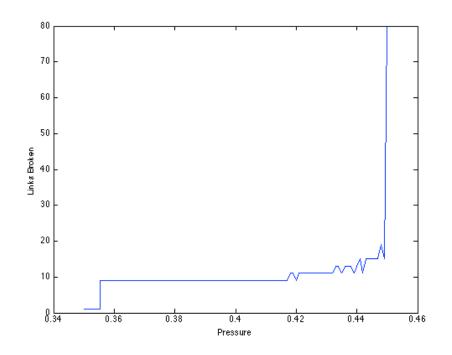
Pressure

- Isotropic around entire contour => no location dependence.
- Assumed force behind pressure due to cytoplasm and other cell components is constant => no flow in or out of cell.
- Pressure varies as surface area changes, so blebs decrease pressure by increasing surface area.

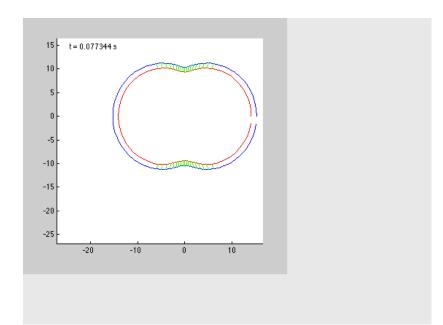
Linker Interactions


- Modelled as acting only on the PM, assumed cortex 'fixed' by other structures within the cell.
- Linkers modelled as fragile; they break when exceed maximum extension (proportional to breaking force).
- Finite linker width optional in model to prevent over crowding (relevant when linker density not constant).

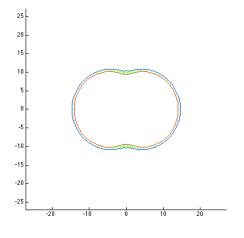
- Stochastic Considerations
 - Later experiments have 1% probability of each linker breaking at each time step.
 - Also 1% probability of broken linkers reforming if PM node hasn't exceeded maximum distance.
 - Implemented using XOR operation on random numbers > 0.99, plus the current linker condition for each node.

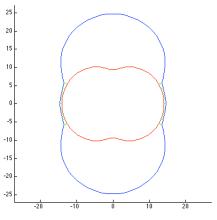


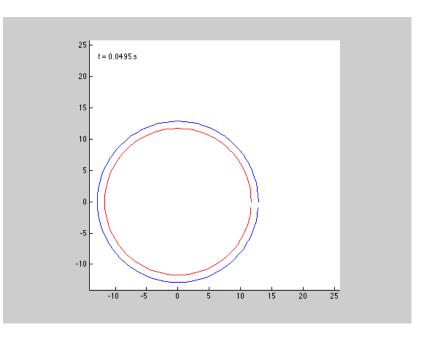
- Initial Bleb Simulation
 - Cut linker manually.
 - Linkers break until pressure decreased.
 - Bleb then rearranges into hemisphere.


Pressure Dependence

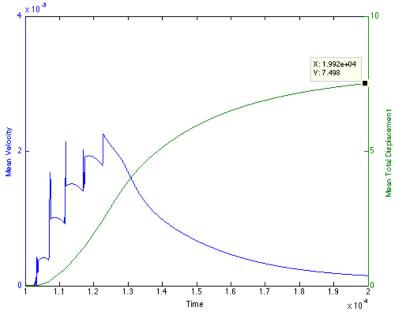
- Recorded number of linkers broken as pressure increases.
- Found mainly increased in jumps.
- Went down to pressure steps of 10⁻¹⁵ to see only slightly smaller jump.

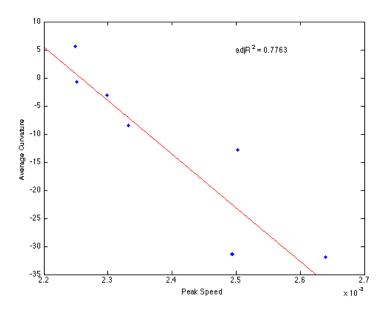

- Varying Curvature & Linker Density
 - Hard to quantify relationship.
 - Complex dependence on curvature and linker density.
 - But, if initial hypothesis proven, can see that increased linker density dominates effect of negative curvature.



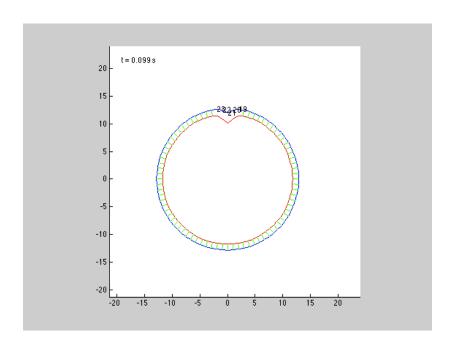

Finite Linker Width

- Attempt to overcome high linker density by introducing finite width.
- Led to nice blebs if all linkers closer than minimum separation broken.
- Added in NAND operation so only surrounded linkers would break.
- Random chance of odd or even analysed first. Led to two very different outcomes.
- Not included in final model.


- Curvature with Fixed Linker Density
 - Started with circular vesicle and pushed inwards at a point.
 - Linkers maintained for 5 seconds to allow cortex to equilibrate.
 - Still takes another 4 seconds for linker to break.
 - Forms natural bleb in area of negative curvature.
 - Model ready for more in depth analysis.



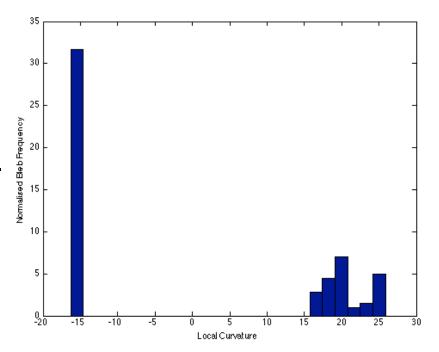
- Velocity and Displacement Profiles
 - Compared to profiles in R. Tyson's thesis.
 - Maximum displacement sigmoidal.
 - Peak speed slightly different.
 - Get jumps due to instant acceleration when linker breaks.
 - Indicates linker behaviour not quite modelled right.
 - Exponential decay not seen in experiment as cortex reformation not modelled here.


Curvature Dependence

- Obtained maximum mean speed across bleb.
- Plotted against average curvature in bleb formation region.
- Hints at possible linear relationship.
- More data needed.
- Model limited by size.

Stochastic Linkers

- Added in 1% breaking/ fixing probability mentioned earlier.
- Now negative region blebs almost instantly.
- If linker breaks, acceleration too great to recover.
- Blebs form randomly around the vesicle.
- Sometimes get two blebs separated by just 1 linker.



Bleb Formation Rates

- Recorded origin of 300 bleb events.
- Histogram of blebs formed at different curvatures around vesicle.
- Normalised against the number of nodes that share that curvature value.
- Clear preference for negative curvature.

Further Work

- Model could be improved so lines don't cross.
- Look at wider range of curvature values.
- Look closer at interaction with inker-linker angle/distance.
- Deformation with outward force.
- Why sometimes multiple blebs prevented from fusing by single linker.
- Add realistic dimensions so results become quantitative.

Conclusions

- Model has been built that imitates behaviour of bleb during formation.
- There is evidence of a strong relationship between curvature and peak bleb speed.
- Demonstrated that there is a much higher bleb formation rate in areas of negative curvature.

