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Abstract

Using an approach based on the Active Contour Model, a model has successfully

been designed and implemented in MATLAB to simulate the formation of blebs

originating from isolated points of the plasma membrane (PM) which become detached

from the actin cortex within a cell. In the system, connections between points on

both the PM and the cortex, as well as links bridging the gap between the two

structures, are modelled as Hookean springs, and the active contour is modelled

using finite distance approximations of the derivatives of the contours formed by

the PM and the cortex. The cell is also modelled as having an internal pressure,

driving the PM outwards, which in turn is anchored in place by the cortex, allowing

the formation of blebs when the two separate. This model has been proven to

replicate the results of experimental observations by comparison of peak speed and

displacement profiles of the blebs. It has also demonstrated that there is increase

in peak speed at negative curvatures. Plus, when including the stochastic nature of

links between the PM and cortex breaking and reforming, it has been found that

there is a higher rate of bleb formation in regions of negative curvature, in agreement

with expectations.
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1 INTRODUCTION

1 Introduction

1.1 What is Cellular Blebbing?

Cellular motility has often been thought to be solely dependant on the crawling effect

generated by polymerisation of the actin cytoskeleton (CSK) cortex within the cell,

triggered by the chemical environment in which the cell resides [1]. This leads to a

protrusion pushing the plasma membrane (PM) of the cell in the direction of the chemical

trigger, while simultaneously myosin II contracts the actin cortex at the rear of the

cell, allowing retraction of the trailing edge, and hence overall movement of the cell [2].

However, in recent years it has been observed that blebbing, a process previously only

associated with apoptosis and cell death [3], is another method of motion utilised by

certain cell types [4].

Blebbing differs from actin polymerisation protrusions in that the local expansion

of the cell results from the PM detaching from the cortex at a point, and the internal

pressure forcing the PM into a hemispherical blister, known as a bleb, causing further

detachment of the PM from the cortex [5]. A new region of cortex then forms within the

bleb, which then reattaches to the existing cortex at the edges of the blister, completing

the protrusion. The old cortex is also still present for a time after the bleb has been

formed, and is known as an actin scar. A time series of images demonstrating blebbing

can be seen in Figure 1 [6].

Blebs can occur in a stochastic fashion, with no explicit dependance on external

triggers [7], however they can also be directed via the contraction (and strengthening)

of the cortex elsewhere within the cell [8], which increases the cellular pressure and can

lead to either weakening of the cortex [9] or separation of the PM from the cortex [10] It

was also recently observed in Dictyostelium Discoideum that blebs seem to preferentially

occur in regions of the cell that are concave, i.e. they have negative curvature locally

along the PM, specifically at the sides of traditional actin protrusions [6].

Figure 1: Time series of images illustrating the formation and evolution of blebs. The
white arrows indicate bleb formation, while the red arrow indicates an actin scar.
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1.2 Aims of the Model 1 INTRODUCTION

1.2 Aims of the Model

The aim of this research is to investigate the relationship between curvature and bleb

formation by creating a mathematical model of a simple vesicle containing just an actin

cortex, a PM and physical ‘linkers’ between the two. These linkers represent FERM

domain proteins, which are a group of proteins that bind to the PM [11], some of which,

e.g. filopodin, also bind to the actin cortex [12]. The focus of the model will be on

bleb formation, or more explicitly, the separation of cortex and PM. It will not look

at the recovery of the cell as there are added complications when trying to model the

formation of new cortex within the bleb, and its subsequent re-connection to the rest of

the cortex. The model will initially be required to simulate simple blebbing if a single

linker is removed (representative of local weakening of the actin cortex) and will then be

expanded to look at the effect of curvature, with the aim of replicating the previously

mentioned observation.

(a) Bleb Motility Profile (b) Bleb Displacement Profile

(c) Scatter Plots of curvature and maximum displacement/peak speed.

Figure 2: Experimentally obtained profiles of (a) speed and (b) displacement of a bleb as it
grows, with different estimates of peak speed. (c) Illustrates how maximum displacement
doesn’t appear to be related to curvature, but how peak speed appears to increase with
large negative curvature. Found in [6] as Figures 6a, 6c and 12 respectively.
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1.2 Aims of the Model 1 INTRODUCTION

Furthermore, analysis of the results from the simulations will be undertaken in a

manner matching that done in [6] to compare the motility and displacement profiles of

the bleb. It can be seen in Figure 2 that there are different methods of obtaining the

peak speed at which the bleb grows, either from the peak of the raw data, the peak of the

averaged data or by fitting a sigmoidal curve to the displacement profile (which attempts

to compensate for noise in the data). As the model created in this work uses arbitrary

units for distance it will not be possible to directly compare peak speeds with these results.

However, the form of the profiles will be comparable, and the model will be modifiable

in such a way that these profiles will be obtainable for a range of different curvatures,

allowing the relationship between peak speed, as well as maximum displacement, and

curvature to be investigated. It is expected that such an investigation will lead to a

negative linear relationship between peak speed and curvature, and no distinct relationship

between maximum displacement and curvature, as implied by Figure 2c. The basis of this

expectation lies in the fact that in areas of negative curvature, the forces associated with

the relaxation of the membrane, as well as the pressure from the cytoplasm (CYT) both

act in an outward direction, encouraging linkers to break, as illustrated in Figure 3.

Another purpose of this investigation is to look into the stochastic nature of linker

breakage and formation, and what effect this has on the number of blebs observed at

positive curvature (which, if the above hypothesis is proven, would lead to slower blebs

and so a greater chance of recovery) when compared to the number of blebs observed at

negative curvature.

Figure 3: Schematic of forces acting on the PM in the case of positive (left) and negative
(right) curvature. It can be seen that the linkers are under less stress when the curvature
is positive as the pressure and PM relaxation forces oppose each other. For regions of
negative curvature, however, both the pressure and PM relaxation forces sum together to
pull the PM away from the cortex, putting increased strain on the linkers.
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2 MATERIALS AND METHODS

2 Materials and Methods

The model created for this research was coded using MATLAB R2011b, and the code can

be seen in Appendix B.

2.1 Model Componenets

2.1.1 Active Contours

The basis of the model created was to treat both the actin cortex and the PM as

active contours. These are traditionally used in computer imaging as a method of object

detection, where the total energy, comprising the internal energy of the contour (or snake)

and energy due to the image forces and other constraints, is defined as follows [13]:

Esnake =

∫ 1

0

(Einternal + Eexternal) ds (1)

This total energy is then minimised such that the internal forces (which cause the

snake to shrink) balance the external forces (which provide boundaries around which the

snake fits).

The internal energy can be defined as being dependant on the tension and curvature

at a vertex v, where tension is proportional to the square of the first order derivative of

the spread of points, and the curvature is proportional to the square of the second order

derivative as follows:

Einternal =
1

2

(
α

∣∣∣∣dvds
(s)

∣∣∣∣2 + β

∣∣∣∣d2v

ds2
(s)

∣∣∣∣2
)

(2)

Using computational methods to minimise Esnake requires that the gradient of Einternal

be evaluated, which can be written as follows:

∇Einternal = α
∂2v

∂s2
+ β

∂4v

∂s4
(3)

These derivatives can then be approximated using finite difference methods, utilising

the values of nearest (second order) and next nearest (fourth order) neighbours. At this

point, the assumption was made that all points defined by the contours (hereafter known

as nodes) would be approximately equidistant for the most part, and that the separation

between nodes to be used in the finite difference approximation, ds should be defined as

ds =
1

N
(4)

where N is the number of nodes described by the contour. This argument is validated by
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2.1 Model Componenets 2 MATERIALS AND METHODS

the fact that the contour is already normalised by the integration in (1) being over the

range 0 to 1.

Subsequently, the finite difference approximations required for (3) can be written as

follows:
∂2x

∂s2
≈ xs−1 − 2xs + xs+1

(ds)2

∂4x

∂s4
≈ xs−2 − 4xs−1 + 6xs − 4xs+1 + xs+2

(ds)4

(5)

where subscripts refer to the nearest and next nearest neighbours of the point xs. (NB: x

simply refers to the cartesian x coordinate of the 2D vector v, and hence the above

equations must be repeated for y.)

In order to reduce the computational power required to calculate these differentials,

additional vectors were created such that neighbouring elements of x and y could be

accessed easily, enabling vector calculations to be carried out rather than using iterative

loops. These vectors (simply named l and r) were then applied to themselves to allow

access to the next nearest neighbours (creating vectors ll and rr). Hence, (5) can be

rewritten as:
∂2x

∂s2
≈ x(l)− x

(ds)2
+
x(r)− x

(ds)2

∂4x

∂s4
≈ x(ll)− x(l)

(ds)4
+
x(rr)− x(r)

(ds)4
−
(

3

(ds)2
× ∂2x

∂s2

) (6)

The implementation of this can be seen in Appendix B.7.

2.1.2 Elastic Energy

In addition to the internal energy of the contour itself, this model will also incorporate

the relaxation energy of the PM and cortex themselves as further internal energy terms.

These will be included as elastic potential energy, with the PM, cortex and linkers all

modelled as Hookean springs [14, 15], leading to the model illustrated in Figure 4.

Following Hooke’s Law, the energy stored in each spring is defined as [16]:

Espring =
1

2
k (L− l)2 (7)

where k is the spring constant, L is the resting length, and l is the length of when

compressed or stretched. As the model utilises the change in energy, (7) can be altered

according to the relationship Force = d
dx
Energy to give the force acting on each node,

which is the more familiar form of Hooke’s Law [16]:

Fspring = k (L− l) (8)
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2.1 Model Componenets 2 MATERIALS AND METHODS

Figure 4: Schematic of how the PM (blue),
cortex (red) and linkers (green) are modelled
as Hookean springs. The solid circles denote
the nodes of the PM and cortex. This
simplified illustration therefore represents a
system with just 8 nodes on each.

Of course, this force needs to be applied

in the correct direction in order to minimise

the energy in (7), and this is dealt with in

section 2.1.5. Also, it should be noted that

each node is connected to three springs,

so (8) is a simplified definition of the force

each node experiences due to the elastic

forces.

2.1.3 Pressure

A further addition to the internal energy

in (1) is a term representing the inter-

cellular pressure preventing the PM from

collapsing. As shown in the previous

section, the change in energy required to

minimise Esnake can be obtained using

forces, which makes the pressure term

considerably easier to deal with, simply

using the relation Pressure = Force × Area, where the area is calculated as the

sum of all of the inter-node distances around the PM, allowing the force experienced by

each node to decrease as the cell inflates. It should be noted that the cortex is mostly

permeable to the cytoplasm (CYT) within the cell, and so this pressure term does not

act on the nodes of the cortex [7].

2.1.4 Linker Interactions

As described in section 2.1.2, the linkers are modelled as springs connecting the nodes on

the PM to the ones on the cortex. However, for the purposes of this model, the linkers

will exert force on the PM nodes only. This is to balance the opposing force provided by

the pressure term, and also to model the assumption that the cortex is held in place by

forces much stronger than the linkers can exert, and as such is more rigid than the PM.

An additional consideration with regards to the linkers is that they are modelled as

being fragile, and will break if the force exerted on them (directly proportional to the

extension they experience) becomes too large. In this way blebs can propagate from an

initial breakage, as the pressure forces the un-linked node outwards, in turn breaking the

links between adjacent nodes and the cortex.
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2.1.5 Directionality

Figure 5: Exaggerated example
of method used to approximate
the local normal to the surface
at each node. The pink arrow
represents the“true” normal, while
the orange arrow indicates the
normal when approximated as being
perpendicular to the line joining the
neighbouring nodes.

All forces that act normally to the surface of either

the PM or cortex are modelled as acting along the

line perpendicular to the approximated tangent, as

demonstrated in Figure 5. The implementation for

this can be seen in B.6. The only exception to this

is the force exerted on the PM by the linkers, which

acts along the length of the linker itself.

One further stipulation that needs to be made

is whether outwards or inwards forces are classed

as positive or negative. It can be seen in the

implementation code (Appendix B.5) that each

differential equation has a minus sign in front of

it, defining the direction needed to minimise the

energy. From this start point, it then follows that outwards forces (e.g. pressure) must

be negative, while inward forces (such as the tension on the PM due to the linkers) must

be positive.

2.2 Model Parameters

As can be inferred from the previous sections, model parameters are α, β, maximum

linker length, force behind the isotropic pressure of the CYT and both elastic coefficients

and natural lengths for each of the cortex, PM and linkers.

Initially, only α and β were introduced, with values of −10−7 and 10−11 assigned

respectively. This resulted in a stable contour that neither shrunk down infinitely, as

would be the case if β were too small, nor bent itself into a shape with sharp corners, as

would be the case if β were too large. Next, the elasticity terms were included, with the

natural length between nodes in both the PM and cortex set to arbitrarily be 1, such that

there was no additional force pulling the contour closed (as would be the natural case if

the distance between nodes in the cortex relaxed to be smaller than that between nodes of

the PM), with the natural linker length set to be half this distance. The decision behind

this value was that it made the resulting plots visually easy to interpret, as significantly

larger linker lengths led to the cortex and PM being far apart, while shorter lengths led

to them being indistinguishable on the plot.

Adding in the elastic terms also required values of the three elasticity coefficients to

be determined, such that the system relaxed realistically. A value for kPM ∼ 10−4 Nm−1

was obtained from the supplementary information of [7], lending realistic values to the

model. It was then assumed that the cortex and linkers should be modelled with an

elastic coeffiecient an order of magnitude larger than that of the PM, such that ten times

7



2.3 Model Implementation 2 MATERIALS AND METHODS

as much energy would be required to deform either of these by a comparable extension

to the PM, hence fulfilling the requirement that the PM be more flexible than the other

two components.

Finally, a pressure force was found by trial and error that led to stabilisation, and

once the initial model had been set up and tested, it was found that setting the maximum

linker length to just over double the natural linker length led to moderate bleb sizes.

2.3 Model Implementation

2.3.1 Shape

Initially, experiments were carried out on a circular vesicle, created by distributing the

desired number of nodes between the limits of 0 and 2π and selecting an arbitrary radius

for the PM, as well as a slightly smaller radius for the cortex to avoid zero values resulting

from initial overlapping. This then allowed the allocation of cartesian coordinates, as can

be seen in Appendix B.3. For some later experiments, this circle was modified by adding

an extra angular dependance at a lower frequency, as can be seen in Appendix B.4, to

create a shape with varying curvature.

2.3.2 Defining Node Separation

It had to be determined how to apply the opposing forces arising from the elasticity term

for each node, as each would experience restoring forces from the connections on both

sides. It was realised that calculating a simple average of the two forces effectively assigned

each node with a separation value, s, describing the distance between the midpoints of

the connections on either side, putting the node at the centre of the separation as follows:

s =
1

2
[(s(r)− s) + (s− s(l))]

=
1

2
(s(r)− s(l))

(9)

where r and l are the vectors described in section 2.1.1 utilised in vector operations. This

value s was then used in the calculation of the elastic force, replacing the l in (8).

2.3.3 Loop Prevention

It was noticed that, in some instances, blebs formed with the PM displaying a tendency

to loop around itself, as illustrated in Figure 6. It was initially thought changing the

value of α would rectify this, but that led to destabilisation of the cortex. Instead, an

additional stiffness term was included, representing the physical dimensions of the PM and

cortex, such that the molecules themselves would exert an additional restoring force if bent

beyond a certain limit, set to 90o. The implementation for this is shown in Appendix B.8,

8



2.3 Model Implementation 2 MATERIALS AND METHODS

Figure 6: An example of a bleb whose formation has caused the PM to loop around itself.
The red circle is the actin cortex, the blue contour is the PM and the green lines represent
the linkers that have not been stretched to breaking point.

although it was found that this addition was not needed if the cortex was fixed, as the

stability issue was not a problem, and so α and β could just be adjusted in that case.

2.3.4 Solving the Differential Equations

In order to solve the differential equations rapidly and accurately, it was decided that

MATLABs inbuilt ode45 function would be used, as it follows an adaptive time step

method and utilises the Runge-Kutta (4,5) algorithm [18]. This algorithm is widely seen

to be efficient for solving non-stiff initial value problems [19].

The ode45 function requires the input of a single function detailing the differential

equation, with all variables contained in one column vector. This meant that any variables

created within the function were not accessible via the workspace, and also that the system

was manipulated (e.g. cutting linkers) by adding in if statements within the inputted

function. The implementation of this can be seen in Appendix B.5.

2.3.5 Adding Finite Linker Width

In one experiment, it was decided that a minimum separation between the linkers should

be implemented, representing the physical width of the linkers. In this way, regions with

high linker density would experience an additional interaction due to the linkers competing

for space, resulting in breakages. This was implemented first by simply cutting all linkers

if their node on the PM had a corresponding separation s (see (9)) which was less than a

certain value to be determined by experiment.

The model was later modified to only cut linkers that were completely surrounded,

therefore allowing ones whose neighbours had been cut to remain intact by effectively

filling the vacated space. In order to do this as a vector operation, rather than using

9



2.3 Model Implementation 2 MATERIALS AND METHODS

loops, vectors were created corresponding to the odd and even nodes on the PM. A

random number was then generated to decide whether the even or odd linkers would be

analysed first, and linkers were broken on all nodes in the selection that met the separation

criteria described above. A NAND logical operation was then used on the linkers that had

not yet been analysed, together with the breaking criteria, such that only linkers whose

neighbours were still intact were themselves checked to see if their separation was less

than the allowed minimum. The implementation of this can be seen in Appendix B.9.

2.3.6 Distributing Linkers Evenly

In order to look at the effect of curvature without the influence of increased linker density,

an optional additional force acting at a point on the cortex was included, modelled as an

external force according to (1). When implemented using the circular initial conditions, it

was noted that as the vesicle was isotropic, any inward-acting force would have the same

effect no matter where it was applied. In order to keep the model and coding simple,

it was therefore decided that the deforming force would act solely at node 21, whose

positional x component is zero, hence the applied force would just act in the negative y

direction. The force was modelled as an additional elastic force, pulling the point on the

cortex to a position closer to the centre of the cell, also with a zero x component. The

linkers were also not allowed to break until the cell had equilibrated in its new shape.

2.3.7 Stochastic Linker Breakages

When adding in a probability of each linker either breaking or reforming on their own,

random numbers were generated for each node at each time step. Those greater than

0.99 were assigned a logic value of 1, and those less than 0.5 assigned a value of 0. A

similar logic vector was also created corresponding to which linkers were still intact, and

an XOR operation was used to determine which intact linkers would break, and which

broken linkers would reform, each with a 1% probability of happening. Linkers exceeding

the maximum length, however, remained broken, meaning that once a linker broke, there

was only a certain amount of time for it to reform before the internal pressure forced the

node past the maximum linker distance, at which point a bleb could form.

10



3 RESULTS

3 Results

For all experiments described below, the total simulation time was 50 s and the number

of nodes was set to 80. In all cases the system was allowed to reach a stable equilibrium,

before the property being investigated was altered at t = 5.00 s. Also, the maximum

linker length was set to 1.1, after which the linker would break.

Movies of the simulations shown in Figures 7, 9, 12, 13 and 16 can be found online at

http://www2.warwick.ac.uk/fac/sci/moac/people/students/2011/matthew_lougher/

miniproj/blebmovies

(a) t = 5.00 s (b) t = 6.16 s

(c) t = 7.81 s (d) t = 50.00 s

Figure 7: Illustration of bleb propagation after a single linker was cut at t = 5.00 s. The
area with the missing linker is shaded yellow in (a) for clarity.
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3.1 Initial Blebbing & Pressure Dependence

As previously mentioned, the initial experiment on the model was performed with a

circular vesicle. Figure 7 illustrates the bleb resulting from breaking a single linker at

node 511. The pressure force was set to 0.43 for this experiment after simple trial and

error to get a value of the correct order of magnitude such that the simulation resulted

in somewhere between none and all of the linkers breaking (found to be the case for a

pressure force of 0.35 and 0.45 respectively).

As can be seen, once the linker is cut at t = 5.00 s the bleb quickly forms, with

broken linkers forcing their neighbours to also break. This causes an unzipping effect

until the PM has increased in surface area sufficiently that the pressure is no longer large

enough to break any further linkers. In this case, this happened at t = 6.16 s, when

the 10th and 11th linkers broke simultaneously (due to isotropic shape of vesicle). While

not large enough to break any further linkers, the pressure then drove the PM further

out, distorting it from the hemispherical shape initially, until it reached its maximum

area at around t = 7.81 s. From this point on, the PM nodes that comprised the bleb

then redistributed themselves evenly around the protrusion, again reforming a vaguely

spherical shape as the simulation reached its end point at t = 50 s. This demonstrates

bleb formation on a similar timescale to that observed in experiments of between 10 and

30 seconds [20], although the bleb formed is proportionally larger than observed.

Having proven the model to work, at least fundamentally, the role of the pressure

exerted on the PM by the CYT was then investigated by gradually increasing the pressure

force from 0.350 to 0.450, in increments of 0.001, and running the simulation at each

pressure. The propagation of the bleb was quantified in each case by counting the number

of nodes broken at the end of the simulation. The result of this experiment can be seen

in Figure 8.

Figure 8: Plot of how the number of links
broken varies with increased pressure force.

The results obtained were surprising

in that there were no steady increases in

bleb propagation as a function of pressure.

Further investigation was done into the

region around a pressure force value of

0.35, to see if there was indeed a steady

increase in number of liners broken at

higher resolution. It was found that

in order to observe a variation from no

additional links broken to just one, the

difference in pressure force was of the

order 10−15, and similarly for seven links

1Movie 1 online.
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breaking to eight (on top of the initial one), although the jump from one to eight was

still undetectable at this level. As such further investigation into this aspect of the blebs

behaviour was ruled out.

3.2 Curvature with Varying Linker Density

When first investigating curvature, an alternate initial shape was created as described

in section 2.3.1. However, it was noticed that this method placed nodes around the PM

in such a way that linker density was increased in areas of negative curvature. As such,

this was not a true test of the dependance on curvature, but it is included as an example

of the effect of varying linker density. One thing that should be noted is that for this

experiment the nodes of the cortex were fixed such that it didn’t relax to a circular shape

mid-experiment. Once again, a pressure of 0.43 was used, and linker 51 was cut after five

seconds. Figure 9 shows the progression of the bleb expansion2 .

It can immediately be seen that the way in which the bleb propagates is vastly different

to the case with the circular vesicle. After the linker is cut, the PM detaches from the

cortex evenly in both directions initially, until at t = 6.19 s when the protrusion reaches

the region of negative curvature, and the high linker density there prevents the PM from

detaching further. However, as the pressure force is still high enough to break linkers,

the PM continues to detach in the other direction around the contour, until at t = 9.75 s

when a total of 15 linkers have been broken. The bleb then expands in volume as before,

until it stabilises in the shape in which it can still be seen after the full 50 seconds of the

simulation.

In order to investigate this observation further, another experiment was run in which,

keeping all other parameters constant, the simulation was run 80 times; each time cutting

a different linker. The extent of bleb protrusion after 50 seconds was again quantified by

counting the number of linkers broken, and this was plotted against the local curvature

defined as [21]

κ =
x′y′′ − y′x′′

(x′2 + y′2)3/2
(10)

where x′ = dx
ds

and x′′ = d2x
ds2

, and similay for y. As can be seen, in order to calculate

this the finite difference method for the first order derivative was needed, which is defined

below, along with that for the second order derivative defined in (6).

dx

ds
≈ x(r)− x(l)

ds
(11)

The results from plotting the bleb propagation against this curvature can be seen

in Figure 10a. As can be seen, the initial conclusion drawn is that, contrary to the

2Movie 2 online.
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(a) t = 5.00 s (b) t = 5.68 s

(c) t = 6.19 s (d) t = 6.98 s

(e) t = 9.75 s (f) t = 50.00 s

Figure 9: Illustration of bleb propagation in non-circular vesicle after a single link was
cut at t = 5.00 s. The area with the missing linker is shaded yellow in (a) for clarity.
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(a) (b)

Figure 10: (a) shows a plot of the total number of linkers broken against the local curvature
at the point where the initial linker was cut, and (b) shows the relationship between linkers
broken and linker density.

initial hypothesis, blebbing is actually restricted by areas of negative curvature. However,

Figure 10b shows that there is a slightly stronger relationship between linkers broken

and linker density. As such, the exact nature of the relationships cannot be quantified

by the model in this form. But, if it is in fact discovered that negative curvature does

encourage blebbing, this experiment has shown that the effect of linker density dominates

the curvature dependance, overriding the tendency to bleb.

3.3 Introducing Finite Linker Width

In an attempt to overcome the crowding of linkers into the negatively curved regions, it

was thought that introducing a finite width for the linkers would force areas of high linker

density to either spread out or form natural blebs.

Figure 11: Plot of bleb propagation,
quantified as the number of linkers broken,
against the minimum linker separation.

As this experiment was run with the

cortex fixed, the additional stiffness term

was not needed and α and β could be

increased instead to prevent the looping

effect mentioned in section 2.3.3. It was

found that values of α = −5 × 10−7 and

β = 5× 10−11 worked well.

Initial results cutting all linkers with

separations less than a minimum distance

are shown in Figure 11, demonstrating the

number of linkers broken as the minimum

distance was changed. As with the pressure

dependance, there is a large jump in bleb
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Figure 12: Plots of the final model configuration after running two simulations with linker
width set to 0.387. These simulations were identical apart from the fact that one analysed
the even numbered linkers first, while the other analysed the odd numbered ones first.

propagation apparent at a critical separation, which is still there at much higher resolution

(changes in distance on the order of 10−7), although this time the jump was from only

the centre-most linkers breaking in each negative curved region to over 75% of linkers

breaking.

At this point it was decided to implement the further conditions to restrict the linkers

that can break, as described in section 2.3.5. However, the random allocation part of the

code leads to the results shown in Figure 12, indicating the massive change in bleb size

between running near identical simulations3. Obviously, this deviation doesn’t lead to

reliable results, and so another approach was attempted.

3.4 Curvature with Fixed Linker Density

Cortex PM

α −5× 10−7 −1× 10−7

β 5× 10−11 1× 10−11

Table 1: Values of α and β
for the cortex and PM used to
change the shape of the vesicle
while keeping the linker density
constant.

When performing this simulation, the cortex had to be

allowed to change with time, so as to allow for the

local distortion. However, adding in this extra term

destabilised the cortex when using values of α and β

previously determined without the additional force (see

section 2.2), and also led to complete detachment of the

PM when using the values utilised in the experiment

looking into finite linker width (see section 3.3). As such,

it was discovered that in fact the model works best under

the current conditions with different values of α and β for the PM and cortex, indicating a

further difference in properties of the two components, as well as the ten fold difference in

elastic coefficients already implemented. The values used for this part of the experiment

3Movie 3 online.
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(a) t = 9.25 s (b) t = 50.00 s

Figure 13: Demonstration of bleb formation originating from point of negative curvature,
with linker density kept uniform.

are shown in Table 1.

The results of adding in the additional distorting force4 can be seen in Figure 13.

While the additional force was first applied at t = 1.00 s, and the linkers allowed to break

after t = 5.00 s, the bleb doesn’t begin to form until over 4 seconds later, indicating that

the force applied is only just enough to stretch the linkers to breaking point. What is

observed, however, is that after the initial linker breaks, a bleb forms as expected around

the area of local negative curvature. The bleb was formed from 9 nodes breaking, which is

2 less than the number that broke when a single linker was cut in an undistorted circular

vesicle under the same pressure force of 0.43, as seen in Figure 8. The reason for this is

likely to be due to the change in cortex shape, as, as can be seen in Figure 13b, the linkers

at the edge of the bleb are attached to a relatively flat part of the cortex.

4Movie 4 online.
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4 Discussion

The following section describes analysis carried out on the matrices outputted from the

model as a series of positions of the nodes over time.

4.1 Velocity and Displacement Profiles

In order to compare the simulation data to that displayed in Figure 2, velocity and

displacement profiles were created using a simple for loop that performed vector operations

on a selected node for each time step, then outputted either the immediate distance each

node ‘travelled’ during each time step, or the cumulative distance the node had moved

since bleb formation began.

Figure 14 illustrates the velocity and displacement profiles from the data obtained from

the simulation shown in Figure 7, i.e. for a circular vesicle with a linker cut manually.

The time displayed has been offset such that the bleb begins to form at t = 0 s. One

thing to note is that due to the arbitrary nature of the distances used in the model, it is

impossible to directly compare actual values at this stage. As such, the main comparisons

drawn will be in the shapes of the profiles, to ensure the correct behaviour of the model.

It can be seen that there is a difference in the profile shapes for nodes 51 and 55,

and a further difference between each of these and the mean across all nodes that form

the bleb. As well as the expected lag in the velocity profiles that demonstrates the time

taken for the bleb to progress from node to node, there are also spikes apparent, which

correspond to the individual linkers being cut, and the instantaneous acceleration that

the linker experiences at that time. As such, the mean profile will be used for comparison

to the profiles in Figure 2.

(a) Velocity Profile (b) Displacement Profile

Figure 14: Velocity and Displacement profiles for nodes 51 and 55, along with the mean
profile for all nodes that comprise the bleb. The simulation was run with an initially circle
vesicle with linker 51 cut manually. The time axis is offset such that the bleb begins to
form at t = 0 s.
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It can instantly be seen that the shape of the velocity profile is similar in both cases;

although the massive acceleration in the simulated data representing the moment each

linker breaks is not apparent in the observed data. It must also be considered that the

model does not incorporate reformation of the cortex or motion of the rest of the cell

around the bleb, and as such the apparent exponential decay in velocity in the modelled

data after reaching the peak may not be a wholly accurate representation. Furthermore,

it can be seen that the displacement profiles for the individual nodes, as well as the mean,

seem to follow a sigmoidal pattern, as expected and described in [6].

It is believed that these profiles confirm that the model does indeed replicate bleb

behaviour to an acceptable degree, and as such can now be used to look into the effect of

curvature on bleb propagation.

4.2 Curvature

Utilising the above result that individual linkers may not be a true representation of the

bleb behaviour, the following analysis again follows the average velocity and displacement

of all nodes that form the bleb. The simulation was run as detailed in section 3.4,

with node 21 pulled inwards to y values between 8.5 and 10.5, hence giving different

local curvature and allowing for different measures of bleb propagation. In this instance,

however, the curvature of the bleb was calculated as the average curvature over the region

which the bleb formed, rather than the curvature at the point where the bleb originates,

so as to match the averaged velocities and displacements. The resulting scatter plots can

be seen in Figure 15.

It is apparent that, while not as linear as was hoped, Figure 15a indicates that there

is indeed a link between the curvature of the bleb site and the peak velocity reached by

the bleb as it expands. This result is in agreeance with the observations of Figure 2,

(a) Peak Velocity Distribution (b) Maximum Displacement Distribution

Figure 15: Scatter plots of how the average peak velocity and maximum displacement
across the bleb vary with the average curvature of the cortex at the bleb site.
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although the deviations from a simple relationship indicates that the model is perhaps

oversimplified for looking at this property. Figure 15b, however, indicates that there may

indeed by a weakly positive relationship between curvature and average total displacement

of the nodes within the bleb, contradicting the evidence in Figure 2. It must be considered,

however, that these plots have been made with a very limited dataset determined by the

parameters of the model, and so more experiments should be undertaken with a greater

variation in initial conditions in order to examine the above conclusions.

4.3 Stochastic Linkers

Figure 16: Example of blebs formed
when linkers are given random chance
of breaking or reforming.

In order to investigate the stochastic nature

of linkers breaking and reforming naturally, an

additional condition was imposed as described

in section 2.3.7. The simulation was run

multiple times until a total of 300 blebs had

been observed, with the node at which each

bleb originated being recorded. Figure 16

shows an example vesicle at the end of one of

these simulations5, with blebs originating from

nodes 5, 21 and 54. Additional protrusions,

that have not yet formed blebs, are identifiable

at nodes 36, 66, 75 and 77. These isolated

broken links have gone past the point at which they could be recovered, and so if the

simulation were run for longer, of it the internal pressure of the cell had not been reduced

by the existence of the other blebs, these points would have matured into full grown blebs,

5Movie 5 online.

(a) (b)

Figure 17: Histograms of the number of blebs formed against the local curvature at the
site of formation. (a) shows the raw data, while (b) shows the data normalised against
the number of nodes in the system with that curvature.
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and as such were included in the data recorded as bleb sites.

Figure 17 shows the data collected into histograms, where the number of blebs is

displayed against the average curvature at node from which the bleb originated. The

average curvature was calculated using the curvatures of the node whose linker originally

broke, along with its nearest and next-nearest neighbours, utilising 5 individual curvature

values in all. The initial result from Figure 17a seems to indicate that while negative

curvature does lead to a high rate of bleb formation, more blebs are formed at positive

curvature. However, this does not take into account the amount of nodes that have that

curvature, and so Figure 17b shows the same data set normalised against the incidence

of each curvature value. In this instance it is clear to see that there are vastly more blebs

formed per node in the region with negative curvature.

This result can justifiably be explained by the conclusion in section 4.2 that blebs

propagate faster in regions of negative curvature, and as such take less time to move

outside the distance in which stochastic reformation of the linkers is possible.

4.4 Linker Angle & Separation

Figure 18: Plots of how the inter-linker
angle and separation vary around the
circular vesicle distorted by applying
force to node 21.

While it was briefly investigated in section 3.3

that bleb formation may have a relationship

to the separation between nodes on the PM,

it was not discussed whether bleb formation

might also be dependant on the angles between

adjacent linkers. As can be seen in Figure 18,

there is a strong relationship between the inter-

linker angle and the nodal separation on the

PM, and so it is conceivable that there is also a

relationship between angle and bleb formation.

However, there was not time to investigate this possibility further, and it remains an

open question for further investigation.

4.5 Further Work

Although the work presented here has led to several conclusions, there is more work that

can be done with this model. Firstly, the model itself needs refining in a way which

became apparent when investigating the stochastic nature of bleb formation, as it was

observed that occasionally two blebs would form that overlapped each other. While this

was not of immediate concern at that point, for that particular experiment was concerned

with the points from which the bleb originated, it is something that must be looked into

if more work is carried out on systems in which multiple blebs can form. In order to do

this, the code must be modified such that the vectors between nodes on the PM may not
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cross at all. Implementing this would possibly also remove the need for the additional

stiffness term, as it should do the same job of ensuring that lines between nodes don’t

cross, especially if it is also extended to include the vectors between nodes on the cortex.

However, this has the potential to be very computationally intensive, as it would require

checking that the lines between each adjacent pair of nodes doesn’t cross any other line

in the whole system.

As far as further investigation using the model is concerned, there are still areas to be

explored with regards to the effect curvature has on bleb formation. Namely, a system

needs to be created that has a wider range of curvature values, such that a more concrete

relationship without discontinuities may be formed. One possible solution may be to take

a step away from the realism offered by the circular vesicle and to instead use a linear

cortex fixed in the shape of a sin wave. If the ends of the PM were also fixed in position,

the system would then provide a greater, smoothly varying range of curvature values.

This system could then also look again at linkers that break stochastically, and link the

results back to the case of a closed loop vesicle.

Also, the possibility of relationships between bleb propagation and both the inter-linker

angle and linker separation ought to be investigated further, as described in section 4.4.

In order to do this, a simple circular system could be used, therefore keeping curvature

constant, with linkers spaced at varying distances around the vesicle, allowing direct

investigation into the effects of separation and angle.

Another possible investigation would be to deform the vesicle with an outward force,

simulating a traditional actin protrusion. This would then lead to negatively curved

regions at the sides of the protrusion, from which it is theorised that blebs will preferably

form. This was attempted with the model during this work, but resulted in destabilisation

of the cortex. Further work would be needed to rectify this problem in the model and

therefore investigate this effect.

A further addition to the model would be the inclusion of realistic lengths and sizes

for the PM and cortex, as well as the FERM proteins that comprise the linkers. This

would then allow quantitative comparison to experimental results, rather than simply

qualitative.

It would also be interesting to look into why, in some instances, two blebs can form

on the PM and be held in place, and thus prevented from fusing, by a single linker. This

is not expected behaviour, as it would be reasonable to assume that the combined force

exerted by these two blebs would be enough to break the final linker.

Finally, the model could be drastically increased in complexity to also simulate the

recovery of blebs by formation of a new actin cortex beneath the PM. However, many

more terms would likely be needed to accurately model this, therefore making the model

both harder to create and more computationally expensive to run.
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5 Conclusions

The aim of this research was to create a model which both replicated and expanded upon

observed relationships between the propagation and rate of formation of blebs with the

curvature of the cortex and PM at the point at which the bleb originated.

By comparing velocity and displacement profiles of data from the model with those

from experiment, it has been shown that the model created does indeed replicate the

observed activity.

Also, again by comparing velocity profiles, it has been shown that there does indeed

appear that the peak speed of blebs increases with negative curvature. This is likely due

to the summative effect of the relaxation forces of the PM working in the same direction

as the force exerted by the pressure in the CYT to accelerate the PM away from the

cortex faster, leading to higher speeds.

An unexpected possible relationship between curvature and maximum bleb displacement

has also been observed. However, the relationship is not as concordant as that obtained

from the velocity data, and so more simulations would need to be run with a greater

variation in curvature in order to see if this effect is just coincidental.

It has been proven that even with linkers breaking and reforming in a stochastic

fashion, as seen in experiment, that there is a preference for blebs to form in areas of

negative curvature. This agrees with the above result of bleb speed being greater in

these areas, as if the PM is moving away from the cortex at a greater speed, there is less

likelihood of the linker randomly reforming before the PM exceeds the maximum linker

length.
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A Abbreviations used

CSK Cytoskeleton
CYT Cytoplasm
PM Plasma Membrane
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B MATLAB CODE

B MATLAB Code

The following subsections contain the MATLAB code for the model, separated into several

different functions for ease of use. They are listed here in the order in which they are

called.

Files can be downloaded online from http://www2.warwick.ac.uk/fac/sci/moac/

people/students/2011/matthew_lougher/miniproj/activecontourmodel.zip.

B.1 ActCont ode.m

1 function [x m,y m,x c,y c,T,links] = ActCont ode(draw)
2 % Creates active contour blebbing model. Input 0 for no graphical output,
3 % 1 if want to plot progression of the system, or 2 for just final
4 % configuration.
5

6 % Retrieves simulation parameters, stored in external function.
7 P = Parameters ode;
8

9 % Creates initial membrane & removes duplicated end point.
10 initial = CircularInitial(P.Nodes+1); % Creates circular membrane.
11 % initial = InfInitial(P.Nodes+1); % Creates squashed membrane.
12 initial = initial(1:P.Nodes,:);
13

14 % Converts initial values into a single vector useable by ode45.
15 Y = zeros(4*P.Nodes, 1);
16 Y(1:P.Nodes) = initial(:,1); % x m
17 Y(P.Nodes + 1 : 2*P.Nodes) = initial(:,2); % y m
18 Y(2*P.Nodes + 1 : 3*P.Nodes) = initial(:,3); % x c
19 Y(3*P.Nodes + 1 : 4*P.Nodes) = initial(:,4); % y c
20

21 % Sets simulation time.
22 Tmax = 5e4;
23 tspan = 0:Tmax;
24

25 % Solves ODE using ode45.
26 [T,Y] = ode45(@dYdt, tspan, Y);
27 fprintf('ODE solved.\n')
28

29 % Extracts membrane and cortex coordinates from vector output of ode45.
30 x m = Y(:,1:P.Nodes);
31 y m = Y(:,P.Nodes+1:2*P.Nodes);
32 x c = Y(:,2*P.Nodes+1:3*P.Nodes);
33 y c = Y(:,3*P.Nodes+1:4*P.Nodes);
34

35 % Extracts times at which links break.
36 links = LinkExtract(x m,x c,y m,y c,P.max link,T,P.Nodes)';
37

38 % Plots membranes every 100 time steps. Commented out lines can be
39 % re−introduced to the code to save a movie of the evolution of the system.
40 if draw == 1
41 lims = 1.05*[min(min(min(x m),min(y m))),max(max(max(x m),max(y m)))];
42 % lims = [−15, 15];
43 j = 100;
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B.1 ActCont ode.m B MATLAB CODE

44 % f = 1;
45 for i = 1:length(T)
46 if rem(i,j) == 0 | | i == length(T)
47 MembranesPlot(x m(i,:),y m(i,:),x c(i,:),y c(i,:),lims);
48 text(0.9*lims(1),0.9*lims(2),['t = ',num2str(T(i)/1000),' s'])
49 pause(0.01)
50 % F(f) = getframe(gcf);
51 % f = f+1;
52 end
53 end
54 % movie2avi(F,'movie.avi','compression','none','fps',floor(f/50));
55 end
56

57 % Plots only final configuration of membrane.
58 if draw == 2
59 lims = 1.05*[min(min(min(x m),min(y m))),max(max(max(x m),max(y m)))];
60 i = length(T);
61 MembranesPlot(x m(i,:),y m(i,:),x c(i,:),y c(i,:),lims);
62 end
63

64 end
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B.2 Parameters ode.m

1 function [P] = Parameters ode ()
2 % Defines parameters such that they can be accessed by multiple functions
3 % and stores in a structure P.
4

5 P.Nodes = 80; % Number of nodes in the system.
6 P.a = −5e−7; % Tension coefficient.
7 P.b = 5e−11; % Curvature coefficient.
8 P.k m = 1e−3; %\
9 P.k c = 1e−2; % } Elasticity constants for membrane, cortex and links.

10 P.k l = 1e−2; %/
11 P.max link = 1.1; % Maximum link length before link breaks.
12 P.P Force = 0.42; % Force providing isotropic pressure within cell.
13 P.min sep = 0.35; % Mimimum link separation before breaks.
14

15 end
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B.3 CircularInitial.m

1 function [initial] = CircularInitial (nodes)
2 % Creates matrix of specified size with circular 'membrane' contour that
3 % has number of nodes specified.
4

5 radius = ceil(nodes/(2*pi)); % Calculates appropriate radius.
6 initial = zeros(nodes,4); % Initialises data matrix.
7 points = linspace(0,2*pi,nodes); % Arranges nodes between 0 and 2pi.
8 sep = 0.9*radius; % Sets gap between cortex and membrane.
9 x m = radius.*cos(points); % \

10 y m = radius.*sin(points); % } Converts points to Cartesian coordinates.
11 x c = sep.*cos(points); % |
12 y c = sep.*sin(points); %/
13 initial(:,1) = x m;
14 initial(:,2) = y m;
15 initial(:,3) = x c;
16 initial(:,4) = y c;
17

18 end
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B.4 InfInitial.m

1 function [initial] = InfInitial (nodes)
2 % Creates matrix of specified size with squashed 'membrane' contour that
3 % has number of nodes specified.
4

5 radius = ceil(nodes/(2*pi)); % Calculates appropriate radius.
6 initial = zeros(nodes,4); % Initialises data matrix.
7 points = linspace(0,2*pi,nodes); % Arranges nodes between 0 and 2pi.
8 sep = 0.9*radius; % Sets gap between cortex and membrane.
9 undu = linspace(0,6*pi,nodes); % Adds undulation to contour.

10 x1 = radius.*(cos(points) + 0.2.*cos(undu)); % \
11 y1 = radius.*(sin(points) + 0.2.*sin(undu)); % } Converts points to
12 x2 = sep.*(cos(points) + 0.2.*cos(undu)); % | Catesian coordinates.
13 y2 = sep.*(sin(points) + 0.2.*sin(undu)); %/
14 initial(:,1) = x1;
15 initial(:,2) = y1;
16 initial(:,3) = x2;
17 initial(:,4) = y2;
18 NumNodes = length(initial); % Simple check of number of nodes.
19

20 end
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B.5 dYdT.m

1 function [Ydot] = dYdt(tspan,Y)
2 % Derives & defines odes for both the membrane and cortex.
3

4 % Define parameters for simulation.
5 P = Parameters ode;
6 length m = 1;
7 length c = 1;
8 length l = 0.5;
9 ds = 1/(P.Nodes);

10

11 % Extracts membrane and cortex coordinates from Y vector.
12 x m = Y(1:P.Nodes);
13 y m = Y(P.Nodes+1:2*P.Nodes);
14 x c = Y(2*P.Nodes+1:3*P.Nodes);
15 y c = Y(3*P.Nodes+1:4*P.Nodes);
16

17 % Creates vectors representing elements of initial to the left and right.
18 r = [2:P.Nodes,1];
19 l = [P.Nodes,1:P.Nodes−1];
20 rr = r(r);
21 ll = l(l);
22

23 % Calculates local normal to curve at each point.
24 [nx m, ny m] = LocalNormal(x m', y m', l, r);
25 nx m = nx m'; % } Ensures dimensions match.
26 ny m = ny m'; %/
27 [nx c, ny c] = LocalNormal(x c', y c', l, r);
28 nx c = nx c'; % } Ensures dimensions match.
29 ny c = ny c'; %/
30

31 % Calculates distances between nodes for membrane and cortex.
32 sx m = (x m(r) − x m(l))/2;
33 sy m = (y m(r) − y m(l))/2;
34 s m = sqrt(sx m.ˆ2 + sy m.ˆ2);
35 sx c = (x c(r) − x c(l))/2;
36 sy c = (y c(r) − y c(l))/2;
37 s c = sqrt(sx c.ˆ2 + sy c.ˆ2);
38

39 % Approximates 2nd and 4th order x and y derivatives by finite difference.
40 [d2x m, d2y m, d4x m, d4y m] = FinDif 24(ds,l,ll,r,rr,x m,y m);
41 [d2x c, d2y c, d4x c, d4y c] = FinDif 24(ds,l,ll,r,rr,x c,y c);
42

43 % Computes isotropic Pressure from surface area of membrane.
44 Area m = sum(s m);
45 Prs = P.P Force/Area m;
46

47 % Adds relaxation force of Hookean springs.
48 R m = P.k m * (s m − length m);
49 R c = P.k c * (s c − length c);
50

51 % Adds link interaction as Hookean spring.
52 x l = x m − x c;
53 y l = y m − y c;
54 s l = sqrt(x l.ˆ2 + y l.ˆ2);
55 FL x = P.k l .* (s l − length l) .* (x l ./ s l); % (x l./s l) = cos(theta)
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56 FL y = P.k l .* (s l − length l) .* (y l ./ s l); % (y l./s l) = sin(theta)
57

58 % Adds additional force to prevent looping of membranes.
59 Stf m = Stiffness(P.Nodes,x m,y m,r,l);%*0; % } Not needed if cortex fixed.
60 Stf c = Stiffness(P.Nodes,x c,y c,r,l);%*0; %/
61

62 % Adds small deforming force to change cortex shape.
63 D y = zeros(P.Nodes,1);
64 push = 21; % Defines node acted on.
65 targ = 9.5; % Defines how much to push.
66 D y(push) = 0.1 * (y c(push) − targ);
67

68 % % Adds possibility of linkage breaking if stretched too far (after vesicle
69 % % has reached stable shape). Not needed if stochastic term activated.
70 % if tspan > 5000
71 % FL x(s l>P.max link) = 0;
72 % FL y(s l>P.max link) = 0;
73 % end
74

75 % % Define initial protrusion point for manual linker breakage.
76 % brk = 51; % Defines which linker to break.
77 % if tspan > 5000
78 % FL x(brk) = 0;
79 % FL y(brk) = 0;
80 % end
81

82 % % Additional minimum node separation, representing finite width of links.
83 % if tspan > 5000
84 % FL x(s m < P.min sep) = 0; % } Simplified method of breaking linkers
85 % FL y(s m < P.min sep) = 0; %/ with no consideration of neighbours.
86 % % [FL x,FL y] = CrowdBreak(P.Nodes,l,r,s m,FL x,FL y,P.min sep);
87 % end
88

89 % Adds stochastic possibility of all linkers breaking or reforming.
90 if tspan > 5000
91 probs = rand(P.Nodes,1)>0.99; % Generates random numbers.
92 linkers = (FL x + FL y)˜=0; % Defines intact linkers.
93 outcome = xor(probs,linkers);
94 outcome = outcome.*(s l<P.max link); % Ensures linkers > max break.
95 FL x = outcome.*P.k l .* (s l − length l) .* (x l ./ s l); % } Breaks/
96 FL y = outcome.*P.k l .* (s l − length l) .* (y l ./ s l); %/ fixes.
97 end
98

99 % Differential Equations.
100 dxdt m = −((P.a*d2x m + P.b*d4x m)*0.2 + (R m + Stf m − Prs).*nx m + FL x);
101 dydt m = −((P.a*d2y m + P.b*d4y m)*0.2 + (R m + Stf m − Prs).*ny m + FL y);
102 dxdt c = −((P.a*d2x c + P.b*d4x c) + (R c + Stf c).*nx c);%*0;
103 dydt c = −((P.a*d2y c + P.b*d4y c) + (R c + Stf c + D y).*ny c);%*0;
104 % (Uncomment the *0 above to fix cortex in place).
105

106 Ydot = [dxdt m; dydt m; dxdt c; dydt c]; % Reforms vector for ode45.
107

108 end
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B.6 LocalNormal.m

1 function [nx, ny] = LocalNormal (x,y,l,r)
2 % Calculates local normal at all points on a curve, and returns vectors of
3 % the x and y components individually.
4

5 tangs = [x(r) − x(l); y(r) − y(l)];
6 norm = sqrt(tangs(1,:).ˆ2 + tangs(2,:).ˆ2);
7 nx = tangs(2,:) ./ norm; % = cos(theta)
8 ny = −tangs(1,:) ./ norm; % = sin(theta)
9

10 end
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B.7 FinDif 24.m

1 function [d2x,d2y,d4x,d4y] = FinDif 24 (ds,l,ll,r,rr,x,y)
2 % Utilises finite difference method to approximate second and fourth order
3 % derivatives of x and y vectors of contour.
4

5 % Approximates 2nd order x derivative.
6 d2x l = (x(l) − x) / dsˆ2;
7 d2x r = (x(r) − x) / dsˆ2;
8 d2x = d2x l + d2x r;
9

10 % Approximates 4th order x derivative.
11 d4x ll = (x(ll) − x(l)) / dsˆ4;
12 d4x l = d2x l / dsˆ2;
13 d4x r = d2x r / dsˆ2;
14 d4x rr = (x(rr) − x(r)) / dsˆ4;
15 d4x = d4x ll − 3*(d4x l + d4x r) + d4x rr;
16

17 % Approximates 2nd order y derivative.
18 d2y l = (y(l) − y) / dsˆ2;
19 d2y r = (y(r) − y) / dsˆ2;
20 d2y = d2y l + d2y r;
21

22 % Approximates 4th order y derivative.
23 d4y ll = (y(ll) − y(l)) / dsˆ4;
24 d4y l = d2y l / dsˆ2;
25 d4y r = d2y r / dsˆ2;
26 d4y rr = (y(rr) − y(r)) / dsˆ4;
27 d4y = d4y ll − 3*(d4y l + d4y r) + d4y rr;
28

29 end
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B.8 Stiffness.m

1 function [Stf] = Stiffness(Nodes,x,y,r,l)
2 % Creates additional force term to ensure the nodes never bend by less than
3 % pi/2. Uses A.B = |A | | B |cos(theta).
4

5 Stf = zeros(Nodes,1);
6 AB = (x(l) − x).*(x − x(r)) + (y(l) − y).*(y − y(r)); % A.B
7 A = sqrt((x(l) − x).ˆ2 + (y(l) − y).ˆ2); % |A |
8 B = sqrt((x − x(r)).ˆ2 + (y − y(r)).ˆ2); % |B |
9 theta = acos(AB./(A.*B)); % Calculates external angle between vectors.

10 phi = pi − theta; % Calculates internal angle.
11 Cos phi = 0.01*cos(phi);
12 Stf(phi<(pi/2)) = Cos phi(phi<(pi/2)); % Assigns force for extreme angles.
13

14 end

37



B.9 CrowdBreak.m B MATLAB CODE

B.9 CrowdBreak.m

1 function [FL x,FL y] = CrowdBreak(Nodes,l,r,s m,FL x,FL y,min sep)
2 % Breaks links in areas of high link density on the membrane such that
3 % there is a minimum separation representing the physical width of the
4 % links. To allow for links relaxing into space vacted by other links that
5 % have broken, it is randomly decided whether odd or even nodes are
6 % processed first, with logical operations concluding the calculation.
7

8 % Creates logical vectors representing odd and even elements.
9 elements = (1:Nodes)';

10 odd = zeros(Nodes,1);
11 odd(rem(elements,2) ˜=0 ) = 1;
12 even = zeros(Nodes,1);
13 even(rem(elements,2) == 0) = 1;
14

15 % Assigns odd and even operations to a random order.
16 rnd = rand(1);
17 if rnd > 0.5
18 first = odd;
19 second = even;
20 else
21 first = even;
22 second = odd;
23 end
24

25 % Creates logical map of which links are to be broken.
26 not broken = first;
27 not broken(s m < min sep) = 0;
28 not broken = not broken + second;
29 spaces = not(not broken(l) & not broken(r));
30 not broken(s m < min sep) = 0 + spaces(s m < min sep);
31

32 % Breaks links.
33 FL x = not broken.*FL x;
34 FL y = not broken.*FL y;
35

36 end
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B.10 LinkExtract.m

1 function [links] = LinkExtract(x m,x c,y m,y c,max link,T,Nodes)
2 % Finds the time at which each extra link is broken.
3

4 % Finds time at which each link that breaks is broken.
5 links = zeros(Nodes,3);
6 for t = 5000:length(T) % Ensure t start point matches time link cut.
7 s l = sqrt((x m(t,:)−x c(t,:)).ˆ2 + (y m(t,:)−y c(t,:)).ˆ2);
8 broken = sum(s l > max link);
9 if broken > 0

10 if links(broken,2) == 0
11 links(broken,:) = [broken, t, T(t)];
12 end
13 end
14 end
15

16 % Removes empty elements where more than one link breaks at the same time,
17 % or links that don't break.
18 links2(1,:) = links(links(:,1)˜=0,1);
19 links2(2,:) = links(links(:,2)˜=0,2);
20 links2(3,:) = links(links(:,3)˜=0,3);
21 links = links2;
22

23 end
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B.11 MembranesPlot.m

1 function [] = MembranesPlot(x m,y m,x c,y c,lims)
2 % Plots membrane and cortex, as well as links if specified.
3

4 figure(1)
5 clf
6 hold on
7 plot(x m,y m, '−b') % Plots membrane.
8 plot(x c,y c, '−r') % Plots cortex.
9 plot(x m([80,1]),y m([80,1]),'−b') % } Closes gap in plot.

10 plot(x c([80,1]),y c([80,1]),'−r') %/
11

12 % Extracts values from parameters file.
13 P = Parameters ode;
14

15 % Calculates linker lengths and separations for plotting check.
16 s l = sqrt((x m−x c).ˆ2 + (y m−y c).ˆ2);
17 % r = [2:P.Nodes,1]; % } Activate (plus line below) to not plot
18 % l = [P.Nodes,1:P.Nodes−1]; %/ linkers closer than minimum separation.
19 % s m = 1/2 * sqrt((x m(r) − x m(l)).ˆ2 + (y m(r) − y m(l)).ˆ2);s
20

21 % Plots all linkers aren't broken.
22 for i = 1:P.Nodes
23 if (s l(i) < P.max link) %&& (s m(i) > P.min sep)
24 plot([x m(:,i),x c(:,i)],[y m(:,i),y c(:,i)], '−g')
25 else
26 text(x m(:,i),y m(:,i),num2str(i)) % Identifies broken linkers.
27 end
28 end
29

30 xlim ([lims(1) lims(2)])
31 ylim ([lims(1) lims(2)])
32 axis square
33 % legend('M','C','L')
34 hold off
35

36 end
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