Fast MAS Solid-State NMR of DC-SIGN Sediment

M. Lougher

Contents

- DC-SIGN
- Introduction to Solid-State NMR
- New Developments
 - Sample preparation by Ultra-Centrifugation
 - Fast MAS
- Results
- Conclusions
- Future Work

DC-SIGN

- Membrane protein found in dendritic cells and some types of macrophages.
- Receptor cells of this type traditionally bind to pathogens and present them to T-cells for destruction.
- DC-SIGN binds to HIV and presents that to Tcells, but instead of being digested the HIV infects the T-cell.
- Forms natural tetramer with long, repeating neck region and carbohydrate recognition domain (CRD).

DC-SIGN

- Further understanding of these proteins could lead to prophylactic treatment for HIV.
- Want to try and get information on structure & dynamics at an atomic level.
- Solid-State NMR is appropriate method to try.

• Nuclear Magnetic Resonance (NMR) measures the Larmor frequency (ω_0) of the precession of the intrinsic nuclear spin of an atom around an external magnetic field (B_z).

$$\omega_0 = \gamma B_z$$

 Signal depends on gyromagnetic ratio of atom (γ), an inherent property of each isotope.

• Apply weak magnetic field (B_1) oscillating at resonance frequency ω_{rf} perpendicular to B_0 .

$$B_1 = |B_1| \cos(\omega_{rf}t + \varphi)$$

- Magnetisation of isotopes with $\omega_0 = \omega_{rf} \pm \omega_1$ (where $\omega_1 = \gamma B_1$) is rotated into xy plane.
- Free Induction Decay (FID) measured as magnetisation relaxes.
- Resonant frequency of atoms varies depending on chemical and electronic environment.

- Solid-State NMR (SS-NMR) requires a homogenous, solid sample.
- Advantages:
 - Not size limited like Solution-State NMR.
 Good for membrane proteins.
 - Not necessary to form high quality crystals.
- Disadvantages:
 - Line broadening due static atoms.
 - · Anisotropic interactions not averaged out.
 - Too many overlapping signals.

 Dipolar Coupling is major anisotropic interaction, depending on the angle between the line connecting two atoms and the direction of the magnetic field.

$$D = D_c \frac{1}{2} (3 \cos^2 \theta - 1)$$

- Can average out the dipolar interactions by rotating the sample.
- But interactions aligned with the axis of rotation remain.

8

- Magic Angle Spinning removes the remaining contributions along the axis of rotation by rotating at the so-called 'Magic Angle' of 54.7°, as 3 cos²(54.7) – 1 = 0.
- Dipolar interactions are averaged out over a complete rotation, removing broadening effects.

- Sample held in rotor; narrow tube that spins inside the probe.
- Want homogenous sample close to natural environment, so normally hydrate sample by suspending in buffer.
- Can't just use lyophilised solid in NMR as each molecule will be locked in slightly different configuration.
- Rotor packed (filled) using centrifuge.

10

New Developments

- Sample Preparation by Ultra-Centrifugation
 - Feasibility Study with DC-SIGN
- Fast MAS
 - Development of method and application to DC-SIGN
- Will combine these two state of the art methods.

Sample Preparation by Ultra Centrifugation

- Recently been proposed² that instead of directly using solid, can use very high concentration solution in an ultra centrifuge to form sediment directly into rotor.
- Works for large molecules (>10 kDa), as these are driven outwards into hydrated sediment.

Most proteins investigated so far have been approximately spherical.

Sample Preparation by Ultra Centrifugation

 Been shown that spectra from UC (red line) can be as good as those from crystalline solids (black line), but without having to crystallise solids³.

3. I. Bertini et al., Phys. Chem. Chem. Phys., 14, 439-447 (2012)

13

- It has recently been shown⁴ that performing MAS at high spinning frequencies further removes incoherent contributions to transverse magnetisation relaxation time in bulk amides.
- Have verified this for bulk carbonyl signals in protein GB1.

4. J. Lewandowski et al., J. Am. Chem. Soc., 133, 16762-16765 (2011)

- The resulting signal is primarily due to incoherent contributions due to dynamics and motion of the protein.
- Further averaging achieved by applying spin-lock fields.
- Allows better measurement of fully protonated protein (no deuteration).

- In order to spin at high frequencies, need a very small sample rotor.
- Used 1.3 mm rotor, capable of spinning up to 67 kHz.
- Can hold 2-3 mg sample.

- Used 600 MHz magnet (14.1 Tesla).
- Also needed cooling unit due to frictional heating.

- Looked at 156 kDa segment (4 x residues 62-404) using ¹³C labelled Alanine (26 residues per monomer segment).
- Sample fully protonated.

20

Conclusions

- Ultra Centrifugation been shown to work for an elongated protein; DC-SIGN.
- Fast MAS reduces line width.
- Narrow line widths indicate highly ordered structure, but resolving of J-coupling when ¹H-¹³C coupling included indicates high mobility.

Future Work

- Further data collection with longer relaxation time
 - Less truncation
 - Narrower lines
- Use INEPT pulse sequence
 - Look at mobility through J-coupling
- Obtain solution spectrum
 - Allow direct comparison between methods
- Assign residues
 - Possible conformational information

Acknowledgements

- Thanks to:
 - Józef Lewandowski
 - Dan Mitchell
 - Steven Brown
 - Jonathan Lamley
- Funded by:
 - MOAC
 - EPSRC

