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Résumé—MOPED (an acronym for Model of Peloton Dyna-
mics) is a proposed model for peloton dynamics in competitive
cycling. Using an agent-based approach, it aims to generate the
very complex behaviour observed in real-life competitive cycling
from a collective of agents with very simple rules themselves.
Cyclists try to minimize the average energy expenditure by riding
behind other cyclists, in a behaviour known as drafting. Draf-
ting cyclists spend considerably less energy than frontrunners,
making this a very important fact for strategies. We incorporate
physiology concepts trying to quantify energy expenditure and
recovery in different scenarios. Starting from a very simple model
of identical cyclists, multiple iterations with increasing complexity
are proposed, incorporating more and more aspects of the real
physics involved in this sport. Finally, we analyse the results and
try to compare them to real-life behaviour to validate the model.

I. INTRODUCTION

Despite the appearance of a purely individual sport
where the strongest tends to win, professional cycling
is actually a very strategical sport. A very simple fact
generates complex behaviours and strategies : the fact that
air resistance dictates how much energy an athlete spends.
The “drafting” effect, thus, plays a big role on peloton
dynamics. The existence of a peloton itself can be explained
by this effect : energy expenditure when drafting as a
single is reduced by approximately 18% at 32km/h, 27% at
40km/h, when drafting a single rider, and by as much as
39% at 40km/h in a group of eight riders (McCole et al. 1990).

Emerging from this fact is the behaviour observed in a
real-life cycling race : riders tend to group together and
“rotate” in front of the peloton, trying to minimize the
average spent energy. When a group tries to break away from
the pack of riders, the peloton decides either to chase them
or let them open a time gap. If the group is deemed too
dangerous, the typical behaviour is to chase it, and by having
a bigger number of athletes (and therefore a smaller average
spent energy for the same speed), they normally succeed on
that. Only when a breakaway group is considered harmless
enough a gap is established, and the tired riders from this
group are normally caught close to the finish line.

Based on contributions by Olds (1998) and Hoenigman
et al. (2011), we take a mathematical approach trying to

quantify energy expenditures based on different factors as
speed, gradient of the terrain, cross-section area and weight
of the cyclist, and specific physiological characteristics of
each individual. We regard the rider basically as a static
engine on the bike, and consider the external factors that
try to impede motion of the bike, such as drag resistance,
rolling resistance and changes in the potential energy
(such as when climbing a hill). Based on these opposing
forces and in physiological data from professional cyclists,
we establish an energy balance consistent with real-life values.

This is not the first agent-based approach for modelling
competitive cycling ; Hoenigman et al. (2011) does this quite
extensively. However, their work has a focus on final results
of a race and a game-theoretical, best-response model for
elaborating strategies. On this work, we focus not on the
actual results of a race, rather than in simulating the behaviour
of a peloton during a race, under different circumstances.

Besides that, we also take the peloton as a complex
dynamical system. We establish general principles and rules
for the behaviour of each agent, roughly based on flocking
models already existing (Wilensky, 1998), calculating
cohesive and separating forces for each agent, so that they
stay together as a group, but tending to have spatial gaps
between them. We alter this model so that it makes sense
in the context of this work and observe a self-organizing
pattern emerge, resembling other natural dynamical systems
(Trenchard, 2011).

We develop a model proposal (MOPED - Model of Peloton
Dynamics) for the dynamic behaviour of a competitive
cycling peloton, in an agent-based fashion, based on a small
set of basic rules for each agent. This rules are derived
from the mathematical, physiological and dynamical concepts
presented, and the emerging patterns are roughly similar to
those observed in real life and in other systems.

Finally, we discuss the results this model show, based
on data generated during simulations for many different
parameters of the systems. Starting from this data, we try
to establish similarities with real-life cycling behaviour and



validate the constructed model. We see this work as a first step
to possible further analysis of this sport via computational
simulation in the future, integrating even more parameters
for natural influence and specific behaviour of the agents.
As in any complex dynamical system, it is possible that, via
simulation, we can be able to study much more closely the
influence of isolated parameters in the performance of each
cyclist and of the peloton as a whole.

II. MODEL

When constructing our model, we search for different kinds
of parameters in order to replicate and extend the real-life
behaviour of cyclists in a peloton. This work proposed an
agent-based model for that. Agent-based models are very
well suited for situations where dynamics emerge from
simple interactions between different individuals, or agents
(Woolridge, 2002).

When realizing an agent-based model, we search for a
set of parameters good enough for simulating the expected
behaviour of the system, but always keeping in mind that an
overcomplicated model becomes computationally infeasible.

In this work, we model agents as cyclists, each of them
with three different kinds of parameters : mechanical,
physiological and dynamical. Dynamical parameters are the
same for every cyclist, since they regulate the way a rider
behaves inside the peloton : trying to keep group unity, but
steering away from nearby agents so that as not to cause a
crash. We choose to make mechanical parameters the same
for everyone, for the sake of simplicity. This way, all cyclists
have the same weight and cross-section. It would be trivial,
though, to extend this model to contemplate some variety in
these parameters, so as to accurately describe real cyclists.

Finally, we have physiological parameters. These regulate
the energy balance of each rider. We have decided that, instead
of having identical agents with identical physical capacities,
it would be more interesting to have them normal-distributed
around real-life parameters from professional cyclists. This
way, we expect to see more interesting results, such as the
peloton whittling down during a long climb due to exhaustion
from lesser riders. In the following sections, we detail the
approach taken for each set of parameters in our model.

It is important to note that we have decided to model
movement from the agents in a purely relative way. That
means the real-time movement seen in the simulation is only
the movement relative to the average peloton speed, since it
would not make sense to actually have the agents moving
very fast in the screen. You can imagine the real-time view
of the peloton in the actual application as a helicopter-like
camera, going exactly at the average peloton speed. Real-life
movement is only modelled through the individual "speed"

variable from each agent, used in the calculations.

A. Dynamical parameters

In this section, we describe the utilized dynamical
parameters for our model ; that is, the set of parameters
responsible for interaction between agents and the peloton
behaviour. This is a central part in our model, arguably the
most important. A non-desirable choice of values here leads
to unordered behaviour from the agents, rendering our energy
balance equations completely useless and turning the model
away from the dynamics it expects to simulate.

As a starting point for our dynamics, we take a simple
flocking model (Wilensky, 1998). Analysing the source code,
we can see the agents are subject to three different kinds
of forces : separating, aligning and cohesive forces. The
separating force is intended to make agents keep a minimum
separation between them, so that they do not collapse to a
single point. This is well-suited to our model, since cyclists
will try to steer away from other fellow cyclists, to avoid
crashes.

We have, then, an aligning force. In this flocking model,
this force is applied to each agent to make it follow the
direction from their nearest neighbours. In our case, this
seems a bit out of place. Naturally, in a bicycle race, all
competitors are following the same direction, and steering
inside the peloton is a relatively small change in direction.
This way, we have decided to model intra-peloton movement
by purely lateral movement, without change of heading.
Considering this, it was decided to drop the aligning force
altogether.

Finally, we have a cohesion force. In the flocking model,
each agent turns in to become closer to its flock-mates,
making the group a coherent flock. As we want to simulate a
peloton behaviour, it makes sense to port this kind of force
to our model, even though, as we are not changing headings,
we are just going to move each agent towards the average
coordinates of their "flock-mates".

In the flocking model, the resulting behaviour of the agents
is to move around freely when far from other agents. However,
when approaching other agents, this group tends to become
a coherent flock, with agents exhibiting similar headings and
staying together, but with some spatial separation between
them.

As an improvement on this flocking model, we take the
Swarm Chemistry model from Sayama (2007). On this
model, different sets of agents have different parameters
for cohesive, separating and alignment forces, making the
proportion between those different. This makes different sets
behave in different ways, and they tend to stay together in
space, even though they are not coupled together by anything



other than the similarity of their parameters.

From this model, we take the way of calculating separating
and cohesive forces, with minor adjustments for our model.
The original pseudo-code relevant for these forces from
Sayama (2007) is presented as Algorithm 1.

Algorithm 1 Sayama’s algorithm for cohesive and separating
forces

for i ∈ agents do
N ← {j 6= i, |xi − xj | < Ri}
if N 6= 0 then
〈x〉 ←

∑
j

xj

|N |

a← ci1(〈x〉 − xi) + ci3
∑
j

(
xi−xj

|xi−xj |2 )

end if
end for

With Algorithm 1, we calculate an acceleration for
each agent, based on its relative position to the others.
However, this code calculates it taking into account any
other agent inside Ri, a vision radius. This way, agents
actually look all around them when calculating their new
positions. As we are trying to model human behaviour, it
is useful to slightly change this algorithm, so that we only
take into account agents that could possibly be seen by a
human, that is, inside a visual cone. Besides that, we also
want to take different scales of distance when calculating
cohesive and separating forces. Cohesive force should be
a long-range calculation, taking into account pretty much
any other agent in the visual field, while separating force
is more local, with only close agents being taken into account.

Based on these assumptions, we present a new pseudo-code
for these forces, defined here as Algorithm 2.

Algorithm 2 MOPED’s algorithm for cohesive and separating
forces

for i ∈ agents do
Nc ← {j 6= i, xj ∈ Cci }
Ns ← {l 6= i, xl ∈ Csi }
if Nc 6= 0 then
〈x〉 ←

∑
j

xj

|N |

ac ← ci1(〈x〉 − xi)
as ← ci3

∑
l

( xi−xl

|xi−xl|2 )

a← ac + as
end if

end for

In Algorithm 2, Nc and Ns are, respectively, the
neighbourhoods used for the calculation of cohesive and
separating forces. These neighbourhoods are cones with an
aperture angle of 140o, defined to mimic a human visual

cone, and different radius. The neighbourhood for cohesive
force is being used with a radius of 20m, and the separating
one with a radius of 2m, so that the rider only tries to avoid
contact with other agents in the immediate neighbourhood.

A last point to be addressed in this section is some kind
of bias to the center ; real cyclists tend to be as close to the
center of the road as possible in the case where no wind is
blowing, so as to avoid danger on the fringes of the road. A
frontrunner would not try to go too far to one side except if
there is a sidewind blowing, in which case optimal drafting
is not directly behind another rider, but rather in a diagonal.
However, our model does not incorporate sidewinds, and
therefore we want our frontrunners to stay in the middle of
the road. For that, a very small bias is put in place. When an
agent has a positive coordinate, it is a negative bias, being
the other way around in the case of a negative coordinate.

As we also want some variety in the behaviour of agents,
a small, random acceleration is put into place. With this,
we finish our dynamical model of the peloton, and then we
can move into energetic considerations. A final pseudo-code
algorithm for this dynamical part would be similar to
Algorithm 3.

Algorithm 3 MOPED’s complete algorithm for peloton dyna-
mics

for i ∈ agents do
Nc ← {j 6= i, xj ∈ Cci }
Ns ← {l 6= i, xl ∈ Csi }
if Nc 6= 0 then
〈x〉 ←

∑
j

xj

|N |

ac ← ci1(〈x〉 − xi)
as ← ci3

∑
l

( xi−xl

|xi−xl|2 )

a← ac + as
end if
if xyi > 0 then
xyi ← xyi − δ

else
xyi ← xyi + δ

end if
a← a+ (r±ε, r±ε)

end for

As a final addendum, we introduce the concept of active
riders : a rider is considered active if he is willing to
cooperate and be the frontrunner of the peloton, being out
of drafting positions in order to protect the other cyclists.
This is modelled by adding a small bias to the front for
active cyclists, as far as they are not already the frontrunners.
This way, the last statement from the Algorithm 3 would be
substituted by what is presented as Algorithm 4.

We observe that this algorithm, with the right set of parame-



Algorithm 4 Addendum for active cyclists
if i ∈ {active} ∧ xxi 6= max{xx} then
a← a+ (r±ε + α, r±ε)

else
a← a+ (r±ε, r±ε)

end if

ters, yields a very life-like behaviour, with a narrow peloton
front giving place to a wider formation behind, as it can be
seen at Figure 1.

FIGURE 1. View of a simulation of the peloton.

B. Energetic parameters

We now will group together mechanical and physiological
parameters, since both sets of parameters affect the energetic
balance of the cyclist, making it easier to analyse them
together.

Physiological data about cyclists is abundant ; the literature
on how the human body behaves under these circumstances
is extensive and it is not our idea to redefine anything on
this domain, rather than to use existing results and adjust our
model to reflect them.

Many mathematical models for competitive cycling exist
already. For this model, we will use elements from Olds
(1998), who has a validated, well-behaved set of equations
for energy expenditures. We also use specific results from
Hoenigman et al (2011), who extended Olds’ results and
applied it on an agent-based model, and Martin et al. (1998)
for the potential-energy equation. By taking an agent-based
approach and simulating both peloton dynamics and energy
expenditures, we believe it is possible to have a more
complete model and to actually have simulations that yield
results closer to real life.

Our first point is to calculate the drafting coefficient, that
is, a correction factor relating the air resistance when drafting
with the air resistance when no drafting occurs. Kyle (1979)
measured this coefficient experimentally and affirms that the
reduction in air resistance diminishes when wheel spacing
increases. This is a fairly intuitive result. He mentions that
this reduction obeyed a second-order polynomial, but he does
not present the equation. Olds (1998) reconstructs the equation
from the graphical data, arriving at

CFdraft = 0.62− 0.0104dw + 0.0452d2w (1)

where dw is the wheel spacing (in m) between the bicycle and
the preceding rider, and CFdraft is the correction coefficient.
However, eq. 1 can be applied only when drafting happens
in a paceline, that is, when riders are exactly behind one
another. In a peloton, drafting occur also in other ways ;
riders in a diagonal have a "comet’s tail" effect, with drafting
bonuses decreasing when the rider behind moves backwards
or sideways. As it happens that drafting behind multiple
riders is more beneficial than behind only one (McCole et al.
1990), we have decided to attribute weights depending on the
angle of view to the preceding rider. Riders inside a 10o cone
have weight 1 ; riders inside a 50o, 0.3, and the remaining
riders inside a 90o cone have a weight of 0.1. It is important
to notice that drafting benefits are negligible in a distance
over 3m, and therefore we limit our calculations to this radius.

Having calculated CFdraft, we can now go on to the power
equations. As we are using a scale of one iteration per second
of simulation, there is no need to account for the difference
between power and energy : they are numerically the same.
From Hoenigman et al. (2011), we have the following equa-
tions :

Pair = kCFdraftv
3 (2)

Proll = Crg(M +Mb)v (3)

On eq. 2, k is a lumped constant for aerodynamical drag,
dependant, between other things, on the cross-section area of
the cyclist. This constant is generally reported with the value
0.185 kg/m, and we are following this value. Of course, v
is wind speed (and, as we are considering only a situation
without wind, is equal to ground speed). On eq. 3, Cr is a
lumped constant for all frictional losses on a bike, and is
generally reported with a value of 0.0053. Of course, g is the
usual gravitational constant (9.81 m/s2). The variables M
and Mb represent, respectively, the mass of the cyclist and of
the bicycle. On this model, we are using values of 63kg and
7kg, respectively, for these variables, without any variation
between cyclists.

These equations are enough for modelling the energy ex-
penditure of a cyclist in a flat, non-windy situation. However,
we want to model also the behaviour of the peloton on uphills
and downhills, and therefore we need an extra equation for
that. Martin et al. (1998) present this equation, for grades up
to 10% (where we consider sin(arctan(Gr)) = Gr) :

PPE = Grg(M +Mb)v (4)

and, therefore, we can introduce this on eq. 3, obtaining the
following :

Proll+PE = (Cr +Gr)g(M +Mb)v (5)

and a total energy expense of :



Pt = Et = (Cr +Gr)g(M +Mb)v + kCFdraftv
3 (6)

But this is only taking into account the energy expenditure.
We need to model how the cyclists react to this and how
much energy they can spend without exhausting themselves.
For that, we will introduce the concept of lactate or anaerobic
threshold, very well-known in any endurance sport. Roughly
speaking, the lactate threshold is the power output an athlete
is capable of without accumulating lactic acid in his muscles,
that is, without getting tired (Vogt et al. 2006). In this
model, we will assess how tired a rider is through a simple
"energy-left" variable, so that, at lactate threshold, the value
of this variable is roughly unchanged.

As presented in Hoenigman et al. (2011), a speed of 0.7Sm
is slightly under the lactate threshold, where Sm is the speed
at which a rider can travel at his Max10 power output. The
Max10 represents the 10-minute maximum power a rider can
generate, and is generally regarded as an indicator of a rider’s
skill level. We are using, as in that work, a mean value for
Max10 µ = 7.1W/kg. That represents, for a rider with 63kg,
a Max10 of approximately 450W. This represents, on flat
ground, a Sm = 12.96m/s. Therefore, 0.7Sm is approximately
9m/s, and this should be slightly under lactate threshold.
Finally, we take 10m/s as a representative value for this
threshold, and set a "recovery" variable, normally distributed
with µ = 225W, that will be deduced from the actual spent
energy. Only an energy expenditure over this limit will make
the rider grow tired.

We are still faced with the challenge of determining how
long does it take for a rider over his anaerobic threshold to
be exhausted. For that, we will use the concept of time to
exhaustion (Tlim), as defined in Olds (1998). The defining
equation for Tlim is

ln(Tlim) = −6.351 ln(fV O2max
) + 2.478 (7)

In this equation, fV O2max
is the fraction of the V O2max

(maximum oxygen consumption) being used. We can substi-
tute that for Max10 generating then :

ln(Tlim) = −6.351 ln( Ptot
Max10

) + 2.478 (8)

For establishing which would be the initial value of
"energy-left" to each rider, we decided to take an average
situation : a sole rider at 45km/h (or 12m/s). From that, with
our typical Max10 of 450W, we calculate which would be
the time to exhaustion. From there, considering our average
recovery of 225W, we calculated how much reserves a cyclist
should have at the beginning of the simulation to achieve this
typical time to exhaustion, arriving at the value of 760kJ.
With that, our modelling of the energy expenditure is finished.

C. An overview of the model

We have presented the two parts of the model : the
dynamical parameters and equations and the energetic
parameters and equations. Now, we present how these two
parts are interconnected.

It is clear that the position of an athlete inside the peloton
greatly affects his energy balance : if a rider spends the whole
time in front of the peloton, he will certainly use more energy
than another one sitting safely in the middle of the group. This
way, the dynamical parameters and equations are certainly
influential on the energy balance. On the other hand, in our
model, the energy balance is, usually, not relevant for the
positioning of the cyclist : position calculation depends only
on neighbouring agents. However, when the cyclist becomes
tired, this is then relevant to his position. We have postulated
that a rider with less than 100kJ of energy left is declared
"exhausted". An exhausted rider has a backward bias and
is effectively slower than the peloton average. This way, he
tends to hang at the back of the peloton, eventually letting
the group go altogether. A rider with 0 energy left quits
the peloton altogether. In our model, he is positioned in the
leftmost coordinate and becomes even slower. However, if
he can somehow recover energy enough to get out of this
condition altogether, he will rejoin the peloton. We present
figure 2, a small, schematic flowchart representing the relation
between the two "sides" of our model.

FIGURE 2. Schematic diagram showing the relation between parts of the
model.

III. RESULTS

In the following section, we summarize the results obtained
from the simulations using MOPED. These are divided
between general behaviour, dynamical and energetical results,
for clarity purposes.



A. General Behaviour

In general, the emerging complex behaviour from the
agents is very promising ; riders rotate back when they feel
they are under the average energy of the peloton. The peloton
itself conforms to the general form of real-life pelotons, with
a very narrow front (usually a 3-5 long single line of riders)
and a widening profile as we look backwards.

We rapidly see a convection dynamic settling in. Riders at
the back of the peloton wishing to move forwards take the
sides and dash forwards, since the middle is cluttered with
cyclists and going through is virtually impossible. When they
get to the front, they normally settle down in the center of
the road, and as they stay there other riders coming from the
back start to overtake them. This way, the general dynamics
is : forward-moving cyclists take the sides, backward-moving
cyclists stay in the middle. Of course, to move forwards
through the sides, the athletes end up spending more energy
than those in the center of the peloton.

Trenchard (2011) compares this dynamics to a convection
roll, dissipative dynamic, with "warming" riders in the
peripheries and "cooling" riders in the middle. He then
presents other natural systems with similar dynamics, such
as Rayleigh-Bernard cells and penguin huddle rotations,
and hints that this is the way for achieving optimal energy
dissipation in the whole system. Even though our model
does not take any energy considerations into account for the
dynamics, we still establish similar patterns, which is quite
interesting.

Independently of the number of active cyclists chosen,
they rapidly take over the head of the peloton. Even though
not all active agents gather at the front of the peloton at a
single time, most of the time the frontrunner will be an active.

When a sustained effort is maintained, cyclists start to get
exhausted and a sizeable group soon forms at the back of the
peloton. Not much after, the first spent cyclists start to appear,
giving up on the peloton. If this effort is maintained for long
enough, only the strongest riders stay in the peloton, with
all the rest giving up. This is consistent with long climbs in
professional races, where the front group is normally smaller
than ten cyclists. Also as in real life cycling, a long descent
after a climb has the effect of bring lots of cyclists back to
the peloton, as they recover energy.

B. Dynamical parameters

Most of the results about the dynamics are difficult to
quantify. As commented in the section above, the general
behaviour of the peloton seems coherent with real life, and
furthermore, coherent with an optimal energy dissipation.

As an addendum, we can show graphically the convection
dynamics. On figure 3, we have a graph of average draft

coefficient for agents moving forward (blue) and backward
(red). It is clear that, on average, forward-moving cyclists
on the periphery will have less opportunities to draft behind
another cyclists, and the opposite happens with the central,
backward moving agents.

FIGURE 3. Temporal distribution of draft coefficient for backward and
forward-moving agents.

C. Energetic parameters

At first, for illustrating which kind of behaviour our model
generates, we start with an example. We submit 100 agents to a
3-hour race at a constant speed of 45km/h. Of course this speed
is too high for uphill parts, making them spend much more
energy than humanly possible, but we are only interested in the
qualitative behaviour that exhaustion generates. We generate a
profile for the race plotting the elevation at each time. As we
are at constant speed, it is the same as plotting elevation per
distance. The generated profile is represented on figure 4.

Subjecting our cyclists to this profile, we generate then a
graph illustrating the amount of exhausted riders at any given
time. The plot is shown as figure 5.

We can now establish correlations between both plots.
In the very long initial uphill, relatively few riders were
exhausted. That is, of course, because at the beginning of the
race, every athlete is still fresh. A slight downhill follows,
enough to recover all cyclists. However, a second, steepest
uphill follows, and this time the exhaustion is much bigger in
the peloton. Even during the shallow part close to the summit,
the number of exhausted riders is still increasing considerably.
Another downhill follows and, again, it is enough to recover
all riders. Now, a short, not too steep climb is presented,
and the result is a big increase again in exhaustion, this time
much more due to the accumulation of climbs than because
of the difficulty of this one. A very long downhill is next,
and of course all riders arrive down there in conditions. A
false-flat (very shallow gradient) do not break them, but as



FIGURE 4. Temporal profile of our test race.

FIGURE 5. Exhausted riders (out of 100) at any given time.

soon as the road gets steeper exhaustion increases. Even a
long, slight downhill after the climb is not enough to recover,
and exhaustion keeps increasing even during this part. Finally,
a relatively short, but very steep climb to finish the race.
This time, only the very best stay in the front group at the top.

The whole behaviour of the peloton described on the
paragraph above will certainly sound familiar for anyone who
already watched a mountain stage in a professional cycling
race. The patterns are quite similar, even if not identical,
which shows that the energy balance of the model is sound.

As a visual representation of what was described here,
we present figures 6 and 7. Figure 6 shows what does the
peloton look like at the summit of a long climb. You can see
a relatively small group of 14 riders in front, followed by a
bigger group barely hanging at the back, and many agents

already at the leftmost coordinate, representing they have no
more energy.

As a comparison, figure 7 shows the peloton during the

FIGURE 6. Peloton at the top of a climb.

descent, when the lesser riders have already recovered. You
can see the peloton shape is still longest than normal due
to the fact that the back riders are still coming back, but
there are no more riders with no energy left and the group is
unified again.

FIGURE 7. Peloton regrouping during the descent.

Finally, we present an interesting, counter-intuitive result
derived from the model. We start by drawing, at figure 8,
the average draft coefficient for active riders (considering 20
out 100 to be active riders) compared to the average draft
coefficient of non-active ones.

FIGURE 8. Draft coefficient of active riders, as a percentage of DC of
non-active riders

The horizontal reference level is 100%, which would mean
that, on average, active and non-active riders have similar
draft coefficients. However, that is not what the graph shows :
even if it is not that easy to see on this plot, active riders
have significantly lower draft coefficients, which means they
spend less energy. To confirm that, we plot a quocient between



average energy on active and non-active cyclists, and, even
though it starts at 1 as expected, it undoubtedly increases with
time, indicating active riders are, indeed, spending less energy
on average. This plot is presented as figure 9.

FIGURE 9. Quocient of energy left between active and non-active cyclists.

This result is surprising, but it can be explained : active
riders spend more time on the well-organized, single line part
of the peloton. This way, they have constantly medium-to-low
draft coefficients in these positions. Even if they do have
to go to the front more frequently than non-active riders,
this if offset by the fact that they are consistently drafting
some other cyclists. Non-active riders spend more time in
the convection-like part of the peloton, constantly going
back and forth and spending considerable amount of time in
non-drafting positions at the periphery of the peloton. Besides
that, with much more movement inside the peloton, they are
not guaranteed to have another rider right in front of them at
all times, as someone in the single-line part of the peloton
does. This way, their draft coefficient is much more subject
to variations.

This can also be shown by figure 10, where we plot a
quocient between average neighbourhood size for active and
non-active agents. At the beginning, when the active agents
are still organizing themselves, the plot goes under and over
1, but it quickly settles under 1 as soon as the active riders
organize themselves. This shows that they are getting smaller
draft coefficients in spite of drafting less cyclists, which is
coherent with the idea that they spend more time exactly
behind another cyclist.

All results above are calculated with 20 active riders out
of 100. We may wish to look at different numbers to see if
there is any qualitative difference on these results. This way,
we present, on figures 11 and 12, analogous plots to those
at figures 8 and 9, but this time calculated for only 5 active

FIGURE 10. Average size of active-agent neighborhood compared to non-
active agents

agents out of 100.
It is clear that the qualitative behaviour is exactly the same,

FIGURE 11. Draft coefficient of active riders, as a percentage of DC of
non-active riders - 5 active riders.

independent of the quantity of active agents.

IV. DISCUSSION

This work presents a model for peloton dynamics in
competitive cycling, using an agent-based approach. Based
on a few simple rules for dynamics and energy balance, we
derived a rather complex pattern of convection in the peloton,
and coherent results in terms of energy. Some interesting,
even counter-intuitive results arised from the proposed model.

The result where active cyclists spent less energy than
non-active ones is slightly worrying ; it does not conform to
general knowledge in cycling, and it may show some flaws



FIGURE 12. Quocient of energy left between active and non-active cyclists
- 5 active riders.

in the proposed model. However, the model can certainly be
improved : for instance, when moving around, agents do not
look for favourable positions in terms of drafting possibilities.
This purely dynamical approach to positioning in the peloton
is certainly not intuitive and it is definitely a point that should
be improved on this model.

Besides that, we do not account for many real-life factors
that affect real-life cyclists. An example is wind, a factor
that has major impacts on many professional races. Frontal
wind can be modelled as a difference in speed for the
aerodynamical factor in our energy expenditure equation,
but sidewinds require a whole new approach that was not
within the scope of this work. Of course, there is a whole
other dimension of cycling that was also not modelled here :
the strategic part. "Intelligent" agents, who know what their
best response to the circumstances of a race is, could create
breakaways, become active or non-active midway during a
race, save as much energy as possible for a final sprint. This
is certainly feasible as a model.

This is probably the first time an agent-based approach is
used to try and simulate large-scale cycling peloton dynamics.
Hoenigman et al. (2011) take a similar approach, using
an agent-based model to simulate results of cycling races.
Many ideas between this work and their work are similar ;
in special, the energy balance is probably quite similar, even
though they do not model uphills and downhills and this
work takes a different approach for modelling the time to
exhaustion of a cyclist. However, their focus is on obtaining
final results of the races, while we want to simulate the
dynamics of a peloton during the race. Trenchard (2011)
makes some proto-simulations of pelotons with drafting,
looking for hysteresis on phase transitions. In spite of
presenting interesting results, his model is not interested in
simulating the complex dynamics of a peloton, but only in

illustrating a concept.

As the first work to explore simulation of such a complex
system as a cycling peloton, we do not expect this to be a
complete work in any way, rather than a first step on exploring
this fascinating phenomenon of collective behaviour. The
results presented are certainly promising and show that a
more complete model of this system is certainly feasible and
can even show similarities with other natural systems.
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