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Abstract. We propose an agent-based model for peloton dynamics in
competitive cycling. It aims to generate the very complex behaviour ob-
served in real-life competitive cycling from a collection of agents with
simple rules of behaviour. Cyclists in a peloton try to minimize their
energy expenditure by riding behind other cyclists, in areas of reduced
air resistance. Drafting cyclists spend considerably less energy than fron-
trunners, making the strategies in the sport to be based around trailing
as much as possible. We quantify energy expenditure and recovery in re-
lation to cyclists’ positions in the peloton. Finally, we analyse the results
and try to compare them to real-life behaviour of competitive pelotons.

Keywords: Agent-based Modelling, Computer Simulation, Peloton Dy-
namics, Flocking, Emerging Complexity

1 Introduction

Despite the appearance of a purely individual sport where the strongest tends
to win, there is a very deep tactical layer to competitive cycling. A very simple
fact generates complex behaviours and strategies: the fact that air resistance
dominates the energy expenditure of athletes. The drafting effect, thus, plays a
big role on peloton dynamics. The existence of a peloton itself can be explained
by this effect: energy expenditure when drafting in a single line is reduced by
approximately 18% at 32km/h, 27% at 40km/h, when drafting a single rider,
and by as much as 39% at 40km/h in a group of eight riders[4].

From this fact, the behaviour observed in a real-life cycling race emerges: rid-
ers tend to group together and rotate in front of the peloton, trying to minimize
the average energy expenditure of the group. When someone tries to break away
from the pack of riders, the peloton decides either to chase them or let them
open a time gap. If the group is deemed too dangerous, the typical behaviour is
to chase it, and by having a bigger number of athletes to share the time spent in
non-drafting positions, they normally succeed in this task. Only when a break-
away group is considered harmless enough a gap is established, and the tired
riders from this group are normally caught close to the finish line.
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Based on contributions[5][1], we take a mathematical approach trying to
quantify energy expenditures based on different factors as speed, gradient of the
terrain, cross-section area and weight of the cyclist, and specific physiological
characteristics of each individual. We regard the rider basically as a static engine
on the bike, and consider the external factors that try to impede motion, such
as drag resistance, rolling resistance and changes in the potential energy (such
as when climbing a hill). Based on these opposing forces and in physiological
data from professional cyclists, we establish an energy balance consistent with
real-life values.

This is not the first agent-based approach for modelling competitive cycling;
another work [1] does this, albeit with a different approach and with different
goals. Their work has a focus on final results of a race and a game-theoretical,
best-response model for elaborating strategies; it does not concern itself with
peloton dynamics, nor with the relationship between those and the energy ex-
penditures. In this work, we focus not on the actual results of a race, but rather
on simulating the behaviour of a peloton during a race, under different circum-
stances.

Here, we take the peloton as a complex dynamical system. We establish
general principles and rules for the behaviour of each agent, roughly based on
flocking models already existing[9], calculating cohesive and separating forces
for each agent, so that they stay together as a group, but having spatial gaps
between them. We alter this model so that it makes sense in the context of this
work and observe a self-organizing pattern emerge, resembling other natural
dynamical systems[7].

We develop a model proposal for the dynamic behaviour of a competitive
cycling peloton, in an agent-based fashion, based on a small set of basic rules
for each agent. This rules are derived from the mathematical, physiological and
dynamical concepts presented, and the emerging patterns are roughly similar to
those observed in real life and in other systems.

Finally, we discuss the results based on data generated during simulations
for many different parameters of the system. Starting from this data, we try to
establish similarities with real-life cycling behaviour and validate the constructed
model. We see this work as a first step to possible further analysis of this sport
via computational simulation in the future, integrating even more parameters for
natural influence and specific behaviour of the agents, based on further empirical
data.

2 The Model

When constructing our model, we search for different kinds of parameters in
order to replicate and extend the real-life behaviour of cyclists in a peloton. This
work proposes an agent-based model for that. Agent-based models are very well
suited for situations where dynamics emerge from simple interactions between
different individuals, or agents[10].
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2.1 Dynamical parameters

In this section, we describe the utilized dynamical parameters for our model;
that is, the set of parameters responsible for interaction between agents and
the peloton behaviour. This is a central part in our model. A non-desirable
choice of values here leads to unordered behaviour from the agents, rendering
our energy balance equations completely useless and turning the model away
from the dynamics it expects to simulate.

As a starting point for our dynamics, we take a simple flocking model [9].
In this model, agents are subject to three different kinds of forces: separating,
aligning and cohesive forces. The separating force is intended to make agents
keep a minimum separation between them, so that they do not collapse to a
single point. This is well-suited to our model, since cyclists will try to steer away
from other fellow cyclists, to avoid crashes.

In the original flocking model we have, then, an aligning force. This force
is applied to each agent to make it follow the direction of their nearest neigh-
bours. In our case, this seems a bit out of place. Naturally, in a bicycle race,
all competitors are following the same direction, and steering inside the peloton
is a relatively small change in direction. This way, we have decided to model
intra-peloton movement purely by lateral movement, without change of heading
direction. There is no need, then, for an aligning force.

Finally, we have a cohesion force. In the flocking model, each agent turns
in to become closer to its mates, making the group coherent. As we want to
simulate a peloton behaviour, it makes sense to apply this kind of force in our
model.

In the original model, the resulting behaviour of the agents is to move around
freely when far from other agents. However, when approaching other agents, this
group tends to become a coherent flock, with agents exhibiting similar headings
and staying together, but with some spatial separation between them.

As an improvement on this flocking model, we take the Swarm Chemistry
model [6]. This time, different sets of agents have different parameters for co-
hesive, separating and alignment forces, making the proportion between those
different, as it can be seen in Algorithm 1. This makes different sets behave in
different ways, and they tend to stay together in space, even though they are
not coupled together by anything other than the similarity of their parameters.

We take the way of calculating separating and cohesive forces, with minor
adjustments, from this model. We calculate an acceleration for each agent, based
on its relative position to the others. However, this code calculates it taking into
account any other agent inside Ri, a vision radius. This way, vision is isotropic.
As we are trying to model human behaviour, it is useful to tweak this so that we
only take into account agents that could possibly be seen by a human, that is,
contained inside a visual cone. We also want to take different scales of distance
when calculating cohesive and separating forces. Cohesive force should be a long-
range calculation, taking into account pretty much any other agent in the visual
field, while separating forces should be more local, with only close agents being
taken into account.
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Fig. 1. MOPEDs algorithm for cohesive and separating forces

Based on these assumptions, we present the pseudo-code for these forces,
defined here as Algorithm 2.

Fig. 2. MOPEDs algorithm for cohesive and separating forces

In Algorithm 2, Nc and Ns are, respectively, the neighbourhoods used for the
calculation of cohesive and separating forces. These neighbourhoods are cones
with an aperture angle of 140o, defined to mimic a human visual cone, and
different radii. The neighbourhood for cohesive force is being used with a radius
of 20m, and the separating one with a radius of 2m, so that the rider only tries
to avoid contact with other agents in the immediate neighbourhood.

A last point to be addressed in this section is some kind of bias to the center;
real cyclists tend to be as close to the center of the road as possible in the case
where no wind is blowing, so as to avoid danger on the fringes of the road. For
that, a very small bias is put in place. Also, as in any flocking model, a small,
random acceleration is put into place.

As a final addendum, we introduce the concept of active riders: a rider is
considered active if he is willing to cooperate and be the frontrunner of the
peloton, being out of drafting positions in order to protect the other cyclists.
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This is modelled by adding a small bias to the front for active cyclists, as far as
they are not already the frontrunners.

We observe that this algorithm, with the right set of parameters, yields a very
life-like behaviour, with a narrow peloton front giving place to a wider formation
behind, as it can be seen at Figure 3.

Fig. 3. View of a simulation of the peloton.

2.2 Energetic parameters

We will now group together mechanical and physiological parameters, since both
sets of parameters affect the energetic balance of the cyclist, making it easier to
analyse them together.

Physiological data about cyclists is abundant; the literature on how the hu-
man body behaves under these circumstances is extensive and it is not our idea
to redefine anything on this domain, but rather to use existing results and adjust
our model to reflect them.

Many mathematical models for competitive cycling exist already. For this
model, we will use elements from Olds[5], who has a validated, well-behaved set of
equations for energy expenditures. We also use specific results from Hoenigman
et al.[1], who extended Olds’ results and applied it on an agent-based model,
and Martin et al.[3] for the potential-energy equation. By taking an agent-based
approach and simulating both peloton dynamics and energy expenditures, we
believe it is possible to have a more complete model and simulations that yield
results that are closer to real life.

Our first point is to calculate the drafting coefficient, that is, a correction
factor relating the air resistance when drafting and when not drafting. Kyle[2]
measured this coefficient experimentally and affirms that the reduction in air
resistance diminishes when wheel spacing increases. This is a fairly intuitive
result. He mentions that this reduction obeyed a second-order polynomial, but
he does not present the equation. Olds[5] reconstructs the equation from the
graphical data, arriving at

CFdraft = 0.62 − 0.0104dw + 0.0452d2w (1)

where dw is the wheel spacing (in meters) between the bicycle and the preceding
rider, and CFdraft is the correction coefficient. However, eq. 1 can be applied
only when drafting happens in a paceline, that is, when riders are exactly behind
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one another. In a peloton, drafting occur also in other ways; riders in a diagonal
have a ”comet’s tail” effect, with drafting bonuses decreasing when the rider
behind moves backwards or sideways. There is no extensive study of drafting
coefficients when a cyclist is not directly behind another one, as there is scarce
data about drafting multiple riders; we only know for sure that drafting behind
multiple riders is more beneficial than behind only one[4]. In this situation, we
have decided to assign weights depending on the angle of view to the preceding
rider. It is important to notice that drafting benefits are negligible in a distance
over 3m, and therefore we limit our calculations to this radius.

Having calculated CFdraft, we can now go on to the power equations. As we
are using a scale of one iteration per second of simulation, there is no need to
account for the difference between power and energy: they are numerically the
same. From Hoenigman et al.[1], we have the following equations:

Pair = kCFdraftv
3 (2)

Proll = Crg(M +Mb)v (3)

On eq. 2, k is a lumped constant for aerodynamic drag, dependant, between
other things, on the cross-section area of the cyclist. This constant is generally
reported with the value 0.185 kg/m, and we are following this value. Of course,
v is wind speed (and, as we are considering only a situation without wind, is
equal to ground speed). On eq. 3, Cr is a lumped constant for all frictional
losses on a bike, and is generally reported with a value of 0.0053. Of course,
g is the usual gravitational constant (9.81 m/s2). The variables M and Mb

represent, respectively, the mass of the cyclist and of the bicycle. On this model,
we are using values of 63kg and 7kg, respectively, for these variables, without
any variation between cyclists.

These equations are enough for modelling the energy expenditure of a cyclist
in a flat, non-windy situation. However, we want to model also the behaviour of
the peloton in uphills and downhills, and therefore we need an extra equation
for that. Martin et al.[3] present this equation, for grades up to 10% (where we
consider sin(arctan(Gr)) = Gr) :

PPE = Grg(M +Mb)v (4)

and, therefore, we can introduce this on eq. 3, obtaining the following:

Proll+PE = (Cr +Gr)g(M +Mb)v (5)

and a total energy expense of:

Pt = Et = (Cr +Gr)g(M +Mb)v + kCFdraftv
3 (6)

But this is only taking into account the energy expenditure. We need to
model how the cyclists react to this and how much energy they can spend with-
out exhausting themselves. For that, we will introduce the concept of lactate or
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anaerobic threshold, very well-known in any endurance sport. Roughly speak-
ing, the lactate threshold is the power output an athlete is capable of without
accumulating lactic acid in his muscles, that is, without getting tired[8]. In this
model, we will assess how tired a rider is through a simple ”energy-left” variable,
so that, at lactate threshold, the value of this variable is roughly unchanged.

As presented in Hoenigman et al.[1], a speed of 0.7Sm is slightly under the
lactate threshold, where Sm is the speed at which a rider can travel at his Max10
power output. The Max10 represents the 10-minute maximum power a rider can
generate, and is generally regarded as an indicator of a rider’s skill level. We are
using, as in that work, a mean value for Max10 µ = 7.1W/kg. That represents,
for a rider with 63kg, a Max10 of approximately 450W. This is equivalent, on
flat ground, to Sm = 12.96m/s. Therefore, 0.7Sm is approximately 9m/s, and
this should be slightly under lactate threshold. Finally, we take 10m/s as a
representative value for this threshold, and set a ”recovery” variable, normally
distributed with µ = 225W, that will be deduced from the actual spent energy.
Only an energy expenditure over this limit will make the rider grow tired.

We are still faced with the challenge of determining how long does it take
for a rider over his anaerobic threshold to be exhausted. For that, we will use
the concept of time to exhaustion (Tlim), as defined in Olds[5]. The defining
equation for Tlim is

ln(Tlim) = −6.351 ln(fV O2max
) + 2.478 (7)

In this equation, fV O2max
is the fraction of the V O2max

(maximum oxygen
consumption) being used. We can substitute that for Max10 generating then:

ln(Tlim) = −6.351 ln(
Ptot

Max10
) + 2.478 (8)

For establishing which would be the initial value of ”energy-left” to each rider,
we decided to take an average situation: a sole rider at 45km/h (or 12m/s). From
that, with our typical Max10 of 450W, we calculate which would be the time to
exhaustion. From there, considering our average recovery of 225W, we calculated
how much reserves a cyclist should have at the beginning of the simulation to
achieve this typical time to exhaustion.

2.3 An overview of the model

We have presented the two parts of the model: the dynamical parameters and
equations and the energetic parameters and equations. Now, we present how
these two parts are interconnected.

It is clear that the position of an athlete inside the peloton greatly affects his
energy balance: if a rider spends the whole time in front of the peloton, he should
use more energy than another one sitting safely behind another cyclist. This way,
the dynamical parameters and equations are influential on the energy balance.
On the other hand, in our model, the energy balance is, usually, not relevant for
the positioning of the cyclist: position calculation depends only on neighbouring
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agents. However, when the cyclist becomes tired, this is relevant to his position.
We have postulated that a rider with less than 100kJ of energy left is declared
”exhausted”. An exhausted rider has a backward bias and is effectively slower
than the peloton average. This way, he tends to hang at the back of the peloton,
eventually letting the group go altogether. A rider with 0 energy left quits the
peloton altogether. In our model, he is positioned in the leftmost coordinate and
becomes even slower. However, if he can somehow recover energy enough to get
out of this condition altogether, he will rejoin the peloton. We present figure 4,
a small, schematic flowchart representing the relation between the two ”sides”
of our model.

Fig. 4. Schematic diagram showing the relation between parts of the model.

3 Results

In the following section, we summarize the results obtained from the simulations
using MOPED. These are divided between general behaviour, dynamical and
energetic results, for clarity purposes.

3.1 General Behaviour

In general, the emerging complex behaviour from the agents is very promising;
riders rotate back when they feel they are under the average energy of the pelo-
ton. The peloton itself conforms to the general form of real-life pelotons, with a
very narrow front (usually a 3-5 long single line of riders) and a widening profile
as we look backwards.

We rapidly see a convection dynamic settling in. Riders at the back of the
peloton wishing to move forwards take the sides to do that, since the middle is
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cluttered with cyclists and going through is virtually impossible. When they get
to the front, they normally settle down in the center of the road, and as they stay
there other riders coming from the back start to overtake them. This way, we
have forward-moving cyclists taking the sides, backward-moving cyclists staying
in the middle. Of course, to move forwards through the sides, the athletes end
up spending more energy than those in the center of the peloton.

Trenchard[7] compares this dynamics to a convection roll, with ”warming”
riders in the peripheries and ”cooling” riders in the middle. He then presents
other natural systems with similar dynamics, such as Rayleigh-Bernard cells and
penguin huddle rotations, and hints that this is the way for achieving optimal
energy dissipation in the whole system. Even though our model does not take any
energy considerations into account for the dynamics, we still establish similar
patterns, which is quite interesting.

Independently of the number of active cyclists chosen, they rapidly take over
the head of the peloton. Even though not all active agents gather at the front of
the peloton at a single time, most of the time the frontrunner will be an active
cyclist.

When a sustained effort is maintained, cyclists start to get exhausted and
a sizeable group soon forms at the back of the peloton. Not much after, the
first spent cyclists start to appear, giving up on the peloton. If this effort is
maintained for long enough, only the strongest riders stay in the peloton, with
all the rest giving up. This is consistent with long climbs in professional races,
where the front group is normally smaller than ten cyclists. Also as in real life
cycling, a long descent after a climb has the effect of bringing lots of cyclists
back to the peloton, as they recover energy.

3.2 Dynamical parameters

Most of the results about the dynamics are difficult to quantify. As commented
in the section above, the general behaviour of the peloton seems coherent with
real life and, furthermore, coherent with an optimal energy dissipation.

As an addendum, we can show graphically the convection dynamics. On
figure 5, we have a graph of average draft coefficient for agents moving forwards
(blue) and backwards (red). It is clear that, on average, forwards-moving cyclists
on the periphery will have less opportunities to draft behind another cyclists,
and the opposite happens with the central, backwards-moving agents.

3.3 Energetic parameters

At first, for illustrating which kind of behaviour our model generates, we start
with an example. We submit 100 agents to a 3-hour race at a constant speed of
45km/h. Of course this speed is too high for uphill parts, making them spend
much more energy than humanly possible, but we are only interested in the
qualitative behaviour that exhaustion generates. We generate a profile for the
race, plotting the elevation at each time. As we are at constant speed, it is the
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Fig. 5. Temporal distribution of draft coefficient for backward and forward-moving
agents.

same as plotting elevation per distance. The generated profile is represented on
figure 6.

Fig. 6. Temporal profile of our test race.
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Subjecting our cyclists to this profile, we generate, then, a graph illustrating
the amount of exhausted riders at any given time. The plot is shown as figure 7.

Fig. 7. Exhausted riders (out of 100) at any given time.

We can now establish correlations between both plots. In the very long initial
uphill, relatively few riders were exhausted. That is, of course, because at the
beginning of the race, every athlete is still fresh. A slight downhill follows, enough
to recover all cyclists. However, a second, steepest uphill follows, and this time
the exhaustion is much bigger in the peloton. Even during the shallow part close
to the summit, the number of exhausted riders is still increasing considerably.
Another downhill follows and, again, it is enough to recover all riders. Now, a
short, not too steep climb is presented, and the result is a big increase again in
exhaustion, this time much more due to the accumulation of climbs than because
of the difficulty of this one. A very long downhill is next, and of course all riders
arrive down there in conditions. A false-flat (very shallow gradient) do not break
them, but as soon as the road gets steeper exhaustion increases. Even a long,
slight downhill after the climb is not enough to recover, and exhaustion keeps
increasing even during this part. Finally, a relatively short, but very steep climb
to finish the race. This time, only the very best stay in the front group at the
top.

The whole behaviour of the peloton described on the paragraph above will
certainly sound familiar for anyone who already watched a mountain stage in a
professional cycling race. The patterns are quite similar, even if not identical,
which indicates that the energy balance of the model is sound.

As a visual representation of what was described here, we present figures 8
and 9. Figure 8 shows what the peloton looks like at the summit of a long climb.
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You can see a relatively small group of 14 riders in front, followed by a bigger
group barely hanging at the back, and many agents already at the leftmost
coordinate, representing they have no more energy.

Fig. 8. Peloton at the top of a climb.

As a comparison, figure 9 shows the peloton during the descent, when the
lesser riders have already recovered. You can see the peloton shape is still longest
than normal due to the fact that the back riders are still coming back, but there
are no more riders with no energy left and the group is unified again.

Fig. 9. Peloton during the descent.

Finally, we present an interesting, counter-intuitive result derived from the
model. We start by drawing, at figure 10, the average draft coefficient for active
riders (considering 20 out 100 to be active riders) compared to the average draft
coefficient of non-active ones.

The horizontal reference level is 100%, which would mean that, on average,
active and non-active riders have similar draft coefficients. However, that is not
what the graph shows: even if it is not that easy to see on this plot, active riders
have lower draft coefficients on average, which means they spend less energy. To
confirm that, we plot a quocient between average energy for active and non-active
cyclists, and, even though it starts at 1 as expected, it undoubtedly increases
with time, indicating active riders are, indeed, spending less energy on average.
This plot is presented as figure 11.

This result is surprising, but there are reasons for it: active riders spend more
time on the well-organized, single line part of the peloton. This way, they have
constantly medium-to-low draft coefficients in these positions. Even if they do
have to go to the front more frequently than non-active riders, this if offset by
the fact that they are consistently drafting some other cyclists. Non-active riders
spend more time in the convection-like part of the peloton, constantly going back
and forth and spending considerable amount of time in non-drafting positions
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Fig. 10. Draft coefficient of active riders, as a percentage of DC of non-active riders.

Fig. 11. Quocient of energy left between active and non-active cyclists.

at the periphery of the peloton. Furthermore, if we can imagine the speed of
a cyclist as an oscillatory function around the average speed of the peloton
(with the oscillations being in the periods where the cyclist move forwards or
backwards), cyclists in the peloton have a bigger oscillatory amplitude than
active ones. As the air resistance scales with the third power of speed, this by
itself would cause a bigger air resistance.
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Besides that, with much more movement inside the peloton, they are not
guaranteed to have another rider right in front of them at all times, as someone
in the single-line part of the peloton does. This way, their draft coefficient is
much more subject to variations.

This can also be shown by figure 12, where we plot a quocient between average
neighbourhood size for active and non-active agents. At the beginning, when the
active agents are still organizing themselves, the plot goes under and over 1,
but it quickly settles under 1 as soon as the active riders organize themselves.
This shows that they are getting smaller draft coefficients in spite of drafting
less cyclists, which is coherent with the idea that they spend more time exactly
behind another cyclist.

Fig. 12. Average size of active-agent neighborhood compared to nonactive agents.

4 Discussion

This work presents a model for peloton dynamics in competitive cycling, using
an agent-based approach. Based on a few simple rules for dynamics and energy
balance, we derived a rather complex pattern of convection in the peloton, and
coherent results in terms of energy. Some interesting, counter-intuitive results
arise from the proposed model.

The result where active cyclists spent less energy than non-active ones does
not conform to general knowledge in cycling, There is, however, room for im-
provement and calibration in the model. For instance, when moving around,
agents do not look for favourable positions in terms of drafting possibilities, and
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the lack of data for drafting in diagonal positions and behind multiple cyclists
hinder the accuracy of energy distributions.

Besides that, we do not account for many real-life factors that affect com-
petitive cyclists. An example is wind, a factor that has major impact in many
professional races. Frontal wind can be modelled as a difference in speed for the
aerodynamical factor in our energy expenditure equation, but sidewinds require
a whole new approach that was not within the scope of this work. Of course,
there is a different dimension of cycling that was also not modelled here: the
strategic part. ”Intelligent” agents, who know what their best response to the
circumstances of a race is, could create breakaways, become active or non-active
mid-way during a race, save as much energy as possible for a final sprint. This
is certainly feasible as a future model.

This is probably the first time an agent-based approach is used to try and
simulate large-scale cycling peloton dynamics. Another work[1] take a similar
approach, using an agent-based model to simulate results of cycling races. Many
ideas between this work and their work are similar; in special, the energy balance
is probably quite similar, even though they do not model uphills and downhills
and this work takes a different approach for modelling the time to exhaustion of
a cyclist. However, their focus is on obtaining final results of the races, while we
want to simulate the dynamics of a peloton during the race. A different work[7]
makes some proto-simulations of pelotons with drafting, looking for hysteresis
on phase transitions. In spite of presenting interesting results, this model is
not interested in simulating the complex dynamics of a peloton, but only in
illustrating a concept.

As the first work to explore simulation of such a complex system as a cycling
peloton, we do not expect this to be a complete work in any way, but rather to
be a first step on exploring this fascinating phenomenon of collective behaviour.
The results presented are certainly promising and show that a more complete
model of this system is feasible and can even show similarities with other natural
systems.
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