Landau theory of Ferromagnets

Consider system which follows the minima of the free energy $F(M)$:

$$
F=F_{0}+F_{1} M+F_{2} M^{2}+F_{3} M^{3}+F_{4} M^{4}
$$

which can always be written as

$$
F=F_{0}{ }^{\prime}+F_{2}{ }^{\prime}\left(M-M_{0}\right)^{2}+F_{3}{ }^{\prime}\left(M-M_{0}\right)^{3}+F_{4}{ }^{\prime}\left(M-M_{0}\right)^{4}
$$

since both are general polynomials up to degree 4 ($M^{\prime}=M-M_{0}$ is the reqd. transformation).

Case 1: no applied field. For symmetry $F_{3}=0$

We then have (dropping primes) $F(M)=F_{0}+\alpha\left(T-T_{c}\right) M^{2}+\beta M^{4}$

Extrema given by $\frac{d F}{d M}=2 \alpha\left(T-T_{c}\right) M+4 \beta M^{3}=2 M\left(\alpha\left(T-T_{c}\right)+2 \beta M^{2}\right)$
i.e. at $M=0$ or $M^{2}=\frac{\alpha\left(T_{c}-T\right)}{2 \beta}$

But M is real so $M= \pm \sqrt{\frac{\alpha\left(T_{c}-T\right)}{2 \beta}}$ is an extremum for $T<T_{c}$

Look for minima
$\frac{d^{2} F}{d M^{2}}=2 \alpha\left(T-T_{c}\right)+12 \beta M^{2}$
$M=0: \quad$ Min for $T>T_{c} ;$ Max for $T<T_{c}$
$M= \pm \sqrt{\frac{\alpha\left(T_{c}-T\right)}{2 \beta}} \quad \frac{d^{2} F}{d M^{2}}=2 \alpha\left(T-T_{c}\right)+12 \beta \cdot \frac{\alpha\left(T_{c}-T\right)}{2 \beta}=-4 \alpha\left(T-T_{c}\right)$
Min for $T<T_{c}$, Max for $T>T_{c}$
We have a pitchfork bifurcation at $T=T_{c}$ - see plot of $M(T)$

PX391 Nonlinearity, Chaos, Complexity

As we go from $T>T_{c}$ to $T<T_{c}$ the system "falls" into one of the potential wells - which one is determined by fluctuations at $T=T_{c}$.

Case 2: Now consider applied B field - asymmetric now $F_{3}=\gamma \neq 0$
$\frac{d F}{d M}=2 \alpha\left(T-T_{c}\right) M+3 \gamma M^{2}+4 \beta M^{3}$
extrema now given by $\frac{d F}{d M}=0=M\left\{2 \alpha\left(T-T_{c}\right)+3 \gamma M+4 \beta M^{2}\right\}$
that is, at $\quad M=0, \quad M=\frac{-3 \gamma \pm \sqrt{\left(9 \gamma^{2}-4.2 \alpha\left(T-T_{c}\right) \cdot 4 \beta\right)}}{2.4 \beta}$
There are 2 real values of M when $9 \gamma^{2}>32 \alpha \beta\left(T-T_{c}\right)$
Now write M as $\quad M=\frac{-3 \gamma \pm 3 \sqrt{\gamma^{2}-\gamma_{c}^{2}}}{8 \beta}$
Look for minima:
$\frac{d^{2} F}{d M^{2}}=2 \alpha\left(T-T_{c}\right)+6 \gamma M+12 \beta M^{2}$
$M=0$ is a min at $T>T_{c}$
the $M \neq 0$ extrema is given by: $\quad 2 \alpha\left(T-T_{c}\right)+3 \gamma M+4 \beta M^{2}=0$
which gives: $\frac{d^{2} F}{d M^{2}}=3 \gamma M+8 \beta M^{2}$, or $\frac{d^{2} F}{d M^{2}}=M\left(\pm 3 \sqrt{\gamma^{2}-\gamma_{c}^{2}}\right)$
Then in addition to the $M=0$ extremum we have:
For $\gamma^{2}>\gamma_{c}^{2} \quad 2$ real $M \neq 0$ roots, one max, one min
For $\gamma^{2}=\gamma_{c}^{2} \quad M=\frac{-3 \gamma}{8 \beta} \quad$ and $\quad \gamma_{c}^{2}=\frac{32 \alpha \beta\left(T-T_{c}\right)}{9}$; this is at $T>T_{c}$
For $\gamma^{2}<\gamma_{c}{ }^{2} \quad-M$ is imaginary, no max/min
also at $\gamma_{c}{ }^{2}=0$

$$
\begin{equation*}
T=T_{c} \quad M=\frac{-3 \gamma \pm 3 \gamma}{8 \beta} \tag{a}
\end{equation*}
$$

$$
\text { i.e. } \quad M=0
$$

$$
\begin{equation*}
\text { or } \quad M=\frac{-6 \gamma}{8 \beta} \tag{b}
\end{equation*}
$$

(a) is (-)ve root hence $\frac{d^{2} F}{d M^{2}}>0 \quad$-this is a min.
(b) is an inflexion.

Finally, for $\gamma_{c}^{2}<0$ - we have 2 real $M \neq 0$ roots, both minima, and $M=0$ which is a maximum. Graphically:

PX391 Nonlinearity, Chaos, Complexity

$$
\begin{aligned}
& T>T 0 \\
& \gamma_{L}^{2} \angle \gamma^{2}
\end{aligned}
$$

$\left.\begin{array}{l}\text { - gang from } T>T_{c} \\ 0 \text { - gang tram } T<T_{c}\end{array}\right\}$ hysteresis.
0 - gong aam TRTC

Now fluctuations are unimportant.

