Landau theory of Ferromagnets

Consider system which follows the minima of the free energy F(M):

$$F = F_0 + F_1 M + F_2 M^2 + F_3 M^3 + F_4 M^4$$

which can always be written as

$$F = F_0' + F_2' (M - M_0)^2 + F_3' (M - M_0)^3 + F_4' (M - M_0)^4$$

since both are general polynomials up to degree 4 ($M' = M - M_0$ is the reqd. transformation).

Case 1: no applied field. For symmetry $F_3 = 0$

We then have (dropping primes) $F(M) = F_0 + \alpha (T - T_c)M^2 + \beta M^4$

Extrema given by
$$\frac{dF}{dM} = 2\alpha(T - T_c)M + 4\beta M^3 = 2M(\alpha(T - T_c) + 2\beta M^2)$$

i.e. at
$$M = 0$$
 or $M^2 = \frac{\alpha(T_c - T)}{2\beta}$

But *M* is real so
$$M = \pm \sqrt{\frac{\alpha(T_c - T)}{2\beta}}$$
 is an extremum for $T < T_c$

Look for minima

$$\frac{d^2F}{dM^2} = 2\alpha(T-T_c) + 12\beta M^2$$

M = 0: Min for $T > T_c$; Max for $T < T_c$

$$M = \pm \sqrt{\frac{\alpha(T_c - T)}{2\beta}} \qquad \qquad \frac{d^2 F}{dM^2} = 2\alpha(T - T_c) + 12\beta \cdot \frac{\alpha(T_c - T)}{2\beta} = -4\alpha(T - T_c)$$

Min for $T < T_c$, Max for $T > T_c$ We have a pitchfork bifurcation at $T = T_c$ - see plot of M(T)

As we go from $T > T_c$ to $T < T_c$ the system "falls" into one of the potential wells - which one is determined by fluctuations at $T = T_c$.

Case 2: Now consider applied B field - asymmetric now $F_3 = \gamma \neq 0$

$$\frac{dF}{dM} = 2\alpha (T - T_c)M + 3\gamma M^2 + 4\beta M^3$$

extrema now given by $\frac{dF}{dM} = 0 = M \{2\alpha (T - T_c) + 3\gamma M + 4\beta M^2\}$

that is, at
$$M = 0$$
, $M = \frac{-3\gamma \pm \sqrt{(9\gamma^2 - 4.2\alpha(T - T_c).4\beta)}}{2.4\beta}$

There are 2 real values of M when $9\gamma^2 > 32\alpha\beta(T - T_c)$

Now write M as
$$M = \frac{-3\gamma \pm 3\sqrt{\gamma^2 - \gamma_c^2}}{8\beta}$$

Look for minima:

$$\frac{d^2F}{dM^2} = 2\alpha(T - T_c) + 6\gamma M + 12\beta M^2$$

$$M = 0$$
 is a min at $T > T_c$
the $M \neq 0$ extrema is given by: $2\alpha(T - T_c) + 3\gamma M + 4\beta M^2 = 0$

which gives:
$$\frac{d^2F}{dM^2} = 3\gamma M + 8\beta M^2$$
, or $\frac{d^2F}{dM^2} = M\left(\pm 3\sqrt{\gamma^2 - \gamma_c^2}\right)$

Then in addition to the M = 0 extremum we have:

For $\gamma^2 > {\gamma_c}^2$ 2 real $M \neq 0$ roots, one max, one min

For $\gamma^2 = \gamma_c^2$ $M = \frac{-3\gamma}{8\beta}$ and $\gamma_c^2 = \frac{32\alpha\beta(T-T_c)}{9}$; this is at $T > T_c$ For $\gamma^2 < \gamma_c^2$ - *M* is imaginary, no max/min

also at
$$\gamma_c^2 = 0$$
 $T = T_c$ $M = \frac{-3\gamma \pm 3\gamma}{8\beta}$ i.e. $M = 0$ (a)
or $M = \frac{-6\gamma}{8\beta}$ (b)

(a) is (-)ve root hence $\frac{d^2F}{dM^2} > 0$ -this is a min. (b) is an inflexion.

Finally, for $\gamma_c^2 < 0$ - we have 2 real $M \neq 0$ roots, both minima, and M = 0 which is a maximum. Graphically:

PX391 Nonlinearity, Chaos, Complexity

Now fluctuations are unimportant.