Power Law Power Spectra and Scaling

Consider the autocorrelation function

$$R(\tau) = \int_{-\infty}^{\infty} x(t) x(t+\tau) dt$$

and its F.T. is the power spectral density $G^{2}(f)$

The discrete form of the ACF is $R_{\tau} = \sum_{t=0}^{N-1} x_t x_{t+\tau}$.

We will discuss scaling in terms of increments (here $\langle ... \rangle$ denotes ensemble average over *t*):

$$\left\langle \left(x(t+\tau) - x(t) \right)^2 \right\rangle \sim \tau^{2H}$$

H - Hurst exponent

Now $\langle (x(t+\tau)-x(t))^2 \rangle = 2[\langle x^2(t) \rangle - R(\tau)]$ where $R(\tau) = \langle x(t+\tau)(x(t)) \rangle$ and we insist that $\langle x^2(t+\tau) \rangle = \langle x^2(t) \rangle$ (stationary process)

so
$$R(\tau) \sim \tau^{2H}$$

Now relate this to the power spectrum.

Scaling argument

let
$$G^{2}(f) \sim \frac{1}{f^{\beta}}$$
 a 'power law' power spectrum
Now $R(\tau) = \int_{-\infty}^{\infty} G^{2}(f) e^{2\pi i f \tau} df$

Rewrite in new variables: $f \to af$ and df = d[af]/a $G^2(af) = \frac{1}{(af)^{\beta}} = \frac{G^2(f)}{a^{\beta}}$

then
$$R(\tau) = \int_{-\infty}^{\infty} a^{\beta} G^2(af) e^{2\pi i a f(\tau/a)} \frac{d(af)}{a}$$

so
$$R(\tau) = \int_{-\infty}^{\infty} a^{\beta-1} G^2(af) e^{2\pi i a f(\tau/a)} d(af) = a^{\beta-1} R(\tau/a)$$

Thus $R(\tau) = a^{\beta-1}R(\tau/a)$ or $R(a\tau) = a^{\beta-1}R(\tau)$

so
$$R(\tau) \sim \tau^{\beta-1}$$

then $G^2(f) \sim \frac{1}{f^{\beta}} \Rightarrow R(\tau) \sim \tau^{\beta-1}$

this is general, for stationary processes.

then $2H = \beta - 1$ - Result, relates scaling exponent to power spectral exponent β . By evaluating the integral

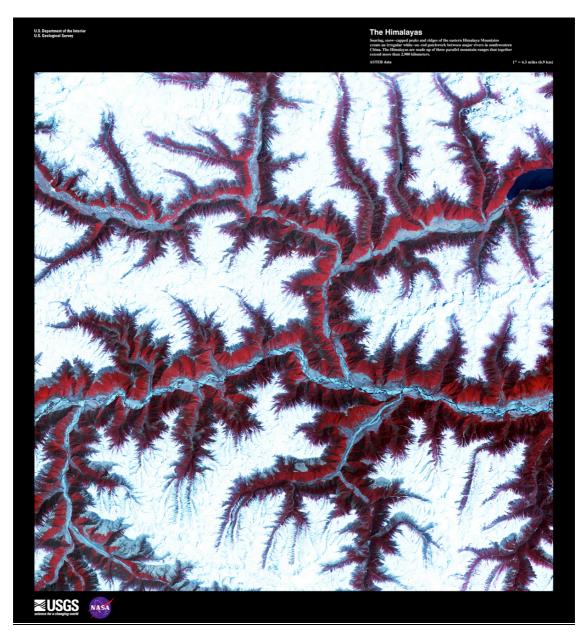
IFT is:
$$\int_{-\infty}^{\infty} \frac{1}{f^{\beta}} e^{-2\pi i f t} df$$

substitute ft = x

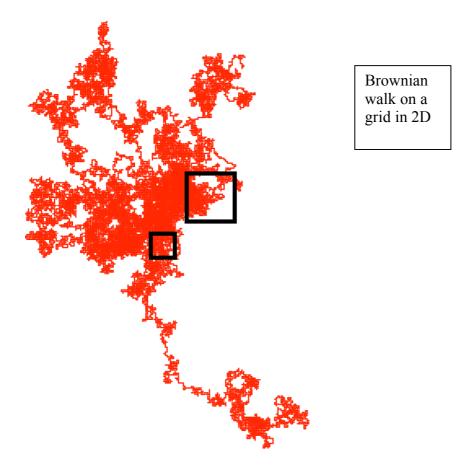
giving
$$\int_{-\infty}^{\infty} \frac{e^{-2\pi i x}}{x^{\beta}} \frac{dx}{t} t^{\beta}$$
$$= t^{\beta - 1} \left(\int_{-\infty}^{+\infty} e^{-2\pi i x} \frac{dx}{x^{\beta}} \right) = A t^{\beta - 1}$$

Again, implies $R(\tau) \sim \tau^{\beta-1}$ so that $2H = \beta - 1$.

Notes on Fractal Dimension



Satellite image of the Himalayas- a natural fractal (courtesy USGS).



Consider P(m,r) - probability of finding *m* points in square side *r*

then
$$\sum_{m=1}^{N} P(m,r) = 1$$

Defns: Mass dimension D given by: $M(r) = \sum_{m=1}^{N} mP(m,r) \sim r^{D}$ Box counting dimension: $D_{c} = -\lim_{r \to 0^{+}} \frac{\ln(N)}{\ln(r)}$ where N(r) boxes of side *r* are required to just cover the surface.

However a practical definition is given by: $N_B(r) = \sum_{m=1}^{N} \frac{1}{m} P(m,r) \sim \frac{1}{r^D}$ These are all just examples of moments: $M^q(r) = \sum_{m=1}^{N} m^q P(m,r)$.

For a fractal $P(m,r) \sim f\left(\frac{m}{r^{D}}\right)$ then $\sum_{m=1}^{N} m^{q} P(m,r) \sim \sum_{m=1}^{N} m^{q} f\left(\frac{m}{r^{D}}\right)$ $m' = \frac{m}{r^{D}}$

write

$$m = \frac{1}{r^{D}}$$

$$M^{q}(r) \sim \sum_{m'=1}^{N} m'^{q} r^{qD} f(m') \sim r^{qD}$$

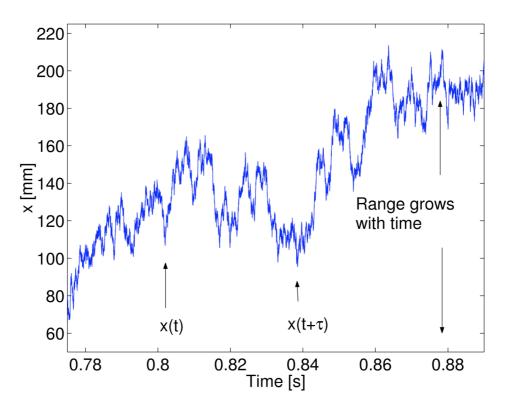
This will yield a straight line on a plot of $\log (M^q) vz \log(r)$ with exponent qD. For a fractal, a plot of exponents as a function of q has slope D.

Relationship to Hurst exponent

For fBm (fractional Brownian motion) – shown here in 1D

$$\left\langle \left| x(t+\tau) - x(t) \right|^2 \right\rangle \sim \tau^{2H}$$
 on any t .

This has a power law power spectrum as above.



How many boxes are needed to cover the line?

For an interval τ , the line on average spans $\Delta x \approx \langle |x(t+\tau) - x(t)|^2 \rangle^{\frac{1}{2}}$ and this will be covered by $\Delta x / \tau \sim \tau^{H-1}$ boxes.

Now consider the entire trace is divided in time by N intervals of length τ ie: $\tau \sim \frac{1}{N}$, then the trace is covered by $N \frac{\Delta x}{\tau}$ boxes, and so

$$N(\tau) \sim N^{2-H} \sim \frac{1}{\tau^{2-H}} \sim \frac{1}{\tau^{D}}$$
$$D = 2 - H$$

so

In *E* Euclidean dimensions D = E + 1 - H and for the zero sets, D = E - H.