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Power Law Power Spectra and Scaling 
 
Consider the autocorrelation function 
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and its F.T. is the power spectral density ( )2G f  

The discrete form of the ACF is 
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We will discuss scaling in terms of increments (here ...  denotes ensemble average 
over t): 
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   H – Hurst exponent 
 
Now  ( ) ( )( ) ( ) ( )[ ]2 2
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where ( ) ( ) ( )( )R x t x t! != +  and we insist that  ( ) ( )2 2
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Now relate this to the power spectrum. 
 
Scaling argument 
 

let ( )2
1

~G f
f !

  a 'power law' power spectrum 

Now 
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Rewrite in new variables:
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so ( ) 1
~R

!" " !  
 

then 
    
G2 f( ) ~

1

f !
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this is general, for stationary processes. 
 
then 2 1H != !  - Result, relates scaling exponent to power spectral exponent ! . 
 
By evaluating the integral 
 
 

IFT is:  

    

1

f !
e!2"ift df

!"

"

#
$%

 

 
substitute ft x=  
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Again, implies ( ) 1
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!" " !  so that  2 1H != ! . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Notes on Scaling- Sandra Chapman (MPAGS: Time Series Analysis) 

 3 

Notes on Fractal Dimension 
 

 
 
Satellite image of the Himalayas- a natural fractal (courtesy USGS). 
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Consider ( ),P m r   - probability of finding m points in square side r 
 

then  
   

P m,r( ) = 1
m=1

N

!  

 

Defns: Mass dimension D given by: 
   
M r( ) = mP m,r( ) ~ r

D
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!  

Box counting dimension: D
c
= ! lim

r"0
+

ln(N )

ln(r)
 

where N(r) boxes of side r are required to just cover the surface. 
 

 However a practical definition is given by: 
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These are all just examples of moments: 
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For a fractal 
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Brownian 
walk on a 
grid in 2D 
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write  

   

!m =
m

r D

M q (r) ~ !m qrqD f !m( ) ~ rqD

!m =1

N

"

 

 
This will yield a straight line on a plot of log ( ) ( )logqM vz r  with exponent  qD . 
For a fractal, a plot of exponents as a function of q has slope D. 
 
Relationship to Hurst exponent 
 
For fBm  (fractional Brownian motion) – shown here in 1D 

    
x t + !( )! x(t)

2
~ ! 2 H   on any t. 

This has a power law power spectrum as above. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
How many boxes are needed to cover the line? 

For an interval ! , the line on average spans !x " x(t + # ) $ x(t)
2

1

2  and this will be 

covered by !x
"
~ "

H #1  boxes. 

Now consider the entire trace is divided in time by N intervals of length !  ie: 1
~
N

! ,  

then the trace  is covered by  
   

N
!x

!
 boxes, and so 
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so  2D H= !  
 
In E Euclidean dimensions 1D E H= + ! and for the zero sets, D E H= ! . 


