
PX391 Nonlinearity, Chaos, Complexity SUMMARY Lecture Notes 1- S C Chapman 

 1 

Concepts 
 
1. Landau theory – a macroscopic model for a microscopic system. 
 - few relevant parameters – many dof system 
 - bifurcation and hysteresis - phase transitions 
 
2. 1st order nonlinear DEs 

fixed points, stability (get dynamics without actually solving). 
 
3. 2nd order nonlinear DEs - phase plane analysis. 
 
4. Limit cycles – predator prey, etc. 
 
5. Difference equations – chaos in 1D maps 
 Lyapunov exponents. 
6. Bifurcation sequence to chaos and RG 

Feigenbaum nos and universality in chaos. 
 
7. Many dof systems on computers – order-disorder transitions and self organisation – scale 

free behaviour. 
 
8. Buckingham Pi theorem – dimensional analysis approach to finding the few relevant 

parameters. 
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Introduction – universality (linear systems) 
 
Most of what you have seen so far is linear: 
 
An example: pendulum 
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Immediately assume !  small than sin! !!  and 
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- now linear – solution of the form 
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    ,A !  from initial conditions. 
 
- this is an example of general description of particle motion in potential V 
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V has a minimum – expect small oscillations 
about 

0
x - find frequency ω of oscillations. 

 
Lets (do properly) linearize about 
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So, 
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‘Linearize’ means terms ( ) ( )2
0 0x x! !!  

ie:  all functions are linear in x!  
equivalent to 1x! !  small displacements from 

0
x . 

 

- recover linear pendulum equation with 
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* hence this linear equation is universal – works for any (conservative) system with a minimum in 
( )V x  provided x!  is small enough.  

    
!!V > 0( )" !  is real  

 
 
[intuitively obvious – anything with potential ⇒ 
 
 
 
 
 
and know ( )x t!  - oscillates about 

0
x  

"roughly" sinusoidal ] 
 
 
 
 
 
Other advantage of linear equations – principle of superposition 
ie: if you have the simplest situation – ie: one oscillator 

    
! = Acos "t + #( )  

any system can be obtained by 

    
! t( ) = A

j
cos "

j
t + #

j( )!  
which is why we have Fourier theory. 
 
Here we have j linear coupled oscillators (normal modes) each one has two constants ( ),j jA !  and 

one frequency 
  
!

j
. 

 
Another equation you will have seen – 
 

wave equation  
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Nonlinear of ( )c !  - dispersion, diffusion. 
Linear equation 'works' for any waves, ie: water waves, light waves… universality. 

0
x x=  

etc. 

x!  -  oscillations ( )V x  

x 



PX391 Nonlinearity, Chaos, Complexity SUMMARY Lecture Notes 1- S C Chapman 

 4 

 

Diffusion equations  
    

!!

!x
2

= "
!!

!t
  !  constant linear. 

 
So linear equations – good news was 
 
         - universality – (works for anything) 
         - superposition – (only need simplest solution – just add them up) 
 
         - Not many parameters, eg:  
    oscillator – just ω 
    waves  - just c 
    diffusion          !  
         - Not many variables  - eg: , ....! "  
 
Now real life is Nonlinear  - a problem! 
 
- superposition fails (try it!) - bad news 
 
Good news:   - still get universal equations (so don't need to learn many) 
    - only need few order parameters 
    - only need a few variables. 
 
Last point → few variables – often this is because system appears to have many variables but 
relevant physics can be described by few 

eg: Magnet – many spins – but we can understand it by just following M (total 
magnetisation). 
 

Why this is so is a current hot topic in physics (self organisation, critical phenomena, complexity). 
 
Normalisation and Dimensional Analysis – (more later) 
 
Normalisation (boring but important) 
Have written down universal equations eg: 
 

wave equation  
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   Normalised units! 

 
experimentally you have displacement- x (meters) 
        time- t   (seconds) 
 
write 
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this is dimensionless if 
2

2

2

L
c

T
=      c is a velocity 

 !  is anything (this is why it is universal). 
 
So, to do the maths you can work in (*) units – or to solve on a computer. 
[Also found out what c meant – and if equation is correct!] 


