Twice iterated tent map : find corresponding map $M^{2}(x)$

1) Note there are points where the map $M(x)$ goes to zero or 1 .

$$
M(x) \quad M\left(\frac{1}{2}\right)=1 \quad M(0)=0 \quad M(1)=0
$$

also,

$$
M\left(\frac{1}{4}\right)=\frac{1}{2} \quad M\left(\frac{3}{4}\right)=\frac{1}{2}
$$

2) There are points where $M^{2}(x)$ goes to zero or 1 .

Clearly,

$$
\begin{aligned}
& M^{2}\left(\frac{1}{4}\right)=M\left(M\left(\frac{1}{4}\right)\right)=M\left(\frac{1}{2}\right)=1 \\
& M^{2}\left(\frac{3}{4}\right)=M\left(M\left(\frac{3}{4}\right)\right)=M\left(\frac{1}{2}\right)=1
\end{aligned}
$$

and

$$
\begin{aligned}
& M^{2}\left(\frac{1}{2}\right)=M\left(M\left(\frac{1}{2}\right)\right)=M(1)=0 \\
& M^{2}(0)=M(M(0))=M(0)=0
\end{aligned}
$$

Folding points - another method.

$\frac{1}{4}$ iterates as $M\left(\frac{1}{4}\right)=\frac{1}{2} \quad M^{2}\left(\frac{1}{4}\right)=1 \quad M^{3}\left(\frac{1}{4}\right)=0$
$\frac{1}{8}$ iterates as $M\left(\frac{1}{8}\right)=\frac{1}{4} \quad$ and $M\left(\frac{1}{4}\right)=\frac{1}{2} \quad M^{2}\left(\frac{1}{4}\right)=1 \quad$ so $M^{4}\left(\frac{1}{8}\right)=0$
$\frac{1}{16}$ iterates as $M\left(\frac{1}{16}\right)=\frac{1}{4} \quad$ so similarly $\quad M^{5}\left(\frac{1}{16}\right)=0$

Now consider all the segments between, ie

$$
0-\frac{1}{4}, \quad \frac{1}{4}-\frac{1}{2}, \quad \frac{1}{2}-\frac{3}{4}, \quad \frac{3}{4}-1 .
$$

Notation

Write $M(x)$ as
$M_{<}(x)=2 x \quad$ "left half" $M_{>}(x)=2(1-x) \quad$ "right half"

Clearly, $\quad\left[0-\frac{1}{4}\right] \rightarrow\left[0-\frac{1}{2}\right] \quad M_{<}(x)$
and

$$
\left[0-\frac{1}{2}\right] \rightarrow[0-1] \quad M_{<}(x)
$$

only need $\quad M_{<}(x)$ here
$0 \leq x \leq \frac{1}{4} \quad M^{2}(x)=M_{<}^{2}(x)$
Now

$$
\begin{array}{ll}
{\left[\frac{1}{4}-\frac{1}{2}\right] \rightarrow\left[\frac{1}{2}-1\right]} & M_{<}(x) \\
{\left[\frac{1}{2}-1\right] \rightarrow[1-0]} &
\end{array}
$$

so,

$$
\frac{1}{4} \leq x \leq \frac{1}{2} \quad M^{2}(x)=M_{>}\left(M_{<}(x)\right)
$$

similarly

$$
\begin{array}{ll}
\frac{1}{2} \leq x \leq \frac{3}{4} & M^{2}(x)=M_{>}^{2}(x) \\
\frac{3}{4} \leq x \leq 1 & M^{2}(x)=M_{<}\left(M_{>}(x)\right)
\end{array}
$$

Then plug in $M_{<}, M_{>}$to get the result.

$$
\begin{aligned}
& 0 \leq x \leq \frac{1}{4} \quad M^{2}(x)=2[2 x]=4 x \\
& \frac{1}{4} \leq x \leq \frac{1}{2} \quad M^{2}(x)=2(1-[2 x])=2-4 x \\
& \frac{1}{2} \leq x \leq \frac{3}{4} \quad M^{2}(x)=2(1-[2(1-x)]) \\
& =2(1-2+2 x) \\
& =4 x-2 \\
& \frac{3}{4} \leq x \leq 1 \quad M^{2}(x)=2[2(1-x)] \\
& =4-4 x
\end{aligned}
$$

Sketch

Note - neighbouring points on x move apart as length of $M(x)$ line increases as we iterate stretch/fold.

1 triangle 2 fixed points

2 triangles 4 fixed points

Therefore, any points in x separated by more than 2^{-p} can be anywhere in $[0,1]$ after p iterates.

- chaos
- follows from inevitability of map.

Note, gradient is always $2^{p}>1$
therefore, always globally unstable.

local gradient and stability

Note that this shows if a fixed point is unstable.
eg: tent map

$$
x_{n+1}=2 x_{n}, x_{n+1}=2\left(1-x_{n}\right)
$$

Mathematically, for some map $M(x)$ consider small displacement δx_{n} from fixed point \bar{x} and Taylor expand $x_{n+1}=M\left(x_{n}\right)$ at $x_{n}=\bar{x}+\delta x_{n}$.

$$
x_{n+1}=M\left(\bar{x}+\delta x_{n}\right) \simeq M(\bar{x})+\delta x_{n} \frac{d M}{d x}(\bar{x})+0\left(\delta x^{2}\right) \simeq \bar{x}+\delta x_{n} \frac{d M}{d x}(\bar{x})
$$

but $\quad x_{n+1}=\bar{x}+\delta x_{n+1}$
so $\quad \bar{x}+\delta x_{n+1}=\bar{x}+\delta x_{n} \frac{d M}{d x}(\bar{x}) \quad$ ie: $\frac{\delta x_{n+1}}{\delta x_{n}}=\frac{d M}{d x}(\bar{x})$.
So, for stability $\quad\left|\frac{d M}{d x}(\bar{x})\right|<1$.
Must hold for all iterates.. Lyapunov exponents

Measure of divergence of trajectories.

Lyapunov exponents (or Lyapunov number)
Consider a general map

$$
x_{n+1}=f\left(x_{n}\right)
$$

how fast are two initially neighbouring points converging/diverging?
Have initial condition x_{0}.

This then has iterates $x_{1}, x_{2} \ldots x_{n}$

$$
x_{1}=f\left(x_{0}\right), \quad x_{2}=f\left(x_{1}\right), \text { etc. }
$$

Consider an initially neighbouring point $\tilde{x}_{0}=x_{0}+\varepsilon_{0}$ separated from x_{0} by $\varepsilon_{0} \ll 1$.

After we iterate $\tilde{x}_{1}=f\left(\tilde{x}_{0}\right)=f\left(x_{0}+\varepsilon_{0}\right)=f\left(x_{0}\right)+\varepsilon_{0} \frac{d f}{d x}\left(x_{0}\right)+\ldots$, by Taylor expansion.

But, after one iterate $\tilde{x}_{1}=x_{1}+\varepsilon_{1} \quad$ Now two points are separated by ε_{1}
then

$$
\tilde{x}_{1}=x_{1}+\varepsilon_{1}=f\left(x_{0}+\varepsilon_{0}\right)=f\left(x_{0}\right)+\varepsilon_{0} \frac{d f}{d x}\left(x_{0}\right)+\ldots
$$

ie: $\quad \varepsilon_{1}=\varepsilon_{0} f^{\prime}\left(x_{0}\right)$ to first order in ε_{0}.

So, generally for $j^{\text {th }}$ iterate have

$$
\tilde{x}_{j}=x_{j}+\varepsilon_{j} \quad \varepsilon_{j}=\varepsilon_{j-1} f^{\prime}\left(x_{j-1}\right)
$$

provided $\varepsilon_{j} \ll 1 \quad 0<j<n$.

Then

$$
\begin{aligned}
& \begin{aligned}
\tilde{x}_{n}=x_{n}+\varepsilon_{n} & =x_{n}+\varepsilon_{n-1} f^{\prime}\left(x_{n-1}\right) \\
& =x_{n}+\varepsilon_{n-2} f^{\prime}\left(x_{n-2}\right) f^{\prime}\left(x_{n-1}\right) \\
& =x_{n}+\varepsilon_{0} f^{\prime}\left(x_{0}\right) f^{\prime}\left(x_{1}\right) \ldots f^{\prime}\left(x_{n-1}\right)
\end{aligned} \\
& \begin{aligned}
\tilde{x}_{n+1}=x_{n+1} & +\varepsilon_{0} f^{\prime}\left(x_{0}\right) \ldots f^{\prime}\left(x_{n}\right)
\end{aligned} \\
& \tilde{x}_{n+1}=x_{n+1}+\varepsilon_{0} \prod_{j=0}^{n} f^{\prime}\left(x_{j}\right)
\end{aligned}
$$

Now use a trick (handy to turn a product into a sum)

$$
f^{\prime}\left(x_{j}\right)=e^{\ln f^{\prime}\left(n_{j}\right)}
$$

In addition, we do not know the signs of all $f^{\prime}\left(x_{j}\right)$ (and we don't need to know - just interested in whether the product is getting bigger or not in magnitude).

So, write

$$
\tilde{x}_{n}=x_{n}+\varepsilon_{0} \exp \left(\sum_{j=0}^{n-1} \ln \left|f^{\prime}\left(x_{j}\right)\right|\right),
$$

and hence, define Lyapunov number (exponent)

$$
\lambda=\operatorname{Lim}_{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \ln \left|f^{\prime}\left(x_{j}\right)\right|
$$

NB: after written with

$$
n-1 \simeq n
$$

$$
n \rightarrow \infty
$$

which is a measure of exponential divergence of trajectories

$$
\tilde{x}_{n}-x_{n}=\varepsilon_{0} e^{n \lambda} .
$$

What about approximation $\varepsilon_{j} \ll 1$?
Can always take ε_{0} (and thus ε_{j}) infinitesimally small - still same dynamics.

So $\quad \lambda<0-\quad x$ is at an attractor - trajectories converge.
$\lambda>0-\quad x$ is at a repellor \rightarrow chaos
trajectories diverge.
Note, there is a λ for each degree of freedom (coordinate) here one (x).

Note that generally if all $\left|f^{\prime}\left(x_{j}\right)\right|>1$ all iterates
then all

$$
\ln \left|f^{\prime}\left(x_{j}\right)\right|>0
$$

then

$$
\begin{gathered}
\sum \ln \left|f^{\prime}\left(x_{j}\right)\right|>0 \quad \text { and } \lambda>0 \\
\text { chaotic }
\end{gathered}
$$

Similarly, if all $\left|f^{\prime}\left(x_{j}\right)\right|<1$
then all

$$
\ln \left|f^{\prime}\left(x_{j}\right)\right|<0
$$

and

$$
\lambda<0
$$

$$
\text { - } \quad \text { stable attractor }
$$

- \quad if our graphical result that for each iterate if \mid gradient $\mid>1$ unstable
* - now generalised this for all iterates of the map - characterised the dynamics.

Tent map after p iterates:
 gradient $= \pm 2^{p}$

* Therefore, tent map globally chaotic *

Next, consider polynomial maps. More complicated $f^{\prime}(x)$

