PX391 Nonlinearity, Chaos, Complexity SUMMARY Lecture Notes 10- S C Chapman

Twice iterated tent map : find corresponding map M?*(x)

1) Note there are points where the map M (x) goes to zero or 1.
M (x) M(1)=1 M(0)=0 M(1)=0
also, m()=3 ()=
2) There are points where M2 (x) goes to zero or 1.
Clearly,
()= w((2))= () =1
2 (3)= w(3))= () =1
and
()= w( (1) = w(1)=0
M*(0)=M(M(0))=M(0)=0

Folding points — another method.
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Notation

N =

N
N | — T
AW

Clearly, [0—1}—{0—1} M_(x)

and {0—5}—40—1] M_(x)

0<xsp M(x)=M2(x)
Now
ERIREIE
ER IR A
JExss M (x)= M (M(x))

similarly

Write M (x) as
M_(x)=2x "left half"

<

M_(x)=2(1-x) 'right half"

>
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M2 (x) = M2 (x)

*(x) = MM, (x))
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Then plugin M_, M_ to get the result.
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Mz(x):2[2x]=4x
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M*(x)=2(1-[2x])=2-4x

M?(x)=2(1-[2(1-x)])
=2(1-2+2x)
=4x-2
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M2 (x)=2[2(1-x)]

=4—4x
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Sketch
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Note — neighbouring points on x move apart as length of M (x) line increases as we iterate —
stretch/fold.
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p™ iterate of map

277! triangles

2?7 fixed points

2—p %

277*1 _base length

Therefore, any points in x separated by more than 277 can be anywhere in [0, 1] after p iterates.

- chaos
- follows from inevitability of map.

Note, gradient is always 27 > 1
therefore, always globally unstable.
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local gradient and stability

Note that this shows if a fixed point is unstable.

eg: tent map Xn4l = 2xn: Xn+1 = 2(1 — Xp )
M Xn+l = Xy
[ ] ///
X1 g
A
e unstable

stability just depends on gradient
locally

\

2 Xl X0 X
N here |gradient|>|

S L here |gradient|<|

\ e stable

N =

1x
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Mathematically, for some map M (x) consider small displacement Ox, from fixed point x and

Taylor expand x,,, = M(xn) at x, =X + 0x,,.

dM , _ dM , _
( + 0x ) ( )+5xna(x)+0(5x2)~x+5x E(x)
but L =X +0x,
_ du S, dM
SO X+6x,,,=X+0x, n (x) ie: 5 =— (x)
- dM , _
So, for stability E(x) <l1.

Must hold for all iterates.. Lyapunov exponents

Measure of divergence of trajectories.

Lyapunov exponents (or Lyapunov number)

Consider a general map
xn+1 = f (xn )
how fast are two initially neighbouring points converging/diverging?

Have initial condition x,, .

This then has iterates x,, x,...x,

y=r(x) x=r(x), et
Consider an initially neighbouring point X, = x,, + €, separated from x, by £, < 1.
. - - df .
After we iterate X, = f(xo ) = f(xo + €, ) = f(xo ) + €, d—(xo ) + ..., by Taylor expansion.
X

But, after one iterate X, = x, + &, Now two points are separated by &,

- d
then % =x +¢ :f(x0+go):f(xo)+god_f;(x0)+...

ie: g = eof’(xo) to first order in & .
So, generally for ;™ iterate have

~ _ — 4
X=X TE g;=g, (%)
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provided £, <1 0<j<n.

=x,+e,=x,+€_, f(x,_)
Then =X, tE&,_, f,(‘xn—2 )f,(xn—l)
=x,t& f,(xo )f’(xl )-"f,(xn—l)

in+1 = Xt + 80 f’(x())"'f,(xn)

n
in+1 = xn+1 +80H f,(xj)

j=0

Now use a trick (handy to turn a product into a sum)

()=o)

In addition, we do not know the signs of all f ’( X; ) (and we don't need to know — just interested in

whether the product is getting bigger or not in magnitude).

So, write

j=0
and hence, define Lyapunov number (exponent) NB: after written with
n—1l=n
n—1 n—> oo

A= Lim= 20 (x))

n—»co Jj=0
which is a measure of exponential divergence of trajectories

~ _ ni
X, —x,=¢ge"”.
What about approximation €£; < 1?

Can always take &, (and thus €;) infinitesimally small — still same dynamics.

So A<0 - X is at an attractor — trajectories converge.
A>0 - x is at a repellor — chaos
trajectories diverge.

Note, there is a A for each degree of freedom (coordinate) here one (x).

Note that generally if all ‘ f ’(xj )‘ >1 all iterates
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then all ln‘f’(xj)‘ >0
then Eln‘f’(xj)‘>0 and A >0
chaotic

Similarly, if all | /*(x; )| <1
then all ln‘f’(xj)‘ <0

and 1<0 - stable attractor

if our graphical result that for each iterate if | gradient| > 1 unstable

* - now generalised this for all iterates of the map — characterised the dynamics.

Tent map after p iterates:

/ gradient = £27

< _— | gradient | > |

2-pHl all iterates

* Therefore, tent map globally chaotic *

Next, consider polynomial maps. More complicated f ’(x)
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