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Twice iterated tent map : find corresponding map M 2
(x)  

 
1) Note there are points where the map ( )M x  goes to zero  or 1. 
 
 ( )M x   
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2) There are points where ( )2

M x  goes to zero or 1. 
 
Clearly, 
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Folding points – another method. 
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1

4
 iterates as  

  

M
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1

8
 iterates as 
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1
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4
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5 1

16
( ) = 0  

 
 
 
 
Now consider all the segments between, ie 
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Notation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Clearly, 
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only need 

 
M< x( )  here 
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so, 
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1 

Write ( )M x  as 

  
M< x( ) = 2x  "left half" 

  
M> x( ) = 2 1! x( )  "right half" 
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1
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Then plug in 

  
M

<
, M

>
 to get the result. 

 

  

0 ! x !
1

4
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2
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4
! x !

1
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2
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1

2
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4
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2
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= 2 1" 2 + 2x( )
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3

4
! x ! 1 M

2
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= 4 " 4x

 

Sketch 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note – neighbouring points on x move apart as length of ( )M x  line increases as we iterate – 
stretch/fold.

1/4 1/2 3/4 x 
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1/2 

1 triangle 
2 fixed points 

•  

•  

•  

•  

•  
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1/4            1/2 

2
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1/8               1/4 

2 triangles 
4 fixed points 

4 triangles 
8 fixed points 

3
M  
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thp  iterate of map 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Therefore, any points in x separated by more than 2 p!  can be anywhere in [ ]0,1  after p iterates. 
 

- chaos 
- follows  from inevitability of map. 

 
Note, gradient is always 2 1

p
>  

 therefore, always globally unstable. 
 
 

2
p!  

- base length 

1
2
p!  triangles 

 
2
p  fixed points 

1
2
p! +  



PX391 Nonlinearity, Chaos, Complexity SUMMARY Lecture Notes 10- S C Chapman 
 

7 

local gradient and stability 
 
Note that this shows if a fixed point is unstable. 
 
 
eg: tent map 
 
 
 
 
 
 
 
•  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

•  

  
x

1
 0x  

1n nx x+ =  

unstable 

stability just depends on gradient 
locally 

( )1 12 , 2 1n n n nx x x x+ += = !  

M 

1x  

2 x 
 

stable 

here gradient >  

here gradient <  

1 

1

2
 

1x 

M 
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Mathematically, for some map 
 
M x( )  consider small displacement 

 
!x

n
 from fixed point  x  and 

Taylor expand 
  
x

n+1
= M x

n( )  at 
 
x

n
= x + !x

n
. 

 

   

x
n+1

= M x + !x
n( ) ! M x( ) + !x

n

dM

dx
x( ) + 0 !x

2( )
  

! x + !x
n

dM

dx
x( )  

but 
  
x

n+1
= x + !x

n+1
 

     

so 
  

x + !x
n+1

= x + !x
n

dM

dx
x( )   ie: 

  

!x
n+1

!x
n

=
dM

dx
x( ) . 

 

So, for stability 
  

dM

dx
x( ) < 1 . 

Must hold for all iterates.. Lyapunov exponents 
 
 
Measure of divergence of trajectories. 
 
Lyapunov exponents (or Lyapunov number) 
 
Consider a general map 
 
  

  
xn+1

= f xn( )  
 
how fast are two initially neighbouring points converging/diverging? 
 
Have initial condition 

  
x

0
. 

 
This then has iterates 

  
x

1
, x

2
...x

n
 

  
  
x

1
= f x

0( ), x
2
= f x

1( ) , etc. 
 
Consider an initially neighbouring point 

   
!x
0
= x

0
+ !

0
 separated from 

  
x

0
 by 

  
!

0
! 1. 

 

After we iterate 
   
!x
1
= f !x

0( ) = f x
0
+ !

0( ) = f x
0( ) + !

0

df

dx
x

0( ) + ... , by Taylor expansion. 

 
But, after one iterate 

   
!x
1
= x

1
+ !

1
  Now two points are separated by 

 
!

1
 

 

then 
   
!x
1
= x

1
+ !

1
= f x

0
+ !

0( ) = f x
0( ) + !

0

df

dx
x

0( ) + ... 

  ie: 
  
!

1
= !

0
"f x

0( )  to first order in 
 
!

0
. 

 
So, generally for  j

th  iterate have 
 
  

  
!x

j
= x

j
+ !

j    
  
! j = ! j"1

#f x j"1( )  
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      provided 
   
!

j
! 1 0 < j < n . 

 

Then  

   

!xn = xn + !n = xn + !n"1
#f xn"1( )

= xn + !n"2
#f xn"2( ) #f xn"1( )

= xn + !
0

#f x
0( ) #f x

1( )... #f xn"1( )

 

 
  

   
!xn+1

= xn+1
+ !

0
"f x

0( )... "f xn( )  
 

  
   

!xn+1
= xn+1

+ !
0

j=0

n

" #f x j( )  

 
Now use a trick (handy to turn a product into a sum) 
 

  
  
!f x j( ) = e

ln !f n j( ) . 
 
In addition, we do not know the signs of all 

 
!f x j( )  (and we don't need to know – just interested in 

whether the product is getting bigger or not in magnitude). 
 
So, write 
 

 
   

!xn = xn + !0 exp ln "f x j( )
j=0

n#1

$
%

&
'

(

)
* , 

and hence, define Lyapunov number (exponent) 
 

  
  

! =

n"#
Lim

1

n
ln $f x j( )

j=0

n%1

&  

 
which is a measure of exponential divergence of trajectories 
 

   
!x

n
! x

n
= "

0
e

n# . 
 
What about approximation 

   
!

j
! 1? 

 
Can always take 

 
!

0
 (and thus 

 
!

j ) infinitesimally small – still same dynamics. 
 
So  ! < 0  -  x is at an attractor – trajectories converge. 
  ! > 0  -  x is at a repellor → chaos 
        trajectories diverge. 
 
Note, there is a !  for each degree of freedom (coordinate) here one (x). 
 
 
Note that generally if all 

  
!f x j( ) > 1    all iterates 

NB: after written with 

   

n ! 1 ! n

n " #
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then all   

  
ln !f x j( ) > 0  

 
then  

  
ln !f x j( ) > 0"   and  ! > 0  

   chaotic 
 
Similarly, if all 

  
!f x j( ) < 1  

 
 then all  

  
ln !f x j( ) < 0  

 
and    ! < 0   - stable attractor 
 

- if our graphical result that for each iterate if 
 
gradient > 1  unstable 

* - now generalised this for all iterates of the map – characterised the dynamics. * 
 
Tent map after p iterates: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

* Therefore, tent map globally chaotic * 
  
 
Next, consider polynomial maps.  More complicated 

 
!f x( )  

 

  2
! p+1  

gradient   = ±2
p  

 

 
gradient >  

all iterates 


