PX391 Nonlinearity, Chaos, Complexity SUMMARY Lecture Notes 11-12 - S C Chapman

Logistic map Feigenbaum 1970’s

- period doubling — bifurcation route to chaos
- auniversal behaviour

xN+1:7LxN(1—xN) A>0

May 1976 - insect population dynamics
A - birth rate
—lxi, - saturation/competition
1) Why not use corresponding differential equation instead?

- construct analogous continuous 1st order DE and investigate the dynamics

assume that x, has a continuous limit x(z)

time t=NA N=0,12...
SO Xy =xX(NA) xy,. =x(NA+A), etc.
Taylor expand —A 1s small — for continuous x(¢):
d
K(NA+A)= X(NA) + 5 x(NAVA + . (A)

but this is also coincident with x,_, etc., so for map:

X(NA+A)= M(x(NA)).
= Ax(NAY(1-x(NA)) ®)
(A) = (B) and write x(NA) = x(¢) = x
dx

A =
dt

(A-1)x—Ax?

this is the continuous 1st order DE analogue to M ( x) .

Look at fixed points, classify for continuous case.

(A-1Dx-Ax*=0
X[(A-1)-2X]=0

Fixed points
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SO x=0, fzﬂ.

A
Classify by sketching the phase plane

H(x)zA%z(/’L—l)x—/lx2

sketch H(x)vz x A does not matter

A>0 50 H(x)—>—s0 x —> oo

dH
t.p at o 0=(A-1)-2Ax

1e:at x = —— or X =

22

N | =

Sketch of phase plane

A1 H(x) 0<A<l | H(x)

x X X x
Then for the continuous DE: A>1 x=0 repellor
X = E attractor
)
0O<A<l x=0 attractor
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X = E repellor

A

Now look at the difference equation (map)

Xya = Axy (1-2xy)

fixed points at Xy =Xy =X
x=Ax(1-%)
ie: (l - 1))? - Ax?=0 - same expression as continuous DE.
Classify: Linearize the map

Xy =X +0xy

Anep =X + 6xN+1
Sub into map

f+5.xN+1 :A(f+5xN)(l—f—6xN)
= A[ X(1-X)=X8xy +(1-X)8xy — x|

but at the fixed points ¥ = Ax (1 -X)
SO 6XN+1 = 2«6)(:]\/ (1 — 2)_(:) +0 (6)(:]2\7 )
=[A(1-2x%)]""6x,

and at x=0 Sxyi = AV 8%,

A=22+2 "
A—1 Oxy 41 :[l(T-FH 8
A

X=
Sxya =(2-2)"" 8x
SO x=0 A>1 x=0 repellor
0<A<l1 x=0 attractor
-same as continuous DE
-1 . .
X = /IT - for 0< A <1 is arepellor- same as continuous DE

however, no longer an attractor for all A > 1
- different to continuous DE
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. _ -1
instead, for |2 - l| <1 ie 1 < A <3 map has attractor at x = /IT

What happens for A >3?

Sketch of map: A>1

M (x) x 1s bounded
M(x)=2x(1-x) ie: x <[0,1]
intercepts at x = 0,1 if A<4
M 2
dx
=0atx = l
2

I

We will look in the range 3 < A < 4 (this is where all the interesting behaviour is).

First we can do 4 = 4
in this case =~ M” ( x) = [0,1] (like tent map).

Topologically, same as tent map as well — see this by change of variables

X= sinz(%jzé[l—cos(n‘y)]
x=[0,1]as y= [0,1]

sub into Xy =4xy (1—xy)

b4 I 1
sinz(%] = 2(1—cos7ryN)[1—§+§cos7ryNj

=(1—cos7ryN)(1+cos7ryN)= 1—cosz(ﬂyN):sin2(7ryN)
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ie: sin{%] = sin*(7yy )

TYN+1
2

SO =xnyy +Sn S integer

y= [0,1] so can only have certain s.

net g Yy +S
2
If §S=0 Yyl = 2Vn OSyNS% + sign
S=1 yN+1=2(1—yN) %SyNSI - sign
this is just the tent map.
So, have shown there is global chaos at A = 4
Problem — what happens as we go from A <3 attractorto A =4 - chaos?

We will need to find the p” iterated map M ? (or its essential properties).
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Iterates of the logistic map

Sketch (use graphics)

slope <1
stable
1<A<3

3<A<4

goes stable — unstable

attractor — repellor

as A goes through 3.
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Look at M?(x)

M?(x)=M (M (x))
=AM (1-M)
=Ax(1-x)(1-2Ax(1-x))

=/12.[x—(1+/1)x2 +2/lx3—lx4]
fixed points of M? (x) are M*(x)=X
or M?*(Xx)-x=0
or  A[X-(1+A)X*+2A%° - 2x* |-X =0

SO roots are X =0 and 3 others.

- 3 real or 1 real, 2 imaginary
- all depends on A .

Sketch M?(x) - it is a quadratic

. . 1
- it is symmetric about x = 5

(because M is)

asymptotes ~ M? ( x) — —oo X — oo

intercepts at x = 0,1
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Sketch M?(x)

A1<3

A>3

Fixed points:

=I
Il
o

x=0 +1

Now if X 1is a fixed point of M

call this x"
must be fixed point of M >

(converse is not time)

. A d(M?)
A1<3 x = is attractor <1
dx .
. d(M?
A>3 x  isrepellor (—) >1 and a > 1
dx dx

- but two new fixed points appear
they may (may not) be attractive.

+3
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3<A<4 X =

N is repulsive fixed point of M, M?....

but two new fixed points of M? appear at A > 3 not fixed points of M .

If these are attractive this is period 2 cycle of M .

Period 2 in M is fixed point of M?.
Local gradients to X, ie: A must be "just right".

See handout for the full sequence....
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Logistic map and Feigenbaum numbers

As A increases there are successive period doublings

)
O0

O 0O

Pairs of bifurcated fixed points

Separated by Ax, appear at ﬂ,p

- looks "self similar".

10
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Self — similar?

A piece of the sequence

AL, =2, ~ A,

_ ~(A) _ +(B)
Axp =X, X,

If self similar then

—~<

ratio independent of p

indepenent of p

Feigenbaum's result (numerical) — found by playing on calculator!

AL
—L O = 4.66920....
Aﬂ‘pﬂ
Ax
L — o, =2.59029.....
Ax
p+1

- these are "universal" numbers 6., o

- same for many such maps — originally thought for all maps.

actually turn out to be for all quadratic maps. (Find why this is so.)

11

enlarge

looks the same
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- this is a 'universality class' (show this next).

First note since J,, & are constants
show next

there is a termination to the sequence at A, .
beyond this — global chaos.
(oo bifurcations, o= close together)

+ some interesting islands of periodic 'superstable' behaviour.

What is A, ? (just depends on 6y and a const.)

AL A, —A
We have — 2 =22 "7l _§

My Ap—2,
and A_ = lim A4

poe P

AL AL
now A4, = Pl _ P72 e
Or 52

So we write

Ao =y + AL, + AL, + ..

AL, AL
=, + s+t
5F 6}7

but 6, >1 so roughly (lowest order in &)

AL A
Ay = Ay =L =2, +—>
F o
C .
or A=A, —— C = some const, ie: A,
p 511:7‘

thus A., depends on details of the maps, ie: C- Not universal.

Universal behaviour is the period doubling (PLF,5 . ), sequence and the existence of some A.. .

Other universality classes:

There is a family of maps

Fx)=1-dlsf

- different 65, oty one for each q.

12



