Logistic map \quad Feigenbaum 1970's

- period doubling - bifurcation route to chaos
- a universal behaviour

$$
x_{N+1}=\lambda x_{N}\left(1-x_{N}\right) \quad \lambda>0
$$

May 1976 - insect population dynamics
$\lambda \quad-\quad$ birth rate
$-\lambda x_{N}^{2} \quad-\quad$ saturation/competition

1) Why not use corresponding differential equation instead?

- construct analogous continuous 1 st order DE and investigate the dynamics
assume that x_{N} has a continuous limit $x(t)$
time $\quad t=N \Delta \quad N=0,1,2 \ldots$
so $\quad x_{N}=x(N \Delta) \quad x_{N+1}=x(N \Delta+\Delta)$, etc.
Taylor expand $\quad-\Delta$ is small - for continuous $x(t)$:

$$
\begin{equation*}
x(N \Delta+\Delta)=x(N \Delta)+\frac{d}{d t} x(N \Delta) \cdot \Delta+\ldots \ldots \tag{A}
\end{equation*}
$$

but this is also coincident with x_{N+1} etc., so for map:

$$
\begin{align*}
x(N \Delta+\Delta) & =M(x(N \Delta)) \\
& =\lambda x(N \Delta)(1-x(N \Delta)) \tag{B}
\end{align*}
$$

$(\mathrm{A}) \equiv(\mathrm{B})$ and write $x(N \Delta)=x(t)=x$

$$
\Delta \frac{d x}{d t}=(\lambda-1) x-\lambda x^{2}
$$

this is the continuous 1st order DE analogue to $M(x)$.

Look at fixed points, classify for continuous case.

Fixed points

$$
\begin{aligned}
& (\lambda-1) \bar{x}-\lambda \bar{x}^{2}=0 \\
& \bar{x}[(\lambda-1)-\lambda \bar{x}]=0
\end{aligned}
$$

so

$$
\bar{x}=0, \quad \bar{x}=\frac{\lambda-1}{\lambda} .
$$

Classify by sketching the phase plane

$$
H(x)=\Delta \frac{d x}{d t}=(\lambda-1) x-\lambda x^{2}
$$

sketch $\quad H(x) v z x \quad \Delta$ does not matter
$\lambda>0 \quad$ so $H(x) \rightarrow-\infty \quad x \rightarrow \pm \infty$
t.p at

$$
\frac{d H}{d x}=0=(\lambda-1)-2 \lambda x
$$

ie: at $x=\frac{\lambda-1}{2 \lambda} \quad$ or $\quad x=\frac{\bar{x}}{2}$

Sketch of phase plane

Then for the continuous DE:

$$
\begin{array}{rlr}
\lambda>1 & \bar{x}=0 & \text { repellor } \\
& \bar{x}=\frac{\lambda-1}{\lambda} & \\
\text { attractor } \\
0<\lambda<1 & \bar{x}=0 & \\
\text { attractor }
\end{array}
$$

$$
\bar{x}=\frac{\lambda-1}{\lambda} \quad \text { repellor }
$$

Now look at the difference equation (map)

$$
x_{N+1}=\lambda x_{N}\left(1-x_{N}\right)
$$

fixed points at

$$
x_{N+1}=x_{N}=\bar{x}
$$

$$
\bar{x}=\lambda \bar{x}(1-\bar{x})
$$

ie: $\quad(\lambda-1) \bar{x}-\lambda \bar{x}^{2}=0 \quad$ - same expression as continuous DE.
Classify: Linearize the map

$$
\begin{aligned}
x_{N} & =\bar{x}+\delta x_{N} \\
x_{N+1} & =\bar{x}+\delta x_{N+1}
\end{aligned}
$$

Sub into map

$$
\begin{aligned}
\bar{x}+\delta x_{N+1} & =\lambda\left(\bar{x}+\delta x_{N}\right)\left(1-\bar{x}-\delta x_{N}\right) \\
& =\lambda\left[\bar{x}(1-\bar{x})-\bar{x} \delta x_{N}+(1-\bar{x}) \delta x_{N}-\delta x_{N}^{2}\right]
\end{aligned}
$$

but at the fixed points $\bar{x}=\lambda \bar{x}(1-\bar{x})$
so

$$
\begin{array}{rlr}
\delta x_{N+1} & =\lambda \delta x_{N}(1-2 \bar{x}) & +0\left(\delta x_{N}^{2}\right) \\
& =[\lambda(1-2 \bar{x})]^{N+1} \delta x_{0} &
\end{array}
$$

and at $\quad \bar{x}=0 \quad \delta x_{N+1}=\lambda^{N+1} \delta x_{0}$

$$
\begin{array}{ll}
\bar{x}=\frac{\lambda-1}{\lambda} & \delta x_{N+1}=\left[\lambda\left(\frac{\lambda-2 \lambda+2}{\lambda}\right)\right]^{N+1} \delta x_{0} \\
& \delta x_{N+1}=(2-\lambda)^{N+1} \delta x_{0}
\end{array}
$$

so

$$
\begin{array}{llll}
\bar{x}=0 & \lambda>1 & \bar{x}=0 & \text { repellor } \\
& 0<\lambda<1 & \bar{x}=0 & \text { attractor }
\end{array}
$$ -same as continuous DE

$$
\bar{x}=\frac{\lambda-1}{\lambda} \quad-\text { for } \quad 0<\lambda<1 \text { is a repellor- same as continuous } \mathrm{DE}
$$

however, no longer an attractor for all $\lambda>1$
different to continuous DE
instead, for

$$
|2-\lambda|<1 \quad \text { i.e } \quad 1<\lambda<3 \text { map has attractor at } \bar{x}=\frac{\lambda-1}{\lambda}
$$

What happens for $\lambda>3$?
Sketch of map: $\quad \lambda>1$

$$
M(x)=\lambda x(1-x)
$$

intercepts at $x=0,1$

$$
\begin{aligned}
\frac{d M}{d x} & =\lambda-2 \lambda x \\
& =0 \text { at } x=\frac{1}{2} \\
M\left(\frac{1}{2}\right) & =\frac{\lambda}{2}\left(1-\frac{1}{2}\right)=\frac{\lambda}{4}
\end{aligned}
$$

We will look in the range $3<\lambda<4$ (this is where all the interesting behaviour is).
First we can do $\lambda=4$
in this case $\quad M^{p}(x)=[0,1]$ (like tent map).
Topologically, same as tent map as well - see this by change of variables
$x=\sin ^{2}\left(\frac{\pi y}{2}\right)=\frac{1}{2}[1-\cos (\pi y)]$
$x=[0,1]$ as $y=[0,1]$
sub into $\quad x_{N+1}=4 x_{N}\left(1-x_{N}\right)$
$\sin ^{2}\left(\frac{\pi y_{N+1}}{2}\right)=2\left(1-\cos \pi y_{N}\right)\left(1-\frac{1}{2}+\frac{1}{2} \cos \pi y_{N}\right)$
$=\left(1-\cos \pi y_{N}\right)\left(1+\cos \pi y_{N}\right)=1-\cos ^{2}\left(\pi y_{N}\right)=\sin ^{2}\left(\pi y_{N}\right)$
ie: $\quad \sin ^{2}\left(\frac{\pi y_{N+1}}{2}\right)=\sin ^{2}\left(\pi y_{N}\right)$
so $\quad \frac{\pi y_{N+1}}{2}= \pm \pi y_{N}+S \pi \quad S$ integer
$y=[0,1]$ so can only have certain s.

$$
\frac{y_{N+1}}{2}= \pm y_{N}+S
$$

If

$$
\begin{array}{llll}
S=0 & y_{N+1}=2 y_{N} & 0 \leq y_{N} \leq \frac{1}{2} & +\operatorname{sign} \\
S=1 & y_{N+1}=2\left(1-y_{N}\right) & \frac{1}{2} \leq y_{N} \leq 1 & -\operatorname{sign}
\end{array}
$$

this is just the tent map.
So, have shown there is global chaos at $\lambda=4$
Problem - what happens as we go from $\lambda<3$ attractor to $\lambda=4$ - chaos?

We will need to find the $\mathrm{p}^{\text {th }}$ iterated map M^{p} (or its essential properties).

Sketch
(use graphics)

slope <1 stable
$1<\lambda<3$

$3<\lambda<4$
$\bar{x}=\frac{\lambda-1}{\lambda} \quad$ goes \quad stable \rightarrow unstable
attractor \rightarrow repellor
as λ goes through 3 .

Look at $M^{2}(x)$

$$
\begin{aligned}
M^{2}(x)= & M(M(x)) \\
= & \lambda M(1-M) \\
= & \lambda^{2} x(1-x)(1-\lambda x(1-x)) \\
& \vdots \\
= & \lambda^{2}\left[x-(1+\lambda) x^{2}+2 \lambda x^{3}-\lambda x^{4}\right]
\end{aligned}
$$

fixed points of $M^{2}(x)$ are $M^{2}(\bar{x})=\bar{x}$
or $\quad M^{2}(\bar{x})-\bar{x}=0$
or $\quad \lambda^{2}\left[\bar{x}-(1+\lambda) \bar{x}^{2}+2 \lambda \bar{x}^{3}-\lambda \bar{x}^{4}\right]-\bar{x}=0$
so roots are $\bar{x}=0$ and 3 others.

- 3 real or 1 real, 2 imaginary
- all depends on λ.

Sketch $M^{2}(x) \quad-\quad$ it is a quadratic

- \quad it is symmetric about $x=\frac{1}{2}$
(because M is)
asymptotes $\quad M^{2}(x) \rightarrow-\infty \quad x \rightarrow \pm \infty$
intercepts at $x=0,1$

$$
M^{2}(x)
$$

Fixed points:

$$
\bar{x}=0 \quad+1
$$

$$
\bar{x}=0 \quad+3
$$

Now if \bar{x} is a fixed point of M
must be fixed point of M^{2}
call this x^{*}
(converse is not time)
$\lambda<3 \quad x^{*}=\frac{\lambda-1}{\lambda}$ is attractor $\quad\left|\frac{d\left(M^{2}\right)}{d x}\right|_{x^{*}}<1$
$\lambda>3 \quad x^{*}$ is repellor $\quad\left|\frac{d\left(M^{2}\right)}{d x}\right|>1$ and $\quad\left|\frac{d M}{d x}\right|>1$

- but two new fixed points appear they may (may not) be attractive.

$$
3<\lambda<4 \quad x^{*}=\frac{\lambda-1}{\lambda} \quad \text { is repulsive fixed point of } M, M^{2} \ldots
$$

but two new fixed points of M^{2} appear at $\lambda>3$ not fixed points of M.
If these are attractive this is period 2 cycle of M.

Period 2 in M is fixed point of M^{2}.
Local gradients to \bar{x}, ie: λ must be "just right".
See handout for the full sequence....

Logistic map and Feigenbaum numbers

As λ increases there are successive period doublings

Pairs of bifurcated fixed points
Separated by Δx_{p} appear at λ_{p}

- looks "self similar".

Self - similar?
A piece of the sequence

$$
\begin{aligned}
& \Delta \lambda_{p}=\lambda_{p}-\lambda_{p-1} \\
& \Delta x_{p}=\bar{x}_{p}^{(\mathrm{A})}-\bar{x}_{p}^{(\mathrm{B})}
\end{aligned}
$$

looks the same

If self similar then

$$
\begin{aligned}
& \frac{\Delta \lambda_{p}}{\Delta \lambda_{p+1}}=\text { const } \\
& \text { ratio independent of } p \\
& \frac{\Delta x_{p}}{\Delta x_{p+1}}=\text { const }
\end{aligned}
$$

Feigenbaum's result (numerical) - found by playing on calculator!

$$
\begin{aligned}
& \frac{\Delta \lambda_{p}}{\Delta \lambda_{p+1}} \rightarrow \delta_{F}=4.66920 \ldots \\
& \frac{\Delta x_{p}}{\Delta x_{p+1}} \rightarrow \alpha_{F}=2.59029 \ldots \ldots
\end{aligned}
$$

- these are "universal" numbers δ_{F}, α_{F}
- same for many such maps - originally thought for all maps. actually turn out to be for all quadratic maps. (Find why this is so.)
- this is a 'universality class' (show this next).

First note since δ_{F}, α_{F} are constants
there is a termination to the sequence at λ_{∞}.
beyond this - global chaos.
(∞ bifurcations, ∞ close together)

+ some interesting islands of periodic 'superstable' behaviour.
What is λ_{∞} ? (just depends on δ_{F} and a const.)
We have $\frac{\Delta \lambda_{p}}{\Delta \lambda_{p+1}}=\frac{\lambda_{p}-\lambda_{p-1}}{\lambda_{p+1}-\lambda_{p}}=\delta_{F}$
and $\lambda_{\infty}=\lim _{p \rightarrow \infty} \lambda_{p}$
now $\Delta \lambda_{p}=\frac{\Delta \lambda_{p-1}}{\delta_{F}}=\frac{\Delta \lambda_{p-2}}{\delta_{F}^{2}}$, etc.
So we write

$$
\begin{aligned}
\lambda_{\infty} & =\lambda_{p}+\Delta \lambda_{p+1}+\Delta \lambda_{p+2}+\ldots \\
& =\lambda_{p}+\frac{\Delta \lambda_{p}}{\delta_{F}}+\frac{\Delta \lambda_{p}}{\delta_{F}^{2}}+\ldots
\end{aligned}
$$

but $\delta_{F}>1$ so roughly (lowest order in δ_{F})
or

$$
\lambda_{\infty} \simeq \lambda_{p}+\frac{\Delta \lambda_{p}}{\delta_{F}}=\lambda_{p}+\frac{\Delta_{0}}{\delta_{F}^{p}}
$$

$$
\lambda_{p}=\lambda_{\infty}-\frac{C}{\delta_{F}^{p}} \quad C=\text { some const, ie: } \Delta_{0}
$$

thus λ_{∞} depends on details of the maps, ie: C - Not universal.
Universal behaviour is the period doubling $\left(\lambda_{F}, \delta_{F}\right)$, sequence and the existence of some λ_{∞}.
Other universality classes:
There is a family of maps

$$
f(x)=1-a|x|^{q}
$$

- different δ_{F}, α_{F} one for each q.

