- period doubling bifurcation route to chaos
- a <u>universal</u> behaviour

$$x_{N+1} = \lambda x_N \left(1 - x_N \right) \qquad \lambda > 0$$

- May 1976 - insect population dynamics
 - λ birth rate
 - $-\lambda x_N^2$ saturation/competition
- Why not use corresponding differential equation instead? 1)
 - construct analogous continuous 1st order DE and investigate the dynamics

assume that x_N has a continuous limit x(t)

 $t = N\Delta \qquad \qquad N = 0, 1, 2....$ time

SO

$$x_N = x(N\Delta)$$
 $x_{N+1} = x(N\Delta + \Delta)$, etc.

Taylor expand $-\Delta$ is small – for continuous x(t):

$$x(N\Delta + \Delta) = x(N\Delta) + \frac{d}{dt}x(N\Delta).\Delta + \dots$$
(A)

but this is also coincident with x_{N+1} etc., so for map:

$$x(N\Delta + \Delta) = M(x(N\Delta)).$$

= $\lambda x(N\Delta)(1 - x(N\Delta))$ (B)

(A) = (B) and write
$$x(N\Delta) = x(t) = x$$

$$\Delta \frac{dx}{dt} = (\lambda - 1)x - \lambda x^2$$

this is the continuous 1st order DE analogue to M(x).

Look at fixed points, classify for continuous case.

 $(\lambda - 1)\overline{x} - \lambda \overline{x}^2 = 0$ Fixed points $\overline{x}\left[\left(\lambda-1\right)-\lambda\overline{x}\right]=0$ PX391 Nonlinearity, Chaos, Complexity SUMMARY Lecture Notes 11-12 - S C Chapman

so $\overline{x} = 0$, $\overline{x} = \frac{\lambda - 1}{\lambda}$.

Classify by sketching the phase plane

$$H(x) = \Delta \frac{dx}{dt} = (\lambda - 1)x - \lambda x^{2}$$

sketch

1

$$x \qquad \Delta$$
 does not matter

$$\lambda > 0$$
 so $H(x) \to -\infty$ $x \to \pm \infty$

H(x) vz

t.p at

$$\frac{dH}{dx} = 0 = (\lambda - 1) - 2\lambda x$$

ie: at
$$x = \frac{\lambda - 1}{2\lambda}$$
 or $x = \frac{\overline{x}}{2}$

Sketch of phase plane

Then for the continuous DE:

 $\overline{x} = 0$ repellor $\overline{x} = \frac{\lambda - 1}{\lambda}$ attractor

 $0 < \lambda < 1$ $\overline{x} = 0$ attractor

 $\lambda > 1$

$$\overline{x} = \frac{\lambda - 1}{\lambda}$$
 repellor

Now look at the <u>difference equation</u> (map)

$$x_{N+1} = \lambda x_N \left(1 - x_N \right)$$

fixed points at

$$x_{N+1} = x_N = \overline{x}$$

$$\overline{x} = \lambda \overline{x} \left(1 - \overline{x} \right)$$

ie: $(\lambda - 1)\overline{x} - \lambda \overline{x}^2 = 0$ - same expression as continuous DE.

Classify: Linearize the map

$$x_N = \overline{x} + \delta x_N$$
$$x_{N+1} = \overline{x} + \delta x_{N+1}$$

Sub into map

$$\overline{x} + \delta x_{N+1} = \lambda \left(\overline{x} + \delta x_N \right) \left(1 - \overline{x} - \delta x_N \right)$$
$$= \lambda \left[\overline{x} \left(1 - \overline{x} \right) - \overline{x} \delta x_N + \left(1 - \overline{x} \right) \delta x_N - \delta x_N^2 \right]$$

but at the fixed points $\overline{x} = \lambda \overline{x} (1 - \overline{x})$

so

$$\delta x_{N+1} = \lambda \delta x_N \left(1 - 2\overline{x} \right) + 0 \left(\delta x_N^2 \right)$$

$$= \left[\lambda \left(1 - 2\overline{x}\right)\right]^{N+1} \delta x_0$$

and at $\overline{x} = 0$ $\delta x_{N+1} = \lambda^{N+1} \delta x_0$

$$\overline{x} = \frac{\lambda - 1}{\lambda} \qquad \delta x_{N+1} = \left[\lambda \left(\frac{\lambda - 2\lambda + 2}{\lambda}\right)\right]^{N+1} \delta x_0$$
$$\delta x_{N+1} = (2 - \lambda)^{N+1} \delta x_0$$

SO	$\overline{x} = 0$	$\lambda > 1$	$\overline{x} = 0$	repellor
		$0 < \lambda < 1$	$\overline{x} = 0$	attractor

-same as continuous DE

$$\overline{x} = \frac{\lambda - 1}{\lambda}$$
 - for $0 < \lambda < 1$ is a repellor- same as continuous DE

<u>however</u>, no longer an attractor for all $\lambda > 1$ *different* to continuous DE -

instead, for $|2 - \lambda| < 1$ i.e $1 < \lambda < 3$ map has attractor at $\overline{x} = \frac{\lambda - 1}{\lambda}$

What happens for $\lambda > 3$?

<u>Sketch of map:</u> $\lambda > 1$

We will look in the range $3 < \lambda < 4$ (this is where all the interesting behaviour is).

<u>First</u> we can do $\lambda = 4$

in this case $M^{p}(x) = [0,1]$ (like tent map).

Topologically, same as tent map as well – see this by change of variables $x = \sin^2 \left(\frac{\pi y}{2}\right) = \frac{1}{2} \left[1 - \cos(\pi y)\right]$ x = [0,1] as y = [0,1]

sub into

$$x_{N+1} = 4x_N \left(1 - x_N\right)$$

$$\sin^{2}\left(\frac{\pi y_{N+1}}{2}\right) = 2\left(1 - \cos \pi y_{N}\right) \left(1 - \frac{1}{2} + \frac{1}{2}\cos \pi y_{N}\right)$$
$$= \left(1 - \cos \pi y_{N}\right) \left(1 + \cos \pi y_{N}\right) = 1 - \cos^{2}\left(\pi y_{N}\right) = \sin^{2}\left(\pi y_{N}\right)$$

ie:
$$\sin^2\left(\frac{\pi y_{N+1}}{2}\right) = \sin^2\left(\pi y_N\right)$$

so $\frac{\pi y_{N+1}}{2} = \pm \pi y_N + S\pi$ S integer

y = [0,1] so can only have certain *s*.

$$\frac{y_{N+1}}{2} = \pm y_N + S$$

If S = 0 $y_{N+1} = 2y_N$ $0 \le y_N \le \frac{1}{2}$ + sign

$$S = 1$$
 $y_{N+1} = 2(1 - y_N)$ $\frac{1}{2} \le y_N \le 1$ - sign

this is just the tent map.

So, have shown there is global chaos at $\lambda = 4$

Problem – what happens as we go from $\lambda < 3$ attractor to $\lambda = 4$ - chaos? We will need to find the pth iterated map M^p (or its essential properties).

Iterates of the logistic map

attractor \rightarrow repellor

as λ goes through 3.

Look at $M^2(x)$

$$M^{2}(x) = M(M(x))$$

= $\lambda M(1-M)$
= $\lambda^{2}x(1-x)(1-\lambda x(1-x))$
:
= $\lambda^{2} \left[x - (1+\lambda)x^{2} + 2\lambda x^{3} - \lambda x^{4} \right]$

fixed points of $M^2(x)$ are $M^2(\overline{x}) = \overline{x}$

or
$$M^{2}(\overline{x}) - \overline{x} = 0$$

or $\lambda^{2} \left[\overline{x} - (1 + \lambda) \overline{x}^{2} + 2\lambda \overline{x}^{3} - \lambda \overline{x}^{4} \right] - \overline{x} = 0$

so roots are

 $\overline{x} = 0$ and 3 others.

- 3 real or 1 real, 2 imaginary - all depends on λ .

Sketch $M^{2}(x)$ - it is a quadratic - it is symmetric about $x = \frac{1}{2}$ (because *M* is)

asymptotes $M^2(x) \to -\infty$ $x \to \pm \infty$

intercepts at x = 0, 1

<u>Sketch</u> $M^2(x)$

Fixed points:

 $\overline{x} = 0 + 1$

 $\overline{x} = 0 + 3$

Now if \overline{x} is a fixed point of M

must be fixed point of M^2

call this x^*

(converse is not time)

$$\lambda < 3$$
 $x^* = \frac{\lambda - 1}{\lambda}$ is attractor $\left| \frac{d(M^2)}{dx} \right|_{x^*} < 1$

$$\lambda > 3$$
 x^* is repellor $\left| \frac{d(M^2)}{dx} \right| > 1$ and $\left| \frac{dM}{dx} \right| > 1$

- but two new fixed points appear they may (may not) be attractive.

$$3 < \lambda < 4$$
 $x^* = \frac{\lambda - 1}{\lambda}$ is repulsive fixed point of $M, M^2...$

but two new fixed points of M^2 appear at $\lambda > 3$ <u>not</u> fixed points of M. If these are attractive this is period 2 cycle of M.

Period 2 in M is fixed point of M^2 .

Local gradients to \overline{x} , ie: λ must be "just right".

See handout for the full sequence....

Logistic map and Feigenbaum numbers

As λ increases there are successive period doublings

Pairs of bifurcated fixed points

Separated by Δx_p appear at λ_p

- looks "self similar".

Self – similar?

A piece of the sequence

If self similar then

$$\frac{\Delta \lambda_p}{\Delta \lambda_{p+1}} = \text{ const} \qquad \text{ratio independent of } p$$
$$\frac{\Delta x_p}{\Delta x_{p+1}} = \text{ const} \qquad \text{independent of } p$$

Feigenbaum's result (numerical) – found by playing on calculator!

$$\frac{\Delta \lambda_p}{\Delta \lambda_{p+1}} \rightarrow \delta_F = 4.66920....$$
$$\frac{\Delta x_p}{\Delta x_{p+1}} \rightarrow \alpha_F = 2.59029.....$$

- these are "universal" numbers $\delta_{_F}, \alpha_{_F}$

- same for many such maps – originally thought for <u>all</u> maps. actually turn out to be for all <u>quadratic</u> maps. (Find why this is so.)

- this is a 'universality class' (show this next). First note since δ_F , α_F are constants

show next

there is a termination to the sequence at λ_{∞} .

beyond this - global chaos.

(∞ bifurcations, ∞ close together)

+ some interesting islands of periodic 'superstable' behaviour.

What is λ_{∞} ? (just depends on δ_F and a const.)

We have
$$\frac{\Delta \lambda_p}{\Delta \lambda_{p+1}} = \frac{\lambda_p - \lambda_{p-1}}{\lambda_{p+1} - \lambda_p} = \delta_F$$

and $\lambda_{\infty} = \lim_{p \to \infty} \lambda_p$

now $\Delta \lambda_p = \frac{\Delta \lambda_{p-1}}{\delta_F} = \frac{\Delta \lambda_{p-2}}{\delta_F^2}$, etc.

So we write

$$\lambda_{\infty} = \lambda_p + \Delta \lambda_{p+1} + \Delta \lambda_{p+2} + \dots$$
$$= \lambda_p + \frac{\Delta \lambda_p}{\delta_F} + \frac{\Delta \lambda_p}{\delta_F^2} + \dots$$

but $\delta_F > 1$ so roughly (lowest order in δ_F)

$$\lambda_{\infty} \simeq \lambda_{p} + \frac{\Delta \lambda_{p}}{\delta_{F}} = \lambda_{p} + \frac{\Delta_{0}}{\delta_{F}^{p}}$$
$$\lambda_{p} = \lambda_{\infty} - \frac{C}{\delta_{F}^{p}}$$
$$C = \text{some const, ie: } \Delta_{0}$$

or

thus λ_{∞} depends on details of the maps, ie: *C*- Not universal. Universal behaviour is the period doubling (λ_F, δ_F) , sequence and the existence of some λ_{∞} .

Other universality classes:

There is a family of maps

$$f(x) = 1 - a \left| x \right|^q$$

- different δ_F , α_F one for each q.