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Logistic map  Feigenbaum  1970’s 
 

- period doubling – bifurcation route to chaos 
-  a universal behaviour 

 
 

  
x

N +1
= !x

N
1" x

N( ) ! > 0  
 
May 1976  - insect population dynamics 
 
 !   - birth rate 
 

  
!"x

N

2   - saturation/competition 
 
1) Why not use corresponding differential equation instead? 
 

-  construct analogous continuous 1st order DE and investigate the dynamics 
 

assume that 
 
x

N
 has a continuous limit   x(t)  

 
 time   t = N!     N = 0,1,2.... 
 
 so  

  
x

N
= x(N!)  

  
x

N +1 = x(N! + !) , etc. 
 
Taylor expand  !"  is small – for continuous   x(t) : 
 

  
x(N! + !) = x(N!) +

d

dt
x(N!).! + ......  

 
but this is also coincident with 

  
x

N +1
 etc., so for map: 

 
  

  
x(N! + !) = M x(N!)( ) . 

    
  
= !x(N") 1# x(N")( )  

 

 
A( ) ! B( )  and write   x(N!) = x(t) = x  

   ( ) 2
1

dx
x x

dt
! !" = # #  

 
this is the continuous 1st order DE analogue to 

 
M x( ) . 

 
Look at fixed points, classify for continuous case. 
 

Fixed points    ( )

( )[ ]

2
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1 0

x x

x x

! !
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" " =
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(A) 

(B) 
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so  1
0,x x

!

!

"
= = . 

 
Classify by sketching the phase plane 
 

 ( ) ( ) 2
1

dx
H x x x

dt
! != " = # #  

 
sketch    H (x) vz x !  does not matter 
 

0! >   so 
 
H x( )! "# x ! ±#  

 

t.p at  ( )0 1 2
dH

x
dx

! != = " "  

 

 ie: at 1

2
x

!

!

"
=  or 

  

x =
x

2
 

 
 
Sketch of phase plane 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Then for the continuous DE:   1! >     0x =   repellor 

                    1
x

!

!

"
=              attractor 

 
                                0 1!< <     0x =   attractor 

● ● ● ● 

 x  
 x  

 x   x  
 x  

 x  

 ! > 1 
 
H x( )   0 < ! < 1 

 
H x( )  
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          1
x

!

!

"
=               repellor 

 
 
Now look at the difference equation (map) 
 
    

  
x

N +1
= !x

N
1" x

N( )  
 
fixed points at   

  
x

N +1
= x

N
= x  

 
   ( )1x x x!= "  
 
 ie: 

  
! " 1( )x " !x

2 = 0  - same expression as continuous DE. 
 
Classify: Linearize the map 
 

  
  

x
N
= x + !x

N

x
N +1

= x + !x
N +1

 

 
Sub into map 
 

  
( ) ( )

( ) ( )

1

2

1

1 1

N N N

N N N

x x x x x x

x x x x x x x

! " ! !

" ! ! !

++ = + # #

$ %= # # + # #& '
 

 
but at the fixed points ( )1x x x!= "  
 
so  ( )1 1 2N Nx x x! "!+ = #   ( )20 Nx!+  
 
   ( )[ ]

1

01 2
N

x x! "
+

= #  
 
and   at   0x =  1

1 0

N

Nx x! " !
+

+ =  
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!

!

"
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1 0
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! !
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+
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so 0x =   1! >   0x =   repellor 
   0 1!< <  0x =   attractor 
 
      -same as continuous DE 

 1
x

!

!

"
=  -  for  0 1!< <  is a repellor- same as continuous DE 

 
however, no longer an attractor for all 1! >  

- different to continuous DE 
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instead, for  
 
2 ! " < 1 i.e   1 < ! < 3  map has attractor at 1

x
!

!

"
=  

 
 
What happens for 3! > ? 
 
Sketch of map: 1! >  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We will look in the range 3 4!< <  (this is where all the interesting behaviour is). 
 
First we can do 4! =  
 
in this case 

  
M p x( ) = 0,1[ ]  (like tent map). 

 
Topologically, same as tent map as well – see this by change of variables 

  

x = sin
2

! y

2

"
#$

%
&'
=

1

2
1( cos ! y( )[ ]  

 
[ ]0,1x =  as 

  
y = 0,1[ ]  

 
sub into ( )1 4 1N N Nx x x+ = !  
 

  

sin
2

! yN +1

2

"
#$

%
&'
= 2 1( cos! yN( ) 1(

1

2
+

1

2
cos! yN

"
#$

%
&'

 

 

  
= 1! cos" yN( ) 1+ cos" yN( ) = 1! cos

2
" yN( ) = sin

2
" yN( )  

 
 

● ● 

 

!

4
 

 

1

2
 0 1 

 x  

 
M x( )   x  is bounded  

ie: 
  
x ! 0,1[ ]  

if  ! " 4  
  
M x( ) = !x 1" x( )  
intercepts at   x = 0,1 

  

dM

dx
= ! " 2!x

= 0 at x =
1

2

 

  

M
1

2
( ) =

!
2

1"
1

2

#
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&
'(
=
!
4
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ie: 
  

sin
2

! yN +1

2

"
#$

%
&'
= sin

2 ! yN( )  

 

so 
  

! yN +1

2
= ±! yN + S!   S  integer 

 

  
y = 0,1[ ]  so can only have certain s. 
 

 
  

yN +1

2
= ± yN + S  

 
If 0S =   

  
yN +1

= 2yN   
  
0 ! yN !

1

2
  + sign 

 
 1S =   

  
yN +1

= 2 1! yN( )  
  
1

2
! yN ! 1   - sign 

 
this is just the tent map. 
 
 So, have shown there is global chaos at 4! =  
 
Problem – what happens as we go from 3! <  attractor to 4! =   - chaos? 
 
We will need to find the pth  iterated map pM  (or its essential properties). 
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Iterates of the logistic map 
 
Sketch 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 1
x

!

!

"
=  goes stable → unstable 

 
    attractor → repellor 
 
 as !  goes through 3. 

● ● 

● 

 
M x( ) = x  

  

x =
! " 1

!
 

slope  < 1  
stable 
 1 < ! < 3 

x 

 

1

2
 

0 

 

!

4
 

M 

(use graphics) 

● 

● ● 

 
M x( ) = x  

 3 < ! < 4  

1 

 

1

2
 

0 

 

!

4
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Look at ( )2

M x  
 

 

( ) ( )( )

( )

( ) ( )( )

( )

2

2

2 2 3 4

1

1 1 1

1 2

M x M M x

M M

x x x x

x x x x

!

! !

! ! ! !

=

= "

= " " "

# $= " + + "% &

!

 

 
fixed points of ( )2

M x  are ( )2
M x x=  

 
 or ( )2

0M x x! =  
 
 or ( )2 2 3 4

1 2 0x x x x x! ! ! !" #$ + + $ $ =% &  
 
so roots are  0x =  and 3 others. 
 
  - 3 real or 1 real, 2 imaginary 
 - all depends on ! . 
 
Sketch ( )2

M x  - it is a quadratic 

   - it is symmetric about 1

2
x =  

     (because M is) 
 
 
asymptotes 

  
M

2
x( )! "# x ! ±#  

 
 intercepts at 0,1x =
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Sketch   ( )2
M x  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fixed points: 
 

0x =   + 1      0 3x = +  
 
Now if x  is a fixed point of M 
 
  must be fixed point of 2

M  
 
 (converse is not time) 
 

 
  

! < 3 x
*
=
! " 1

!
 is attractor 

  

d M
2( )

dx
x

*

< 1  

 

 
  
! > 3 x

*  is repellor 
( )2

1
d M

dx
>  and 1

dM

dx
>  

 
 - but two new fixed points appear 
   they may (may not) be attractive. 
 
 
 
 
 
 

● 

● 

● 

0 
 

1

2
 

1 

1 

  
M

2
x( ) = x  

 ! > 3  

2 

0 

 

1

2
 

1 

  
M

2
x( ) = x

  ! < 3  

call this   x*  

● 

● 

● 
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3 < ! < 4 x
*
=
! " 1

!
  is repulsive fixed point of 2, ....M M  

 
but two new fixed points of 2

M  appear at 3! >  not fixed points of M . 
 
If these are attractive this is period 2 cycle of M . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Period 2 in M is fixed point of 2

M . 
 
Local gradients to x , ie: !  must be "just right". 
 
See handout for the full sequence…. 
 
 
 
 
 
 
 
 
 
 
 
 
 

M 

 
x( )  
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Logistic map and Feigenbaum numbers 
 
As !  increases there are successive period doublings 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Pairs of bifurcated fixed points 
 
Separated by 

 
!x

p  appear at 
 
!

p  
 
 - looks "self similar". 

!  

 x  

  x
*  

 
!

1
= 3   

!
2

 
 
!

3
 !

"
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Self – similar? 
 
A piece of the sequence 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
!"

p
= "

p
# "

p#1
 

 
  
!x

p
= x

p
(A)

" x
p

B( )  
 
If self similar then 
 

  
  

!"
p

!"
p+1

=  const   ratio independent  of p 

 

  
  

!x
p

!x
p+1

=  const   indepenent of p 

 
 
Feigenbaum's result (numerical) – found by playing on calculator! 
 

 
  

!"p

!"p+1

#$F = 4.66920....  

 

 
  

!xp

!xp+1

"#F = 2.59029.....  

 
 - these are "universal" numbers 

  
!

F
,"

F
 

 
 - same for many such maps – originally thought for all maps. 
actually turn out to be for all quadratic maps.  (Find why this is so.) 

•  
(a) 

(b) 
•  

 
!

p  
  
!

p"1

 

!  

 x  
 
!"

p  
 
! "x

p  
enlarge 

looks the same 
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- this is a 'universality class' (show this next). 
First note since 

  
!

F
,"

F
 are constants 

 
 there is a termination to the sequence at !" . 
 
 beyond this – global chaos. 
 
 (!  bifurcations, !  close together) 
 
 + some interesting islands of periodic 'superstable' behaviour. 
 
What is !" ?   (just depends on F!  and a const.) 
 

We have 1

1 1

p p p
F

p p p

! ! !
"

! ! !

#

+ +

$ #
= =

$ #
 

 
and 

  

!
"
= lim

p#"

!
p

 

now  
  

!"p =

!"p#1

$F

=

!"p#2

$F
2

, etc. 

 
So we write 

  
1 2

2

....

....

p p p

p p
p

F F

! ! ! !

! !
!

" "

# + += + $ + $ +

$ $
= + + +

 

 
but 1F! >  so roughly (lowest order in F! ) 

  
   

!
"
! !p +

#!p

$F

= !p +
#

0

$F
p

 

or  
 

!p = !
"
#

C

$F
p

   C = some const, ie: 0!  

 
thus !"  depends on details of the maps, ie: C- Not universal. 
Universal behaviour is the period doubling 

  
!

F
,"

F( ) , sequence and the existence of some !" . 
 
Other universality classes: 
 
 There is a family of maps 
     

  
f x( ) = 1! a x

q  
 
 - different ,F F! "  one for each q. 
 

 
  show next 


