Logistic map

- do many iterations of the map

<u>Why is it universal</u>? An example of <u>RG</u>

First transform M(x) to get simpler for

$$M(x) = x_{n+1} = \lambda x_n (1 - x_n)$$

transform with

$$y = \frac{\lambda}{a} \left(x - \frac{1}{2} \right)$$

y = 0 is at the max.

shift and rescale - linear transformation symmetry about y = 0

so
$$\frac{ay}{\lambda} + \frac{1}{2} = x$$

sub in to M(x) - find a

$$\frac{ay_{n+1}}{\lambda} + \frac{1}{2} = \lambda \left[\frac{ay_n}{\lambda} + \frac{1}{2} \right] \left[1 - \frac{ay_n}{\lambda} - \frac{1}{2} \right]$$
$$\frac{ay_{n+1}}{\lambda} = \lambda \left[-\frac{a^2 y_n^2}{\lambda^2} + \frac{1}{4} \right] - \frac{1}{2}$$
$$y_{n+1} = \frac{\lambda^2}{a} \left[-\frac{a^2 y_n^2}{\lambda^2} + \frac{1}{4} \right] - \frac{1}{2} \cdot \frac{\lambda}{a}$$
$$= -ay_n^2 + \left[\frac{\lambda^2}{4a} - \frac{1}{2} \frac{\lambda}{a} \right]$$

$$y_{n+1} = 1 - ay_n^2 \qquad \text{if} \qquad \frac{1}{a} \left[\frac{\lambda^2}{4} - \frac{\lambda}{2} \right] = 1$$

or
$$a = \lambda \left[\frac{\lambda}{4} - \frac{1}{2} \right]$$

i.e.
$$a = \frac{\lambda}{4} [\lambda - 2]$$

* important (for later) we make a particular simplifying choice of $a(\lambda)$.

So now work with

 $M^2(y)$

then

$$y_{n+1} = 1 - ay_n^2 = M(y)$$

= $y_{n+2} = 1 - ay_{n+1}^2$
= $1 - a(1 - ay_n^2)^2$

$$y_{n+2} = 1 - a \left[1 - 2ay_n^2 + a^2 y_n^4 \right]$$
$$= 1 - a + 2a^2 y_n^2 - a^3 y_n^4$$

We just are interested in behaviour about the maximum in M(x). This is $x = \frac{1}{2}$ ie: y = 0

so can neglect y^4 term.

Now $y_{n+2} \simeq (1-a) + 2a^2 y_n^2 = M^2(y)$.

Let's transform this back to the form for M(y)

write
$$\frac{y_{n+2}}{(1-a)} = 1 + \frac{2a^2y_n^2}{(1-a)}$$

change variables $\tilde{y}_{m+1} = \frac{y_{n+2}}{(1-a)}$ $\tilde{y}_m = \frac{y_n}{(1-a)}$

* where one step in $m \equiv 2$ steps in n....

Then sub in

$$\tilde{y}_{m+1} = 1 + \frac{2a^2}{(1-a)^2} (1-a)^2 \tilde{y}_m^2$$

and if we choose $\tilde{a} = -2a^2(1-a)$.

We have

$$\tilde{y}_{m+1} = 1 - \tilde{a}\tilde{y}_m^2 \equiv M^2(y)$$
 and $M(\tilde{y})$, i.e. $M^2(y)$ is in same form as $M(\tilde{y})$.

NB: each step $n \rightarrow m$ is a <u>rescaling</u>.

We can do this as many times as we like – thus all the maps:

$$M^{1}(y), M^{2}(y), M^{4}(y), M^{8}(y), M^{2^{p}}(y)$$

Can be written in the form

$$\tilde{y}_{k+1} = 1 - a_p \tilde{y}_k^2 \equiv M^{2^p} \left(y \right)$$

where $a_{p+1} = 2a_p^2(a_p - 1)$ - a map for $a_p!$

So, every time we go to the next bifurcation rescale \underline{a} [recall $a = a(\lambda)$].

Now we know that sequence does not go on forever, it terminates at some λ_{∞} .

Since $a = a(\lambda)$ there is some "fixed point" of a_p corresponding to λ_{∞} .

This is just the fixed point of $a_{p+1} = 2a_p^2(a_p - 1)$.

When $a_{p+1} = a_p = \overline{a}$ then $\overline{a} = 2\overline{a}^2(\overline{a} - 1)$

 $0 = 2\overline{a}^2 - 2\overline{a} - 1$

ie:
$$\overline{a} = a_c = \frac{1 + \sqrt{3}}{2}$$

$$a_p > 0$$
 for all p

So RG (in this context) started with

Note that – finally - equivalent procedure is Taylor expansion close to fixed points of $M^{2^{P}}$

 \rightarrow universality \rightarrow applies to any map of this sequence (2^P)

```
transform – linear transformation x \rightarrow y \ \lambda \rightarrow a
```

really going from one bifurcation to the next - in both a and λ

Note that the same topology – pitchfork bifurcation – occurs every 2^{P} iterates – ie: once for every $M^{2^{P}}$ as we vary \tilde{a} . (eg: $M \rightarrow M^{2}$ - one bifurcation).

Hence, the rescaling $M \to M^2 \to M^4$, M^8 , M^{2^P} generates the entire bifurcation sequence.

ie:
$$M(y) = 1 - a_p y^2$$
 with rescale $a_{p+1} = 2a_p^2 (a_p - 1)$.
Then just look for fixed point in to find a_c, λ_c .

This procedure will work for any $M = 1 - a |x|^{q}$ - we expanded to $0(x^{2})$