Logistic map - do many iterations of the map

Why is it universal? An example of RG
First transform $M(x)$ to get simpler for

$$
M(x)=x_{n+1}=\lambda x_{n}\left(1-x_{n}\right)
$$

transform with

$$
\begin{aligned}
& y=\frac{\lambda}{a}\left(x-\frac{1}{2}\right) \\
& y=0 \text { is at the max. }
\end{aligned}
$$

- linear transformation symmetry about $y=0$
so $\quad \frac{a y}{\lambda}+\frac{1}{2}=x$
sub in to $M(x)$ - find a

$$
\begin{aligned}
& \frac{a y_{n+1}}{\lambda}+\frac{1}{2}=\lambda\left[\frac{a y_{n}}{\lambda}+\frac{1}{2}\right]\left[1-\frac{a y_{n}}{\lambda}-\frac{1}{2}\right] \\
& \frac{a y_{n+1}}{\lambda}=\lambda\left[-\frac{a^{2} y_{n}^{2}}{\lambda^{2}}+\frac{1}{4}\right]-\frac{1}{2} \\
& \begin{aligned}
y_{n+1} & =\frac{\lambda^{2}}{a}\left[-\frac{a^{2} y_{n}^{2}}{\lambda^{2}}+\frac{1}{4}\right]-\frac{1}{2} \cdot \frac{\lambda}{a} \\
& =-a y_{n}^{2}+\left[\frac{\lambda^{2}}{4 a}-\frac{1}{2} \frac{\lambda}{a}\right]
\end{aligned}
\end{aligned}
$$

$y_{n+1}=1-a y_{n}^{2} \quad$ if $\quad \frac{1}{a}\left[\frac{\lambda^{2}}{4}-\frac{\lambda}{2}\right]=1$

$$
\text { or } \quad a=\lambda\left[\frac{\lambda}{4}-\frac{1}{2}\right]
$$

i.e. $\quad a=\frac{\lambda}{4}[\lambda-2]$

* important (for later) we make a particular simplifying choice of $a(\lambda)$.

So now work with

$$
\begin{gathered}
y_{n+1}=1-a y_{n}^{2}=M(y) \\
M^{2}(y)=y_{n+2}=1-a y_{n+1}^{2} \\
=1-a\left(1-a y_{n}^{2}\right)^{2} \\
y_{n+2}=1-a\left[1-2 a y_{n}^{2}+a^{2} y_{n}^{4}\right] \\
=1-a+2 a^{2} y_{n}^{2}-a^{3} y_{n}^{4}
\end{gathered}
$$

then

We just are interested in behaviour about the maximum in $M(x)$. This is $x=\frac{1}{2}$ ie: $y=0$ so can neglect y^{4} term.

Now $y_{n+2} \simeq(1-a)+2 a^{2} y_{n}^{2}=M^{2}(y)$.
Let's transform this back to the form for $M(y)$
write $\quad \frac{y_{n+2}}{(1-a)}=1+\frac{2 a^{2} y_{n}^{2}}{(1-a)}$
change variables

$$
\tilde{y}_{m+1}=\frac{y_{n+2}}{(1-a)} \quad \tilde{y}_{m}=\frac{y_{n}}{(1-a)}
$$

* where one step in $m \equiv 2$ steps in $n \ldots$.

Then sub in

$$
\tilde{y}_{m+1}=1+\frac{2 a^{2}}{(1-a)}(1-a)^{2} \tilde{y}_{m}^{2}
$$

and if we choose $\tilde{a}=-2 a^{2}(1-a)$.

We have

$$
\tilde{y}_{m+1}=1-\tilde{a} \tilde{y}_{m}^{2} \equiv M^{2}(y) \text { and } M(\tilde{y}), \text { i.e. } M^{2}(y) \text { is in same form as } M(\tilde{y}) .
$$

NB: each step $n \rightarrow m$ is a rescaling.

We can do this as many times as we like - thus all the maps:

$$
M^{1}(y), M^{2}(y), M^{4}(y), M^{8}(y), M^{2^{P}}(y)
$$

really going from one bifurcation to the next - in both a and λ

Can be written in the form

$$
\tilde{y}_{k+1}=1-a_{p} \tilde{y}_{k}^{2} \equiv M^{2^{p}}(y)
$$

where $a_{p+1}=2 a_{p}^{2}\left(a_{p}-1\right) \quad-\quad$ a map for a_{p} !
So, every time we go to the next bifurcation
rescale $a \quad[\operatorname{recall} a=a(\lambda)]$.

Now we know that sequence does not go on forever, it terminates at some λ_{∞}.

Since $a=a(\lambda)$ there is some "fixed point" of a_{p} corresponding to λ_{∞}.
This is just the fixed point of $a_{p+1}=2 a_{p}^{2}\left(a_{p}-1\right)$.

When

$$
\begin{aligned}
& a_{p+1}=a_{p}=\bar{a} \quad \text { then } \quad \bar{a}=2 \bar{a}^{2}(\bar{a}-1) \\
& 0=2 \bar{a}^{2}-2 \bar{a}-1 \\
& \text { ie: } \quad \bar{a}=a_{c}=\frac{1+\sqrt{3}}{2} \\
& a_{p}>0 \text { for all } p
\end{aligned}
$$

So RG (in this context) started with
Note that - finally - equivalent procedure is Taylor expansion close to fixed points of $M^{2^{P}}$
\rightarrow universality \rightarrow applies to any map of this sequence $\left(2^{P}\right)$
transform - linear transformation $x \rightarrow y \quad \lambda \rightarrow a$

Note that the same topology - pitchfork bifurcation - occurs every 2^{P} iterates - ie: once for every $M^{2^{P}}$ as we vary \tilde{a}. (eg: $M \rightarrow M^{2}$ - one bifurcation).

Hence, the rescaling $M \rightarrow M^{2} \rightarrow M^{4}, M^{8}, M^{2^{P}}$ generates the entire bifurcation sequence.
ie: $\quad M(y)=1-a_{p} y^{2}$ with rescale $a_{p+1}=2 a_{p}^{2}\left(a_{p}-1\right)$.
Then just look for fixed point in

This procedure will work for any $M=1-a|x|^{q}$ - we expanded to $0\left(x^{2}\right)$

