Buckingham II theorem- see also handout

Physics from dimensional analysis.
Example - pendulum.
Say we don't know the equation of motion (pre Galileo 1602), we observe - guess/intuition, etc.
Period

Now the dimensions must balance so

$$
\tau \sim m^{\alpha} l^{\beta} g^{\gamma} \theta_{0}^{\delta}
$$

ie:

$$
[\mathrm{T}] \equiv[\mathrm{M}]^{\alpha}[\mathrm{L}]^{\beta}\left[\mathrm{LT}^{-2}\right]^{\gamma}[\mathrm{rad}]^{\delta}
$$

dimensionless
[M],[L],[T] physical dimensions, eg: kg, m, s
Equate powers

$$
\begin{array}{lll}
\mathrm{T}: & 1=-2 \gamma & \gamma=-\frac{1}{2} \\
\mathrm{M}: & 0=\alpha & \alpha=0 \\
\mathrm{~L}: & 0=\beta+\gamma & \beta=+\frac{1}{2}
\end{array}
$$

rads are dimensionless

$$
\delta=0
$$

So $\quad \tau \sim \sqrt{\frac{l}{g}} \quad$ independent of m and θ_{0}
Galileo's famous observation

Take this idea further -

Procedure

1) Guess the relevant quantities
2) System with N variables, R independent dimensions, has a solution which is function of $N-R$ groups, π_{N-R} of variables that dimensionless.
3) Consider the simplest π_{k} (Occam's razor).

Do this for the (full nonlinear) pendulum

Variable	dimension	what it is
θ_{0}	-	angle of release
m	$[\mathrm{M}]$	mass of bob
τ	$[\mathrm{T}]$	period
g	$[\mathrm{~L}][\mathrm{T}]^{-2}$	grav. acceln
l	$[\mathrm{~L}]$	length of pendulum

$N=5 \quad$ variables
$R=3 \quad$ dimensions
([M],[L],[T])
Therefore, $\quad N-R=2$ possible groups of variables $\pi_{1,2}$
Now θ_{0} - dimensionless so let $\pi_{1}=\theta_{0}$
None of the other variables has dimension M so π_{2} must be independent of m.
So $\quad \pi_{2}=h(\tau, g, L)$ which is dimensionless;
e.g.: $\quad \pi_{2}=\left(\frac{\tau^{2} g}{L}\right)^{\alpha} \equiv\left(\frac{[\mathrm{T}]^{2}[\mathrm{~L}][\mathrm{T}]^{-2}}{[\mathrm{~L}]}\right)^{\alpha}$
dimensionless
simplest choice $\quad \alpha=1$
$\pi_{2}=\frac{\tau^{2} g}{L}$
Then the pendulum's motion is given by the function

$$
f\left(\pi_{1}, \pi_{2}\right)=f\left(\theta_{0}, \frac{\tau^{2} g}{L}\right)=C
$$

What is f ?
Guess that $\pi_{2}=f_{0}\left(\pi_{1}\right) \quad$ or $\quad \tau=f_{1}\left(\theta_{0}\right) \sqrt{\frac{l}{g}}$
NB: $f_{1}\left(\theta_{0}\right)$ is universal, ie the same for any l, g.
What is $f_{1}\left(\theta_{0}\right)$?
Recall for the nonlinear undamped pendulum there is a constant of the motion

$$
E=\frac{y^{2}}{2}-\omega^{2} \cos \theta
$$

where $y=\frac{d \theta}{d t}, \omega=\sqrt{\frac{g}{l}}$.
Now θ_{0} is the angle of release of the pendulum, ie: $y=0$ at $\theta=\theta_{0}$

$$
E=-\omega^{2} \cos \theta_{0}
$$

then

$$
\begin{aligned}
& y^{2}=\left(\frac{d \theta}{d t}\right)^{2}=2 E+2 \omega^{2} \cos \theta=2 \omega^{2}\left(\cos \theta-\cos \theta_{0}\right) \\
& \frac{d \theta}{d t}=\sqrt{\frac{2 g}{l}}\left(\cos \theta-\cos \theta_{0}\right)^{1 / 2} \\
& d t=\frac{d \theta}{\left(\cos \theta-\cos \theta_{0}\right)^{1 / 2}} \sqrt{\frac{l}{2 g}}
\end{aligned}
$$

and the τ is time for pendulum to go $\theta=0-\theta_{0} \times 4$
so $\quad \tau=\int_{0}^{\tau} d t=4 \sqrt{\frac{l}{2 g}} \int_{0}^{\theta_{0}} \frac{d \theta}{\left(\cos \theta-\cos \theta_{0}\right)^{1 / 2}}$
ie: $\quad f_{1}\left(\theta_{0}\right)=2 \sqrt{2} \int_{0}^{\theta_{0}} \frac{d \theta}{\left(\cos \theta-\cos \theta_{0}\right)^{1 / 2}}$
so $\quad \Pi$ theorem \rightarrow there is some $\tau=f_{1}\left(\theta_{0}\right) \sqrt{\frac{l}{g}}$

$$
f_{1}\left(\theta_{0}\right) \text { - universal }
$$

energy equation $\rightarrow \quad f_{1}\left(\theta_{0}\right)$.
$\underline{\Pi}$ Theorem and Turbulence
Kolmogorov 1941 ideal incompressible Hydrodynamic turbulence

Variable	dimension	description
$E(k)$	$[\mathrm{L}]^{3}[\mathrm{~T}]^{-2}$	energy/unit wave number
ε_{0}	$[\mathrm{L}]^{2}[\mathrm{~T}]^{-3}$	rate of energy input
k	$[\mathrm{L}]^{-1}$	wave number
$N=3$	$R=2$	so one group
$\pi_{1}=\frac{E^{3} h^{5}}{\varepsilon_{0}^{2}}$	$\frac{]^{3}[\mathrm{~T}]^{-2}\right)^{3}}{]^{2}[\mathrm{~T}]^{-3}\right)^{2}} \times \frac{1}{[\mathrm{~L}]^{5}}$	

choose $\pi_{1}=$ const
$\rightarrow \quad E=C \varepsilon_{0}^{2 / 3} k^{-5 / 3}$
NB: this determines the universal $-5 / 3$ exponent of ideal Kolmogorov turbulence

- does not depend on details eg viscosity.
- does not determine C.
[Actually can get C from Navier-Stokes- Kolmogorov’s "4/5 law"

Now add a variable - Magnetohydrodynamic (MHD) turbulence

Variable	Dimension	Description
$E(k)$	$[\mathrm{L}]^{3}[\mathrm{~T}]^{-2}$	energy/unit wave n_{0}
ε_{0}	$[\mathrm{~L}]^{2}[\mathrm{~T}]^{-3}$	rate of energy $\frac{1}{p}$
k	$[\mathrm{~L}]^{-1}$	wave n_{0}
V	$[\mathrm{~L}][\mathrm{T}]^{-1}$	characteristic speed
$\pi_{1}=\frac{E^{3} k^{5}}{\varepsilon_{0}^{2}}$	$\pi_{2}=\frac{V^{2}}{E k}$	$=\frac{[\mathrm{L}]^{2}[\mathrm{~T}]^{-2}}{[\mathrm{~L}]^{3}[\mathrm{~T}]^{-2}[\mathrm{~L}]}$

Now, let $\pi_{1} \sim \pi_{2}^{\alpha}$ since we are interested in turbulence which is scaling
so
$E(k) \sim k^{-(5+\alpha) /(3+\alpha)}$
α is now not determined - depends on the detailed phenomenology § anomalous scaling: may not be universal.

NB we can obtain the control parameter for turbulence in the same way:
Reynolds number for fluid turbulence

Variable	Dimension	Description
L_{0}	[L]	driving scale
η	[L]	dissipation scale
u	$[\mathrm{L}][\mathrm{T}]^{-1}$	bulk driving (flow) speed
v	$[\mathrm{L}]^{2}[\mathrm{~T}]^{-1}$	viscosity
$P=4 \quad R=2 \quad M=2$		
$\pi_{1}=\frac{U L_{0}}{v}=\frac{[\mathrm{L}][\mathrm{T}]^{-1}[\mathrm{~L}]}{[\mathrm{L}]^{2}[\mathrm{~T}]^{-1}}=\text { Reynolds Number }$		

$$
\pi_{2}=\frac{L_{0}}{\eta}
$$

how can we relate π_{1}, π_{2} ?
Insist on steady state so energy transfer rate same on all scales (energy rate in = energy rate out).
Mass normalised so
energy rate in $\quad \varepsilon_{i n j}=\frac{U^{2}}{T_{0}}=\frac{U^{3}}{L_{0}} \quad U=\frac{L_{0}}{T_{0}}$
energy rate out - at viscous scale - obtain from Navier Stokes equation

$$
\varepsilon_{d i s s}=\frac{v^{3}}{\eta^{4}}
$$

then steady state $\Rightarrow \varepsilon_{i n j} \sim \varepsilon_{\text {diss }}$ so

$$
\frac{U^{3}}{L_{0}} \sim \frac{v^{3}}{\eta^{4}}
$$

or $\quad \frac{U^{3} L_{0}^{3}}{v^{3}} \sim \frac{L_{0}^{4}}{\eta^{4}} \quad \frac{U L_{0}}{v} \sim\left(\frac{L_{0}}{\eta}\right)^{4 / 3}$
ie steady state implies that:

$$
\pi_{1}=\pi_{2}^{4 / 3}
$$

thus the number of excited modes or degrees of freedom (level of disorder) increases with the Reynolds number.

