Buckingham II theorem- see also handout

Physics from dimensional analysis.

Example – pendulum.

Say we don't know the equation of motion (pre Galileo 1602), we observe - guess/intuition, etc.

Period

Now the dimensions must balance so

$$\tau \sim m^{\alpha} l^{\beta} g^{\gamma} \theta_0^{\delta}$$

ie:

 $\begin{bmatrix} T \end{bmatrix} \equiv \begin{bmatrix} M \end{bmatrix}^{\alpha} \begin{bmatrix} L \end{bmatrix}^{\beta} \begin{bmatrix} LT^{-2} \end{bmatrix}^{\gamma} \begin{bmatrix} rad \end{bmatrix}^{\delta}$ dimensionless

[M],[L],[T] physical dimensions, eg: kg, m, s

Equate powers

- T: $1 = -2\gamma$ $\gamma = -\frac{1}{2}$
- M: $0 = \alpha$ $\alpha = 0$ L: $0 = \beta + \gamma$ $\beta = +\frac{1}{2}$

rads are dimensionless

 $\tau \sim \sqrt{\frac{l}{g}}$

independent of *m* and θ_0

 $\delta = 0$

Galileo's famous observation

Take this idea further -

"Buckingham Π Theorem" 1914

So

Procedure

1) Guess the relevant quantities

2) System with *N* variables, *R* independent dimensions, has a solution which is function of *N*-*R* groups, π_{N-R} of variables that <u>dimensionless</u>.

3) Consider the simplest π_k (Occam's razor).

Do this for the	(full nonlinear)	pendulum
-----------------	------------------	----------

Variable	dimension	what it is
$ heta_0$	-	angle of release
m	[M]	mass of bob
τ	[T]	period
g	$[L][T]^{-2}$	grav. acceln
l	[L]	length of pendulum

N = 5	variables	
R = 3	dimensions	([M],[L],[T])

Therefore, N - R = 2 possible groups of variables $\pi_{1,2}$

Now θ_0 - dimensionless so let $\pi_1 = \theta_0$

None of the other variables has dimension M so π_2 must be independent of m.

So $\pi_2 = h(\tau, g, L)$ which is dimensionless;

e.g.:
$$\pi_2 = \left(\frac{\tau^2 g}{L}\right)^{\alpha} \equiv \left(\frac{[T]^2 [L] [T]^{-2}}{[L]}\right)^{\alpha}$$

dimensionless

<u>simplest choice</u> $\alpha = 1$

$$\pi_2 = \frac{\tau^2 g}{L}$$

Then the pendulum's motion is given by the function

$$f(\pi_1,\pi_2) = f\left(\theta_0,\frac{\tau^2 g}{L}\right) = C$$

What is *f*?

Guess that $\pi_2 = f_0(\pi_1)$ or $\tau = f_1(\theta_0) \sqrt{\frac{l}{g}}$

NB: $f_1(\theta_0)$ is <u>universal</u>, if the same for any l, g.

What is $f_1(\theta_0)$?

Recall for the nonlinear undamped pendulum there is a constant of the motion

$$E = \frac{y^2}{2} - \omega^2 \cos \theta$$

where $y = \frac{d\theta}{dt}, \omega = \sqrt{\frac{g}{l}}$.

Now θ_0 is the angle of release of the pendulum, ie: y = 0 at $\theta = \theta_0$

$$E = -\omega^2 \cos \theta_0$$

then

$$y^{2} = \left(\frac{d\theta}{dt}\right)^{2} = 2E + 2\omega^{2}\cos\theta = 2\omega^{2}\left(\cos\theta - \cos\theta_{0}\right)$$
$$\frac{d\theta}{dt} = \sqrt{\frac{2g}{l}}\left(\cos\theta - \cos\theta_{0}\right)^{1/2}$$
$$dt = \frac{d\theta}{\left(\cos\theta - \cos\theta_{0}\right)^{1/2}}\sqrt{\frac{l}{2g}}$$

and the τ is time for pendulum to go $\theta = 0 - \theta_0 \times 4$

so
$$\tau = \int_{0}^{\tau} dt = 4\sqrt{\frac{l}{2g}} \int_{0}^{\theta_0} \frac{d\theta}{\left(\cos\theta - \cos\theta_0\right)^{1/2}}$$

ie:
$$f_1(\theta_0) = 2\sqrt{2} \int_{0}^{\theta_0} \frac{d\theta}{\left(\cos\theta - \cos\theta_0\right)^{1/2}}$$

so
$$\Pi$$
 theorem \rightarrow there is some $\tau = f_1(\theta_0) \sqrt{\frac{l}{g}}$

 $f_1(\theta_0)$ - universal

energy equation $\rightarrow f_1(\theta_0)$.

Π Theorem and Turbulence

Kolmogorov 1941 ideal incompressible Hydrodynamic turbulence

Variable	dimension	description
E(k) $oldsymbol{arepsilon}_0$ k	$\begin{bmatrix} L \end{bmatrix}^{3} \begin{bmatrix} T \end{bmatrix}^{-2} \\ \begin{bmatrix} L \end{bmatrix}^{2} \begin{bmatrix} T \end{bmatrix}^{-3} \\ \begin{bmatrix} L \end{bmatrix}^{-1}$	energy/unit wave number rate of energy input wave number
<i>N</i> = 3	<i>R</i> = 2 s	o one group
$\pi_1 = \frac{E^3 h^5}{\varepsilon_0^2} = \frac{\left(\begin{bmatrix} \mathbf{L} \\ \mathbf{L} \end{bmatrix} \right)}{\left(\begin{bmatrix} \mathbf{L} \end{bmatrix} \right)}$	$\frac{\left {}^{3}\left[T\right]^{-2}\right)^{3}}{\left {}^{2}\left[T\right]^{-3}\right)^{2}} \times \frac{1}{\left[L\right]^{5}}$	

choose $\pi_1 = \text{const}$

$$\rightarrow \qquad E = C \varepsilon_0^{2/3} \ k^{-5/3}$$

NB: this determines the universal -5/3 exponent of ideal Kolmogorov turbulence

- does not depend on details eg viscosity.

- does <u>not</u> determine C.

[Actually can get C from Navier-Stokes- Kolmogorov's "4/5 law"

PX391 Nonlinearity, Chaos, Complexity SUMMARY Lecture Notes 15-SC Chapman

Variable	Dimension	Description
E(k) ε_0 k V	$\begin{bmatrix} L \end{bmatrix}^{3} \begin{bmatrix} T \end{bmatrix}^{-2} \\ \begin{bmatrix} L \end{bmatrix}^{2} \begin{bmatrix} T \end{bmatrix}^{-3} \\ \begin{bmatrix} L \end{bmatrix}^{-1} \\ \begin{bmatrix} L \end{bmatrix} \begin{bmatrix} T \end{bmatrix}^{-1}$	energy/unit wave n_0 rate of energy $\frac{1}{p}$ wave n_0 characteristic speed
$\pi_1 = \frac{E^3 k^5}{\varepsilon_0^2}$	$\pi_2 = \frac{V^2}{Ek}$	$= \frac{[L]^{2}[T]^{-2}}{[L]^{3}[T]^{-2}[L]}$

Now add a variable - Magnetohydrodynamic (MHD) turbulence

Now, let $\pi_1 \sim \pi_2^{\alpha}$ since we are interested in turbulence which is scaling

so
$$E(k) \sim k^{-(5+\alpha)/(3+\alpha)}$$

 α is now not determined – depends on the detailed <u>phenomenology</u> <u>anomalous scaling</u>:

may not be universal.

NB we can obtain the control parameter for turbulence in the same way:

Reynolds number for fluid turbulence

Variable	Dimension	Description
L_0 η u v P = 4 $R = 2$	$\begin{bmatrix} L \\ L \end{bmatrix}$ $\begin{bmatrix} L \end{bmatrix} \begin{bmatrix} T \end{bmatrix}^{-1}$ $\begin{bmatrix} L \end{bmatrix}^{2} \begin{bmatrix} T \end{bmatrix}^{-1}$ $M = 2$	driving scale dissipation scale bulk driving (flow) speed viscosity

$$\pi_1 = \frac{UL_0}{\upsilon} = \frac{\left[L \right] \left[T \right]^{-1} \left[L \right]}{\left[L \right]^2 \left[T \right]^{-1}} = \text{Reynolds Number}$$

$$\pi_2 = \frac{L_0}{\eta}$$

how can we relate π_1, π_2 ?

Insist on steady state so energy transfer rate same on all scales (energy rate in = energy rate out). Mass normalised so

energy rate in
$$\varepsilon_{inj} = \frac{U^2}{T_0} = \frac{U^3}{L_0}$$
 $U = \frac{L_0}{T_0}$

energy rate out - at viscous scale - obtain from Navier Stokes equation

$$\varepsilon_{diss} = \frac{\upsilon^3}{\eta^4}$$

then <u>steady state</u> $\Rightarrow \varepsilon_{inj} \sim \varepsilon_{diss}$ so

$$\frac{U^3}{L_0} \sim \frac{\upsilon^3}{\eta^4}$$

 $\frac{U^3 L_0^3}{\upsilon^3} \sim \frac{L_0^4}{\eta^4} \qquad \frac{U L_0}{\upsilon} \sim \left(\frac{L_0}{\eta}\right)^{4/3}$

or

ie steady state implies that:

 $\pi_1 = \pi_2^{4/3}$

thus the number of excited modes or degrees of freedom (level of disorder) increases with the Reynolds number.